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ARTICLE

Mice adaptively generate choice variability
in a deterministic task
Marwen Belkaid1, Elise Bousseyrol 2, Romain Durand-de Cuttoli 2, Malou Dongelmans2,

Etienne K. Duranté 2, Tarek Ahmed Yahia2, Steve Didienne2, Bernadette Hanesse2, Maxime Come2,

Alexandre Mourot 2, Jérémie Naudé 2, Olivier Sigaud 1,3 & Philippe Faure 2,3*

Can decisions be made solely by chance? Can variability be intrinsic to the decision-maker or

is it inherited from environmental conditions? To investigate these questions, we designed a

deterministic setting in which mice are rewarded for non-repetitive choice sequences, and

modeled the experiment using reinforcement learning. We found that mice progressively

increased their choice variability. Although an optimal strategy based on sequences learning

was theoretically possible and would be more rewarding, animals used a pseudo-random

selection which ensures high success rate. This was not the case if the animal is exposed to a

uniform probabilistic reward delivery. We also show that mice were blind to changes in the

temporal structure of reward delivery once they learned to choose at random. Overall, our

results demonstrate that a decision-making process can self-generate variability and ran-

domness, even when the rules governing reward delivery are neither stochastic nor volatile.

Corrected: Author Correction
https://doi.org/10.1038/s42003-020-0759-x OPEN

1 Sorbonne Université, CNRS, Institut des Systèmes Intelligents et de Robotique (ISIR), 75005 Paris, France. 2 Sorbonne Université, INSERM, CNRS,
Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France. 3These authors contributed equally: Olivier Sigaud,
Philippe Faure. *email: phfaure@gmail.com

COMMUNICATIONS BIOLOGY |            (2020) 3:34 | https://doi.org/10.1038/s42003-020-0759-x | www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-8718-6183
http://orcid.org/0000-0001-8718-6183
http://orcid.org/0000-0001-8718-6183
http://orcid.org/0000-0001-8718-6183
http://orcid.org/0000-0001-8718-6183
http://orcid.org/0000-0003-0240-7608
http://orcid.org/0000-0003-0240-7608
http://orcid.org/0000-0003-0240-7608
http://orcid.org/0000-0003-0240-7608
http://orcid.org/0000-0003-0240-7608
http://orcid.org/0000-0003-1221-4818
http://orcid.org/0000-0003-1221-4818
http://orcid.org/0000-0003-1221-4818
http://orcid.org/0000-0003-1221-4818
http://orcid.org/0000-0003-1221-4818
http://orcid.org/0000-0002-8839-7481
http://orcid.org/0000-0002-8839-7481
http://orcid.org/0000-0002-8839-7481
http://orcid.org/0000-0002-8839-7481
http://orcid.org/0000-0002-8839-7481
http://orcid.org/0000-0001-5781-6498
http://orcid.org/0000-0001-5781-6498
http://orcid.org/0000-0001-5781-6498
http://orcid.org/0000-0001-5781-6498
http://orcid.org/0000-0001-5781-6498
http://orcid.org/0000-0002-8544-0229
http://orcid.org/0000-0002-8544-0229
http://orcid.org/0000-0002-8544-0229
http://orcid.org/0000-0002-8544-0229
http://orcid.org/0000-0002-8544-0229
http://orcid.org/0000-0003-3573-4971
http://orcid.org/0000-0003-3573-4971
http://orcid.org/0000-0003-3573-4971
http://orcid.org/0000-0003-3573-4971
http://orcid.org/0000-0003-3573-4971
https://doi.org/10.1038/s42003-020-0785-8
mailto:phfaure@gmail.com
www.nature.com/commsbio
www.nature.com/commsbio


Principles governing random behaviors are still poorly
understood, despite well-known ecological examples
ranging from vocal and motor babbling in trial-and-error

learning1,2 to unpredictable behavior in competitive setups (e.g
preys-versus-predators3 or humans competitive games4). Domi-
nant theories of behavior and notably reinforcement learning (RL)
rely on exploitation, namely the act of repeating previously
rewarded actions5,6. In this context, choice variability is associated
with exploration of environmental contingencies. Directed
exploration aims at gathering information about environmental
contingencies7,8, whereas random exploration introduces
variability regardless of the contingencies9,10. Studies have shown
that animals are able to produce variable, unpredictable
choices11,12, especially when the reward delivery rule changes13–15,
is stochastic9,16,17 or is based on predictions about their
decisions18,19. However, even approaches based on the prediction
of the animal behavior18,19 keep the possibility to distribute
reward stochastically—for example if no systematic bias in the
animal’s choice behavior has been found19,20. Thus, because of the
systematic use of volatile or probabilistic contingencies, it has
remained difficult to experimentally isolate variability generation
from environmental conditions. To test the hypothesis that ani-
mals can adaptively adjust the randomness of their behavior, we
implemented a task where the reward delivery rule is determi-
nistic, predetermined and identical for all animals, but where a
purely random choices strategy is successful.

Results
Mice can generate variable decisions in a complex task. Mice
were trained to perform a sequence of binary choices in an open-
field where three target locations were explicitly associated with
rewards delivered through intra-cranial self-stimulation (ICSS) in
the medial forebrain bundle. Importantly, mice could not receive
two consecutive ICSS at the same location. Thus, they had to
perform a sequence of choices16 and at each location to choose
the next target amongst the two remaining alternatives (Fig. 1a).
In the training phase, all targets had a 100% probability of reward.
We observed that after learning, mice alternated between
rewarding locations following a stereotypical circular scheme
interspersed with occasional changes in direction, referred to as
U-turn (Fig. 1b). Once learning was stabilized, we switched to the
complexity condition, in which reward delivery was non-
stochastic and depended on sequence variability. More pre-
cisely, we calculated the Lempel-Ziv (LZ) complexity21 of choice
subsequences of size 10 (9 past choices+ next choice) at each
trial. Animals were rewarded when they chose the one target (out
of the two options) associated with the highest complexity (given
the previous nine choices). Despite its difficulty, this task is fully
deterministic. Indeed, mice were asked to move along a tree of
binary choices (see Fig. 1a) where some paths ensured 100%
rewards. Whether each node was rewarded or not was pre-
determined in advance. Thus, choice variability could not be
imputed to the inherent stochasticity of the outcomes. For each
trial, if choosing randomly, the animal had either 100% or 50%
chance of being rewarded depending on whether the two sub-
sequences of size 10 (=9 past choices+ 1 choice out of 2 options)
had equal or unequal complexities. Another way to describe the
task is thus to consider all possible situations, not as sequential
decisions made by the animal during the task but as the set of all
possible subsequences of size 10 of which the algorithm may
evaluate the complexity. From this perspective, there is an overall
75% probability of being rewarded if subsequences are sampled
uniformly (Fig. 1a). To summarize, theoretically, while a correct
estimation of the complexity of the sequence leads to a success
rate of 100%, a pure random selection at each step leads to 75% of

success, and a repetitive sequence (e.g. A,B,C,A,B,C,…) grants
no reward.

Unlike the stereotypical circular scheme observed during
training, at the end of the complexity condition, choice sequence
became more variable (Fig. 1b). We found that mice progressively
increased the variability of their choice sequences and thus their
success rate along sessions (Fig. 1c). This increased variability in
the generated sequences was demonstrated by an increase in the
normalized LZ-complexity measure (hereafter NLZcomp) of the
session sequences, a decrease in an entropy measure based on
recurrence plot quantification and an increase in the percentage
of U-turns (Fig. 1d). Furthermore, in the last session, 65.5% of the
sequences were not significantly different from surrogate
sequences generated randomly (Supplementary Fig 1a). The
success rate was correlated with the NLZcomp of the entire
session of choice sequences (Fig. 1e), suggesting that mice
increased their reward through an increased variability in their
choice. The increase in success rate was associated with an
increase of the percentage of U-turns (Fig. 1d), yet mice
performed a suboptimal U-turn rate of 30%, below the 50% U-
turn rate ensuring 100% of rewards (Supplementary Fig 1b).

Computational modeling indicates the use of random strategy.
From a behavioral point of view, mice thus managed to increase
their success rate in a highly demanding task. They did not
achieve 100% success but reached performances that indicate a
substantial level of variability. Given that the task is fully deter-
ministic, the most efficient strategy would be to learn and repeat
one (or a subset) of the 10-choice long sequences that are always
rewarded. This strategy ensures the highest success rate but incurs
a tremendous memory cost. On the other hand, a purely random
selection is another appealing strategy since it is less costly and
leads to about 75% of reward. To differentiate between the two
strategies and better understand the computational principles
underlying variability generation in mice, we examined the ability
of a classical RL algorithm to account for the mouse decision-
making process under these conditions.

As in classical reinforcement learning, state-action values were
learned using the Rescorla-Wagner rule22 and action selection
was based on a softmax policy5 (Fig. 2a; see “Methods”). Two
adaptations were applied: (i) rewards were discounted by a U-
turn cost κ in the utility function in order to reproduce mouse
circular trajectories in the training phase; (ii) states were
represented as vectors in order to simulate mouse memory of
previous choices. By defining states as vectors including the
history of previous locations instead of the current location alone,
we were able to vary the memory size of simulated mice and to
obtain different solutions from the model accordingly. We found
that, with no memory (i.e. state= current location), the model
learned equal values for both targets in almost all states (Fig. 2b).
In contrast, and in agreement with classical RL, with the history
of the nine last choices stored in memory, the model favored the
rewarded target in half of the situations by learning higher values
(approximately 90 vs 10%) associated with rewarded sequences
of choices (Fig. 2b). This indicates that classical RL can find
the optimal solution of the task if using a large memory.
Furthermore, choosing randomly was dependent not only on the
values associated with current choices, but also on the softmax
temperature and the U-turn cost. The ratio between these two
hyperparameter controls the level of randomness in action
selection (see “Methods”). Intuitively, a high level of randomness
leads to high choice variability and sequence complexity. But
interestingly, the randomness hyperparameter had opposite
effects on the model behavior with small and large memory
sizes. While increasing the temperature always increased the
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complexity of choice sequences, it increased the success rate for
small memory sizes but decreased it for larger memories (Fig. 2c).
A boundary between the two regimes was found between memory
sizes of 3 and 4.

Upon optimization of the model to fit mouse behavior, we
found that their performance improvement over sessions was best
accounted for by an increase of choice randomness using a small
memory (Fig. 2d). This model captured mouse learning better
than when using fixed parameters throughout sessions (Bayes
factor= 3.46; see “Methods”, and Supplementary Fig. 2a, b). The
model with a memory of size 3 best reproduced mouse behavior
(Fig. 2d), but only slightly better than versions with smaller
memories (Supplementary Fig 2c). From a computational
perspective, one possible explanation for the fact that although
theoretically sufficient, a memory of size 1 fits less than size 3, is
that state representation is overly simplified in the model.
Accordingly, altering the model’s state representation to make it
more realistic should reduce the size of the memory needed to
reproduce mice performances. To test this hypothesis, we used a
variant of the model in which we manipulated state representa-
tion ambiguity: each of the locations {A, B, C} could be
represented by n ≥ 1 states, with n= 1 corresponding to
unambiguous states (see “Methods’”, and Fig. 2e). As expected,
the model fitted better with a smaller memory as representation

ambiguity was increased (Fig. 2e). We also found that the best
fitting learning rate was higher with ambiguous representations
while the randomness factor remained unchanged regardless of
ambiguity level (Fig. 2e). This corroborates that the use of
additional memory capacity by the model is due to the model’s
own limitations rather than an actual need to memorize previous
choices. Hence, this computational analysis overall suggests that
mice adapted the randomness parameter of their decision-making
system to achieve more variability over sessions rather than
remembered rewarded choice sequences. This conclusion was
further reinforced by a series of behavioral arguments detailed
below supporting the lack of memorization of choice history in
their strategy.

Mice choose randomly without learning the task structure. We
first looked for evidence of repeated choice patterns in mouse
sequences using a Markov chain analysis (see “Methods”). We
found that the behavior at the end of the complexity condition
was Markovian (Fig. 3a). In other words, the information about
the immediately preceding transition (i.e. to the left or to the
right) was necessary to determine the following one (e.g. p(L) ≠ P
(L|L)) but looking two steps back was not informative on future
decisions (e.g. p(L|LL) ≈ P(L|L)) (see “Methods” Markov Chain
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Analysis). The analysis of the distribution of subsequence of
length 10 (see “Methods”) provides an additional evidence of the
lack of structure in the animals’ choice sequence. Indeed, while at
the end of the training, mice exhibit a peaky distribution with a
strong preference for the highly repetitive circular patterns and
their variants, the distribution was dramatically flattened under
the complexity condition (Fig. 3b) demonstrating that mice
behavior is much less structured in this setting. Furthermore, we

tested whether mice use of a win-stay-lose-switch strategy18.
Indeed, mice could have used this heuristic strategy when first
confronted with the complexity condition after a training phase
in which all targets were systematically rewarded. Changing
directions in the absence of reward could have introduced enough
variability in the animals’ sequence to improve their success rate.
Yet, we found that being rewarded (or not) had no effect on the
next transition, neither at the beginning nor the end of the
complexity condition (Fig. 3c; see “Methods”); thus eliminating
another potential form of structure in mice behavior under the
complexity rule.

To further support the notion that mice did not actually
memorize rewarded sequences to solve the task, we finally
performed a series of experiments to compare the animals’
behavior under the complexity rule and under a probabilistic rule
in which all targets were rewarded with a 75% probability (the
same frequency reached at the end of the complexity condition).
We first analyzed mice behavior when the complexity condition
was followed by the probabilistic condition (Group 1 in Fig. 4a).
We hypothesized that, if animals choose randomly at each node
in the complexity setting (and thus do not memorize and repeat
specific sequences), they would not detect the change of the
reward distribution rule when switching to the probabilistic
setting. In agreement with our assumption, we observed that as
we switched to the probabilistic condition, animals did not
modify their behavior although the optimal strategy would have
been to avoid U-turns, as observed in the 100% reward setup used
for training (Fig. 4b and Supplementary Fig 3a). Hence, after the
complexity setting, mice were likely stuck in a “random” mode
given that the global statistics of the reward delivery were
conserved. In contrast, when mice were exposed to the
probabilistic distribution of reward right after the training session
(Group 2 in Fig. 4a), they slightly changed their behavior but
mostly stayed in a circular pattern with few U-turns and low
sequence complexity (Fig. 4b and Supplementary Fig 3a). Thus,
animals from Group 2 exhibited lower sequence complexity and
U-turn rate in the probabilistic condition than animals from
Group 1, whether in the complexity or the probabilistic condition
(Fig. 4c). The distribution of patterns of length 10 in the
sequences performed by animals from Group 2 during the last
probabilistic session shows a preference for repetitive circular
patterns that is very similar to that observed at the end of the
training; contrasting with the sequences performed by animals
from Group 1 (Fig. 4d, e). A larger portion of sequences
performed by animals from Group 1 were not different from
surrogate sequences generated randomly in comparison with
animals from Group 2 (Supplementary Fig 3b). Last, if the
sequences performed by mice from Group 2 were executed under
the complexity rule, these animals would have obtained lower
success rate than animals from Group 1 in the complexity
condition (Supplementary Fig. 3c).

In summary, mice behavior under the probabilistic condition
changed markedly depending on the preceding condition and the
strategy that the animal was adopting. This further supports our
initial claim that stochastic experimental setups make it difficult
to unravel the mechanisms underlying random behavior
generation.

Discussion
The deterministic nature of complexity rule used in our experi-
ments makes it possible to categorize animals’ behavior into one
of three possible strategies (i.e. repetitive, random or optimal
based on sequence learning). This is crucial in understanding the
underlying cognitive process leveraged by the animals. Impor-
tantly, this shall not be interpreted as implying that animals were
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aware of the existence of these possible strategies. Mice had no
way of discovering that a 100% success rate could be obtained
with an optimal sequence learning before ever reaching such a
level of performance. In fact, we postulated that the optimal
behavior would be too difficult to implement by the animals and
that they shall turn to random selection instead. Overall, our
results indicate that this is the case, as we found no evidence of
sequence memorization nor any behavioral pattern that might
have been used by mice as a heuristic to solve the complex task.

Whether and how the brain can generate random patterns has
always been puzzling23. In this study, we addressed two funda-
mental aspects in this matter: the implication of memory pro-
cesses and the dependence upon external (environmental) factors.
Regarding memory, one hypothesis holds that in human, the
process of generating random patterns leverages memory24, to
ensure the equality of response usage for example25. Such a
procedure could indeed render choices uniformly distributed but
is also very likely to produce structured sequences (i.e. depen-
dence upon previous choices). A second hypothesis suggests that
the lack of memory may help eliminate counterproductive
biases26,27. Our experiments revealed neither sequence learning
nor structure, thus supporting the latter hypothesis and the
notion that the brain is able to effectively achieve high variability
by suppressing biases and structure, at least in some contexts. The
second aspect is the degree of dependence upon external, envir-
onmental factors. Exploration and choice variability are generally
studied by introducing stochasticity and/or volatility in environ-
mental outcomes16–19. However, such conditions make it difficult
to interpret the animal’s strategy and to know whether the
observed variability in the mouse choice is inherited or not from
the statistics of the behavioral task. In this work, we took a step
further toward understanding the processes underlying the gen-
eration of variability per se, independently from environmental
conditions. Confronted with a deterministic task which yet favors
complex choice sequences, mice avoided repetitions by engaging
in a behavioral mode where decisions were random and inde-
pendent from their reward history. Animals adaptively tuned
their decision-making parameters to increase choice randomness,
which suggests an internal process of randomness generation.

Methods
Animals. Male C57BL/6J (WT) mice obtained from Charles Rivers Laboratories
France (L’Arbresle Cedex, France) were used. Mice arrived to the animal facility at
8 weeks of age, and were housed individually for at least 2 weeks before the
electrode implantation. Behavioral tasks started one week after implantation to
ensure full recovery. Since intracranial self-stimulation (ICSS) does not require
food deprivation, all mice had ad libitum access to food and water except during
behavioral sessions. The temperature (20–22 °C) and humidity was automatically
controlled and a circadian light cycle of 12/12 h light–dark cycle (lights on at
8:30 a.m.) was maintained in the animal facility. All experiments were performed
during the light cycle, between 09:00 a.m. and 5:00 p.m. Experiments were con-
ducted at Sorbonne University, Paris, France, in accordance with the local reg-
ulations for animal experiments as well as the recommendations for animal
experiments issued by the European Council (directives 219/1990 and 220/1990).

ICSS. Mice were introduced into a stereotaxic frame and implanted unilaterally
with bipolar stimulating electrodes for ICSS in the medial forebrain bundle (MFB,
anteroposterior= 1.4 mm, mediolateral= ±1.2 mm, from the bregma, and dorso-
ventral= 4.8 mm from the dura). After recovery from surgery (1 week), the efficacy
of electrical stimulation was verified in an open field with an explicit square target
(side= 1 cm) at its center. Each time a mouse was detected in the area (D= 3 cm)
of the target, a 200-ms train of twenty 0.5-ms biphasic square waves pulsed at
100 Hz was generated by a stimulator. Mice self-stimulating at least 50 times in a
5 min session were kept for the behavioral sessions. In the training condition, ICSS
intensity was adjusted so that mice self-stimulated between 50 and 150 times
per session at the end of the training (ninth and tenth session), then the current
intensity was kept the same throughout the different settings.

Training session. Experiment were performed in a 1-m diameter circular open-
field with three explicit location on the floor. Experiments were performed using a

video camera, connected to a video-track system, out of sight of the experimenter.
A home-made software (Labview National instrument) tracked the animal,
recorded its trajectory (20 frames per s) for 5 min and sent TTL pulses to the ICSS
stimulator when appropriate (see below). Mice were trained to perform a sequence
of binary choices between the two out of three target locations (A, B, and C)
associated with ICSS rewards. In the training phase all target had a 100% prob-
ability of reward.

Complexity task. In the complexity condition, reward delivery was determined by
an algorithm that estimated the grammatical complexity of animals’ choice
sequences. More specifically, at a trial in which the animal was at the target location
A and had to choose between B and C, we compared the LZ-complexity21 of the
subsequences comprised of the nine past choices and B or C (last nine choices
concatenated with the two options). Both choices were rewarded if those sub-
sequences were of equal complexity. Otherwise, only the option making the sub-
sequence of highest complexity was rewarded. Giving that the reward delivery is
deterministic, the task can be seen as a decision tree in which some paths ensure
100% rewards. From a local perspective, for each trial, the animal has either 100 or
50% chance of reward; resp. if the evaluated subsequences of size 10 have equal or
unequal complexities. Considering all these possible sequences, 75% of the trials
would be rewarded if animals were to choose randomly.

Measures of choice variability. Two measures of complexity were used to analyze
mouse behavior. First, the normalized LZ-complexity (referred to as NLZcomp or
simply complexity throughout the paper) which corresponds to the LZ-complexity
divided by the average LZ-complexity of 1000 sequences of the same length gen-
erated randomly (a surrogate) with the constraint that two consecutive characters
could not be equal, as in the experimental setup. NLZcomp is small for highly
repetitive sequence and is close to 1 for uncorrelated, random signals. Second, the
entropy of the frequency distribution of the diagonal length (noted RQA ENT),
taken from recurrence quantification analysis (RQA). RQA is a series of methods in
which the dynamics of complex systems are studied using recurrence plots
(RP)28,29 where diagonal lines illustrate recurrent patterns. Thus, the entropy of
diagonal lines reflects the deterministic structure of the system and is smaller for
uncorrelated, random signals. RQA was measured using the Recurrence-Plot
Python module of the “pyunicorn.timeseries” package.

Computational models. The task was represented as a Markov Decision Process
(MDP) with three states s ∊ {A, B, C} and three actions a∈ {GoToA, GoToB,
GoToC}, respectively, corresponding to the rewarded locations and the transitions
between them. State-action values Q(s, a) were learned using the Rescorla-Wagner
rule22:

ΔQðst; atÞ ¼ αðU tþ1 �Qðst; atÞÞ ð1Þ
where st ¼ ½St ; St�1; ¼ ; St�m� is the current state, which may include the memory
of up to the mth past location, at the current action, α the learning rate and U the
utility function defined as follows:

U tþ1 ¼
ð1� κÞ:rtþ1 if stþ1 ¼ st�1

rtþ1 otherwise

�
ð2Þ

where r is the reward function and κ the U-turn cost parameter modeling the
motor cost or any bias against the action leading the animal back to its previous
location. The U-turn cost was necessary to reproduce mouse stereotypical trajec-
tories at the end of the training phase (see Supplementary Fig. 2).

Action selection was performed using a softmax policy, meaning that in state st
the action at is selected with probability:

Pðat jstÞ ¼
eQðst ;at Þ=τP
a e

Qðst ;at Þ=τ
ð3Þ

where τ is the temperature parameter. This parameter reduces the sensitivity to the
difference in actions values thus increasing the amount of noise or randomness in
decision-making. The U-turn cost κ has the opposite effect since it represents a
behavioral bias and constrains choice randomness. We refer to the hyperparameter
defined as ρ= τ/κ as the randomness parameter.

In the version referred to as BasicRL (see Supplementary Fig. 2), we did not
include any memory of previous locations nor any U-turn cost. In other words,
m= 0 (i.e. st= [st]) and κ= 0.

To manipulate state representation ambiguity (see Fig. 2), each of the locations
{A, B, C} could be represented by n ≥ 1 states. For simplicity, we used n= 1, 2, and
3 for all locations for what we referred to as ‘null’, ‘low, and ‘med’ levels of
ambiguity. This allowed us to present a proof of concept regarding the potential
impact of using a perfect state representation in our model.

Model fitting. The main model-fitting results presented in this paper were
obtained by fitting the behavior of the mice under training and complexity con-
ditions session by session independently. This process aimed to determine which
values of the two hyperparameters m and ρ= τ/κ make the model behave as mice
in terms of success rate (i.e. percentage of rewarded actions) and complexity (i.e.
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variability of decisions). Our main goal was to decide between the two listed
strategies that can solve the task: repeating rewarded sequences or choosing ran-
domly. Therefore, we momentarily put aside the question of learning speed and
only considered the model behavior after convergence. α was set to 0.1 in these
simulations.

Hyperparameters were selected through random search30 (see ranges listed in
Supplementary Table 1). The model was run for 2.106 iterations for each parameter
set. The fitness score with respect to mice average data at each session was
calculated as follows:

fitness ¼ 1� Dsession ð4Þ

withDsession ¼ 1
2

Ŝ� �S
�� ��þ Ĉ � �C

�� ��� ð5Þ

where �S and �C are the average success rate and complexity in mice respectively and
Ŝ and Ĉ the model success rate and complexity – all the four ∊ [0, 1]. Simulations
were long enough for the learning to converge. Thus, instead of multiple runs for
each parameter set, which would have been computationally costly, Ŝ and Ĉ were
averaged over the last 10 simulated sessions. We considered that 1 simulated
session= 200 iterations, which is an upper bound for the number of trials
performed by mice in one actual session.

Since mice were systematically rewarded during training, their success rate
under this condition was not meaningful. Thus, to assess the ability of the model to
reproduce stereotypically circular trajectories in the last training session, we
replaced Ŝ and �S in Eq. (5) by Û and �U representing the average U-turn rates for
mice and for the model respectively.

Additional simulations were conducted with two goals: (1) test whether one
single parameter set could fit mice behavior without the need to change parameter
values over sessions, (2) test the influence of state representation ambiguity on
memory use in the computational model. Therefore, each simulation attempted to
reproduce mice behavior from training to the complexity condition. Hence, the
learning rate α was optimized in addition to the previously mentioned m and ρ=
τ/κ hyperparameters (see ranges listed in Supplementary Table 1). Each parameter
set was tested over 20 different runs. Each run is a simulation of 4000 iterations,
which amounts to 10 training sessions and 10 complexity sessions since simulated
sessions consist of 200 iterations. The fitness score was computed as the average
score over the last training session and the 10 complexity sessions using Eqs. (4)
and (5). Using a grid search ensured comparable values for different levels of
ambiguity (‘null’, ‘low, and ‘med’; see previous section). Given the additional
computational cost induced by higher ambiguity levels, we gradually decreased the
upper bound of the memory size range in order to avoid long and useless
computations in uninteresting regions of the search space.

A sample code for the model fitting procedure is publicly available at https://
zenodo.org/record/2564854#.Xe07NB-YUpg (see ref. 31).

Markov chain analysis. Markov chain analysis allows to mathematically describe
the dynamic behavior of the system, i.e. transitions from one state to another, in
probabilistic terms. A process is a first-order Markov chain (or more simply
Markovian) if the transition probability from state A to a state B depends only on
the current state A and not on the previous ones. Put differently, the current state
contains all the information that could influence the realization of the next state. A
classical way to demonstrate that a process is Markovian is to show that the
sequence cannot be described by a zeroth-order process, i.e. that P(B|A) ≠ P(B),
and that the second-order probability is not required to describe the state transi-
tions, i.e. that P(B|A)= P(B|AC).

In this paper, we analyzed the 0th, 1st, and 2nd order probabilities in sequences
performed by each mouse in the last session of the complex condition (c10). Using
the targets A, B, and C as the Markov chain states would have provided a limited
amount of data. Instead, we described states as movements to the left (L) or to the
right (R) thereby obtaining larger pools of data (e.g. R= {A→ B, B→ C, C→A})
and a more compact description (e.g. two 0th order groups instead of three). The
probability of a transition (i.e. to the left or to the right, Fig. 3a) is different from
the probability of the same transition given the previous one (p(L) versus P(L|L),
t(25)=−7.86, p= 3.10–8, p(L) versus P(L|R), t(25)= 7.57, p= 6.10–8, p(R) versus
P(R|R), t(25)=−7.57, p= 6.10–8, p(R) versus P(R|L), t(25)= 7.86, p= 3.10–8,
paired t-test). However, the probability given two previous transitions is not
different from the latter (p(L|L) versus P(L|LL), t(25)= 1.36, p= 0.183, p(L|L)
versus P(L|LR), t(25)=−1.66, p= 0.108, p(L|R) versus P(L|RL), t(25)=−0.05,
p= 0.960, p(L|R) versus P(L|RR), t(25)=−0.17, p= 0.860, p(R|R) versus P(R|RR),
t(25)= 0.17, p= 0.860, p(R|R) versus P(R|RL), t(25)= 0.05, p= 0.960, p(R|L)
versus P(R|LR), t(25)= 1.66, p= 0.108, p(R|L) versus P(R|LL), t(25)=−1.36, p=
0.183, paired t-test).

To assess the influence of rewards on mouse decisions when switching to the
complexity condition (i.e. win-stay-lose-switch strategy), we also compared the
probability of going forward P(F) or backward P(U) with the conditional
probabilities given the presence or absence of reward (e.g. P(F|rw ) or P(U|rw )). In
this case, F= R→ R, L→ L and U= R→ L, R→ L. These probabilities (Fig. 3c)
were not different from the conditional probabilities given that the previous choice
was rewarded or not (c01, P(F), P(F|rw) and P(F|unrw), H= 2.93, p= 0.230, P(U),
P(U|rw) and P(U|unrw), H= 1.09, p= 0.579, c02, P(F), P(F|rw) and P(F|unrw),

H= 1.08, p= 0.581, P(U), P(U|rw) and P(U|unrw), H= 0.82, p= 0.661, c10, P(F),
P(F|rw) and P(F|unrw), H= 0.50, p= 0.778, P(U), P(U|rw) and P(U|unrw), H=
0.50, p= 0.778, Kruskal–Wallis test). In the latter analysis, we discarded the data in
which ICSS stimulation could not be associated with mouse choices with certainty,
due to time lags between trajectory data files and ICSS stimulation data files, or due
to the animal moving exceptionally fast between two target locations (<1 s)

Analysis of subsequences distribution. All patterns starting by A were extracted
and pooled from the choice sequences of mice in the last sessions of the three
conditions (training, complexity, probabilistic). The histograms represent the dis-
tribution of these patterns following the decision tree structure. In other words, two
neighbor branches shared the same prefix.

Bayesian model comparison. Bayesian model comparison aims to quantify the
support for a model over another based on their respective likelihoods P(D|M), i.e.
the probability that data D are produced under the assumption of model M. In our
case, it is useful to compare the fitness of the Mind model fitted session by session
independently from that of the model Mcon fitted to all sessions in a continuous
way. Since these models do not produce explicit likelihood measures, we used
approximate Bayesian computation: considering the 15 best fits (i.e. the 15 para-
meter sets that granted the highest fitness score), we estimated the models’ like-
lihood as the fraction of ðŜ; ĈÞ pairs that were within the confidence intervals of
mouse data. Then, the Bayes factor was calculated as the ratio between the two
competing likelihoods:

B ¼ PðD=MindÞ
PðD=MconÞ

ð6Þ
B > 3 was considered to be a substantial evidence in favor of Mind over Mcon

32.

Statistics and reproducibility. No statistical methods were used to predetermine
sample sizes. Our sample sizes are comparable to many studies using similar
techniques and animal models. The total number of observations (N) in each group
as well as details about the statistical tests were reported in figure captions. Error
bars indicate 95% confidence intervals. Parametric statistical tests were used when
data followed a normal distribution (Shapiro test with p > 0.05) and non-
parametric tests when they did not. As parametric tests, we used t-test when
comparing two groups or ANOVA when more. Homogeneity of variances was
checked preliminarily (Bartlett’s test with p > 0.05) and the unpaired t-tests were
Welch-corrected if needed. As non-parametric tests, we used Mann–Whitney test
when comparing two independent groups, Wilcoxon test when comparing two
paired groups and Kruskal–Wallis test when comparing more than two groups. All
statistical tests were applied using the scipy.stats Python module. They were all
two-sided except Mann–Whitney. p > 0.05 was considered to be statistically non-
significant.

In all Figures: error bars represent 95% confidence intervals. *p < 0.05, **p <
0.01, ***p < 0.001. n.s., not significant at p > 0.0533.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study33 are available at https://zenodo.org/
record/3576423#.Xfdez-tCe3A and from the corresponding author upon reasonable
request.

Code availability
A sample code for the model fitting procedure31 is publicly available at https://zenodo.
org/record/2564854#.Xe07NB-YUpg.
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