C. Araya, L. C. Ward, G. C. Girdler, and M. Miranda, Coordinating cell and tissue behavior during zebrafish neural tube morphogenesis, Developmental Dynamics, vol.245, pp.197-208, 2016.

R. Aris, On the dispersion of a solute in a fluid flowing through a tube, Proceedings of the Royal Society, A, vol.235, p.65, 1956.

I. Bachy, R. Kozyraki, and M. Wassef, The particles of the embryonic cerebrospinal fluid: how could they influence brain development?, Brain Research Bulletin, vol.75, pp.289-294, 2008.

K. Baker and P. L. Beales, Making sense of cilia in disease: the human ciliopathies, American Journal of Medical Genetics Part C: Seminars in Medical Genetics, vol.151, pp.281-295, 2009.

J. Blake, A model for the micro-structure in ciliated organisms, Journal of Fluid Mechanics, vol.55, pp.1-23, 1972.

J. Blake, Mucus flows, Mathematical Biosciences, vol.17, pp.90073-90077, 1973.

C. Blatter, E. Meijer, A. S. Nam, D. Jones, B. E. Bouma et al., In vivo label-free measurement of lymph flow velocity and volumetric flow rates using Doppler optical coherence tomography, Scientific Reports, vol.6, p.29035, 2016.

U. L. Bö-hm, A. Prendergast, L. Djenoune, N. Figueiredo, S. Gomez et al., CSF-contacting neurons regulate locomotion by relaying mechanical stimuli to spinal circuits, Nature Communications, vol.7, p.10866, 2016.

A. Borovina, S. Superina, D. Voskas, and B. Ciruna, Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia, Nature Cell Biology, vol.12, pp.407-412, 2010.

C. W. Boswell and B. Ciruna, Understanding idiopathic scoliosis: a new zebrafish school of thought, Trends in Genetics, vol.33, pp.183-196, 2017.

M. Brand, C. P. Heisenberg, R. M. Warga, F. Pelegri, R. O. Karlstrom et al., Nü sslein-Volhard C. 1996. Mutations affecting development of the midline and general body shape during zebrafish embryogenesis, Development, vol.123, pp.129-142

H. Bruus, Theoretical Microfluidics, 2008.

Y. Cantaut-belarif, J. R. Sternberg, O. Thouvenin, C. Wyart, and P. L. Bardet, The Reissner fiber in the cerebrospinal fluid controls morphogenesis of the body Axis, Current Biology, vol.28, pp.2479-2486, 2018.

M. D. Cearns, S. Escuin, P. Alexandre, N. Greene, and A. J. Copp, Microtubules, polarity and vertebrate neural tube morphogenesis, Journal of Anatomy, vol.229, pp.63-74, 2016.

J. T. Chang, M. K. Lehtinen, and H. Sive, Zebrafish cerebrospinal fluid mediates cell survival through a retinoid signaling pathway, Developmental Neurobiology, vol.76, pp.75-92, 2016.

V. S. Chen, J. P. Morrison, M. F. Southwell, J. F. Foley, B. Bolon et al., Histology atlas of the developing prenatal and postnatal mouse central nervous system, Toxicologic Pathology, vol.45, pp.705-744, 2017.

J. C. Crocker and D. G. Grier, Methods of digital video microscopy for colloidal studies, Journal of Colloid and Interface Science, vol.179, pp.298-310, 1996.

D. R. Enzmann and N. J. Pelc, Normal flow patterns of intracranial and spinal cerebrospinal fluid defined with phase-contrast cine MR imaging, Radiology, vol.178, pp.467-474, 1991.

J. J. Essner, Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut, Development, vol.132, pp.1247-1260, 2005.

R. M. Fame, J. T. Chang, A. Hong, N. A. Aponte-santiago, and H. Sive, Directional cerebrospinal fluid movement between brain ventricles in larval zebrafish, Fluids and Barriers of the CNS, vol.13, p.11, 2016.

R. Faubel, C. Westendorf, E. Bodenschatz, and G. Eichele, Cilia-based flow network in the brain ventricles, Science, vol.353, pp.176-178, 2016.

R. R. Ferreira, A. Vilfan, F. Jü-licher, W. Supatto, and J. Vermot, Physical limits of flow sensing in the left-right organizer. eLife 6:e25078, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01615080

Y. C. Fung, Biomechanics: Circulation, 2013.

Y. C. Fung and C. S. Yih, Peristaltic transport, Journal of Applied Mechanics, vol.35, pp.669-675, 1968.

R. K. Goyal and W. G. Paterson, Esophageal motility. In: Terjung R (Ed). Comprehensive Physiology, pp.865-908, 2011.

D. T. Grimes, C. W. Boswell, N. F. Morante, R. M. Henkelman, R. D. Burdine et al., Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature, Science, vol.352, pp.1341-1344, 2016.

C. Guo, J. Zou, Y. Wen, W. Fang, D. B. Stolz et al., Apical Cell-Cell adhesions reconcile symmetry and asymmetry in zebrafish neurulation, vol.3, pp.63-85, 2018.

C. Hagenlocher, P. Walentek, C. Ller, T. Thumberger, and K. Feistel, Ciliogenesis and cerebrospinal fluid flow in the developing xenopus brain are regulated by foxj1, vol.2, p.12, 2013.

G. Halasi, A. M. Søviknes, O. Sigurjonsson, and J. C. Glover, Proliferation and recapitulation of developmental patterning associated with regulative regeneration of the spinal cord neural tube, Developmental Biology, vol.365, pp.118-132, 2012.

G. W. Hennig, M. Costa, B. N. Chen, and S. J. Brookes, Quantitative analysis of peristalsis in the guinea-pig small intestine using spatio-temporal maps, The Journal of Physiology, vol.517, pp.575-590, 1999.

D. B. Hill, V. Swaminathan, A. Estes, J. Cribb, E. T. O'brien et al., Force generation and dynamics of individual cilia under external loading, Biophysical Journal, vol.98, pp.57-66, 2010.

W. Y. Hwang, Y. Fu, D. Reyon, M. L. Maeder, S. Q. Tsai et al., Efficient genome editing in zebrafish using a CRISPR-Cas system, Nature Biotechnology, vol.31, pp.227-229, 2013.

K. M. Jaffe, D. T. Grimes, J. Schottenfeld-roames, M. E. Werner, T. S. Ku et al., c21orf59/kurly controls both cilia motility and polarization, vol.14, pp.1841-1849, 2016.

E. Jalalvand, B. Robertson, P. Wallé-n, and S. Grillner, Ciliated neurons lining the central canal sense both fluid movement and pH through ASIC3, Nature Communications, vol.7, p.10002, 2016.

K. Kim, Y. H. Choi, S. B. Lee, Y. Baba, H. Kim et al., Analysis of urine flow in three different ureter models, Computational and Mathematical Methods in Medicine, vol.2017, pp.1-11, 2017.

I. Kondrychyn, C. Teh, M. Sin, and V. Korzh, Stretching morphogenesis of the roof plate and formation of the central canal, PLOS ONE, vol.8, p.56219, 2013.

A. G. Kramer-zucker, F. Olale, C. J. Haycraft, B. K. Yoder, A. F. Schier et al., Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for normal organogenesis, Development, vol.132, pp.1907-1921, 2005.

M. K. Lehtinen, M. W. Zappaterra, X. Chen, Y. J. Yang, A. D. Hill et al., The cerebrospinal fluid provides a proliferative niche for neural progenitor cells, Neuron, vol.69, pp.893-905, 2011.

L. A. Lowery and H. Sive, Strategies of vertebrate neurulation and a re-evaluation of teleost neural tube formation, Mechanisms of Development, vol.121, pp.1189-1197, 2004.

J. Mcgrath, S. Somlo, S. Makova, X. Tian, and M. Brueckner, Two populations of node monocilia initiate left-right asymmetry in the mouse, Cell, vol.114, pp.61-73, 2003.

F. Miskevich, Imaging fluid flow and cilia beating pattern in xenopus brain ventricles, Journal of Neuroscience Methods, vol.189, pp.1-4, 2010.

S. Nonaka, S. Yoshiba, D. Watanabe, S. Ikeuchi, T. Goto et al., De novo formation of leftright asymmetry by posterior tilt of nodal cilia, PLOS Biology, vol.3, p.268, 2005.

T. Obara, S. Mangos, Y. Liu, J. Zhao, S. Wiessner et al., Polycystin-2 immunolocalization and function in zebrafish, Journal of the American Society of Nephrology, vol.17, pp.2706-2718, 2006.

Y. Okada, S. Takeda, Y. Tanaka, J. I. Belmonte, and N. Hirokawa, Mechanism of nodal flow: a conserved symmetry breaking event in left-right Axis determination, Cell, vol.121, pp.633-644, 2005.

A. L. Oldenburg, R. K. Chhetri, D. B. Hill, and B. Button, Monitoring airway mucus flow and ciliary activity with optical coherence tomography, Biomedical Optics Express, vol.3, pp.1978-1992, 2012.

E. W. Olstad, C. Ringers, A. Wens, J. N. Hansen, C. Brandt et al., Spatially organized ciliary beating compartmentalizes cerebrospinal fluid flow in the brain and regulates ventricular development, SSRN Electronic Journal, 2018.

Y. Omori, C. Zhao, A. Saras, S. Mukhopadhyay, W. Kim et al., Elipsa is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8, Nature Cell Biology, vol.10, pp.437-444, 2008.

A. Orts-del'immagine, Y. Cantaut-belarif, O. Thouvenin, J. Roussel, A. Baskaran et al., Sensory neurons contacting the cerebrospinal fluid require the Reissner fiber to detect spinal curvature in vivo, 2019.

A. Orts-del'immagine and C. Wyart, Cerebrospinal-fluid-contacting neurons, Current Biology, vol.22, 2017.

A. Paul, Z. Chaker, and F. Doetsch, Hypothalamic regulation of regionally distinct adult neural stem cells and neurogenesis, Science, vol.356, pp.1383-1386, 2017.

M. Raffel, C. E. Willert, S. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide, 2007.

I. Reiten, F. E. Uslu, S. Fore, R. Pelgrims, C. Ringers et al., Motile-Cilia-Mediated flow improves sensitivity and temporal resolution of olfactory computations, Current Biology, vol.27, pp.166-174, 2017.

A. Ribeiro, J. F. Monteiro, A. C. Certal, . Cristovã-o-am, and L. Saú-de, Foxj1a is expressed in ependymal precursors, controls central canal position and is activated in new ependymal cells during regeneration in zebrafish, Open Biology, vol.7, p.170139, 2017.

L. Sakka, G. Coll, and J. Chazal, Anatomy and physiology of cerebrospinal fluid, European Annals of Otorhinolaryngology, Head and Neck Diseases, vol.128, pp.309-316, 2011.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, A particle image velocimetry system for microfluidics, Experiments in Fluids, vol.25, pp.316-319, 1998.

K. Sawamoto, H. Wichterle, O. Gonzalez-perez, J. A. Cholfin, M. Yamada et al., New neurons follow the flow of cerebrospinal fluid in the adult brain, Science, vol.311, pp.629-632, 2006.

A. Schneider and M. Simons, Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders, Cell and Tissue Research, vol.352, pp.33-47, 2013.

J. Sevc, Z. Daxnerová, and M. Miklosová, Role of radial Glia in transformation of the primitive lumen to the central canal in the developing rat spinal cord, Cellular and Molecular Neurobiology, vol.29, pp.927-936, 2009.

A. H. Shapiro, M. Y. Jaffrin, and S. L. Weinberg, Peristaltic pumping with long wavelengths at low Reynolds number, Journal of Fluid Mechanics, vol.37, pp.799-825, 1969.

A. R. Shields, B. L. Fiser, B. A. Evans, M. R. Falvo, S. Washburn et al., Biomimetic cilia arrays generate simultaneous pumping and mixing regimes, PNAS, vol.107, pp.15670-15675, 2010.

V. Silva-vargas, A. R. Maldonado-soto, D. Mizrak, P. Codega, and F. Doetsch, Age-Dependent niche signals from the choroid plexus regulate adult neural stem cells, Cell Stem Cell, vol.19, pp.643-652, 2016.

B. Siyahhan, V. Knobloch, D. De-zé-licourt, M. Asgari, M. Schmid-daners et al., Flow induced by ependymal cilia dominates near-wall cerebrospinal fluid dynamics in the lateral ventricles, Journal of the Royal Society Interface, vol.11, 2014.

D. J. Smith, E. A. Gaffney, and J. R. Blake, Discrete cilia modelling with singularity distributions: application to the embryonic node and the airway surface liquid, Bulletin of Mathematical Biology, vol.69, pp.1477-1510, 2007.

C. M. Smith, J. Djakow, R. C. Free, P. Djakow, R. Lonnen et al., ciliaFA: a research tool for automated, high-throughput measurement of ciliary beat frequency using freely available software, Cilia, vol.1, p.14, 2012.

C. Sommer, C. Straehle, U. Kothe, and F. A. Hamprecht, Ilastik: Interactive Learning and Segmentation Toolkit, IEEE International Symposium on Biomedical Imaging: From Nano to Macro 230-233, 2011.

J. R. Sternberg, A. E. Prendergast, L. Brosse, Y. Cantaut-belarif, O. Thouvenin et al., Pkd2l1 is required for mechanoception in cerebrospinal fluid-contacting neurons and maintenance of spine curvature, Nature Communications, vol.9, p.3804, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02346202

W. Supatto, S. E. Fraser, and J. Vermot, An all-optical approach for probing microscopic flows in living embryos, Biophysical Journal, vol.95, pp.29-31, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02372215

W. Supatto and J. Vermot, From cilia hydrodynamics to zebrafish embryonic development, Current Topics in Developmental Biology, vol.95, pp.33-66, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00841220

G. Taylor, Dispersion of soluble matter in solvent flowing slowly through a tube, Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, vol.219, pp.186-203, 1953.

O. Thouvenin, M. Fink, and C. Boccara, Dynamic multimodal full-field optical coherence tomography and fluorescence structured illumination microscopy, Journal of Biomedical Optics, vol.22, p.26004, 2017.

O. Thouvenin, K. N. Maron, Y. Wei, and D. M. Feliciano, Cerebrospinal fluid extracellular vesicles undergo age dependent declines and contain known and novel non-coding RNAs, PLOS ONE, vol.9, p.113116, 2014.

J. Van-gennip, C. W. Boswell, and B. Ciruna, Neuroinflammatory signals drive spinal curve formation in zebrafish models of idiopathic scoliosis, Science Advances, vol.4, p.1781, 2018.

E. Van-rooijen, R. H. Giles, E. E. Voest, C. Van-rooijen, S. Schulte-merker et al., LRRC50, a conserved ciliary protein implicated in polycystic kidney disease, Journal of the American Society of Nephrology, vol.19, pp.1128-1138, 2008.

F. J. Verweij, C. Revenu, G. Arras, F. Dingli, D. Loew et al., Live tracking of Inter-organ communication by endogenous exosomes in Vivo, Developmental Cell, vol.48, pp.573-589, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02359686

L. Xie, H. Kang, Q. Xu, M. J. Chen, Y. Liao et al., Sleep Drives Metabolite Clearance from the Adult Brain, Science, vol.342, pp.373-377, 2013.

X. Yu, C. P. Ng, H. Habacher, and S. Roy, Foxj1 transcription factors are master regulators of the motile ciliogenic program, Nature Genetics, vol.40, pp.1445-1453, 2008.

X. Zhang, S. Jia, Z. Chen, Y. L. Chong, H. Xie et al., Cilia-driven cerebrospinal fluid flow directs expression of urotensin neuropeptides to straighten the vertebrate body Axis, Nature Genetics, vol.50, pp.1666-1673, 2018.