N

N

Parameterized Synthesis for Fragments of First-Order
Logic over Data Words
Nathalie Sznajder, Béatrice Berard, Benedikt Bollig, Mathieu Lehaut

» To cite this version:

Nathalie Sznajder, Béatrice Berard, Benedikt Bollig, Mathieu Lehaut. Parameterized Synthesis for
Fragments of First-Order Logic over Data Words. 23rd International Conference on Foundations of
Software Science and Computation Structures (FoSSaCS’20), Apr 2020, Dublin, Ireland. pp.97-118,
10.1007/978-3-030-45231-5_6 . hal-02490599

HAL Id: hal-02490599
https://hal.sorbonne-universite.fr /hal-02490599v1
Submitted on 10 Oct 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.sorbonne-universite.fr/hal-02490599v1
https://hal.archives-ouvertes.fr

Parameterized Synthesis for Fragments of
First-Order Logic over Data Words*

Béatrice Bérard!, Benedikt Bollig?, Mathieu Lehaut'(®9 | and Nathalie
Sznajder!

! Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
2 CNRS, LSV & ENS Paris-Saclay, Université Paris-Saclay, Cachan, France

Abstract. We study the synthesis problem for systems with a parame-
terized number of processes. As in the classical case due to Church, the
system selects actions depending on the program run so far, with the aim
of fulfilling a given specification. The difficulty is that, at the same time,
the environment executes actions that the system cannot control. In con-
trast to the case of fixed, finite alphabets, here we consider the case of
parameterized alphabets. An alphabet reflects the number of processes
that is static but unknown. The synthesis problem then asks whether
there is a finite number of processes for which the system can satisfy the
specification. This variant is already undecidable for very limited logics.
Therefore, we consider a first-order logic without the order on word posi-
tions. We show that even in this restricted case synthesis is undecidable
if both the system and the environment have access to all processes. On
the other hand, we prove that the problem is decidable if the environ-
ment only has access to a bounded number of processes. In that case,
there is even a cutoff meaning that it is enough to examine a bounded
number of process architectures to solve the synthesis problem.

1 Introduction

Synthesis deals with the problem of automatically generating a program that
satisfies a given specification. The problem goes back to Church [11], who for-
mulated it as follows: The environment and the system alternately select an input
symbol and an output symbol from a finite alphabet, respectively, and in this
way generate an infinite sequence. The question now is whether the system has a
winning strategy, which guarantees that the resulting infinite run is contained in a
given (w)-regular language representing the specification, no matter how the en-
vironment behaves. This problem is decidable and very well understood [10,39],
and it has been extended in several different ways (e.g., [25,27,29,38,43]).

In this paper, we consider a variant of the synthesis problem that allows us
to model programs with a variable number of processes. As we then deal with an
unbounded number of process identifiers, a fixed finite alphabet is not suitable
anymore. It is more appropriate to use an infinite alphabet, in which every let-
ter contains a process identifier and a program action. One can distinguish two

* Partly supported by ANR FREDDA (ANR-17-CE40-0013).

2 B. Bérard et al.

cases here. In [17], a potentially infinite number of data values are involved in an
infinite program run (e.g. by dynamic process generation). In a parameterized
system [5, 15], on the other hand, one has an unknown but static number of pro-
cesses so that, along each run, the number of processes is finite. In this paper, we
are interested in the latter, i.e., parameterized case. Parameterized programs are
ubiquitous and occur, e.g., in distributed algorithms, ad-hoc networks, telecom-
munication protocols, cache-coherence protocols, swarms robotics, and biological
systems. The synthesis question asks whether the system has a winning strat-
egy for some number of processes (existential version) or no matter how many
processes there are (universal version).

Over infinite alphabets, there are a variety of different specification languages
(e.g., [6,13,14,20,30,35,41]). Unlike in the case of finite alphabets, there is no
canonical definition of regular languages. In fact, the synthesis problem has been
studied for N-memory automata [9], the Logic of Repeating Values [17], and reg-
ister automata [16,31,32]. Though there is no agreement on a “regular” automata
model, first-order (FO) logic over data words can be considered as a canonical
logic, and this is the specification language we consider here. In addition to
classical FO logic on words over finite alphabets, it provides a predicate x ~ y
to express that two events x and y are triggered by the same process. Its two-
variable fragment FO? has a decidable emptiness and universality problem [(]
and is, therefore, a promising candidate for the synthesis problem.

Previous generalizations of Church’s synthesis problem to infinite alphabets
were generally synchronous in the sense that the system and the environment
perform their actions in strictly alternating order. This assumption was made,
e.g., in the above-mentioned recent papers [9, 16, 17,31, 32]. If there are several
processes, however, it is realistic to relax this condition, which leads us to an
asynchronous setting in which the system has no influence on when the envi-
ronment acts. Like in [22], where the asynchronous case for a fixed number of
processes was considered, we only make the reasonable fairness assumption that
the system is not blocked forever.

In summary, the synthesis problem over infinite alphabets can be classified
as (i) parameterized vs. dynamic, (i7) synchronous vs. asynchronous, and (7i7)
according to the specification language (register automata, Logic of Repeating
Values, FO logic, etc.). As explained above, we consider here the parameter-
1zed asynchronous case for specifications written in FO logic. To the best of our
knowledge, this combination has not been considered before. For flexible model-
ing, we also distinguish between three types of processes: those that can only be
controlled by the system; those that can only be controlled by the environment;
and finally those that can be triggered by both. A partition into system and
environment processes is also made in [4,19], but for a fixed number of processes
and in the presence of an arena in terms of a Petri net.

Let us briefly describe our results. We show that the general case of the
synthesis problem is undecidable for FO? logic. This follows from an adaptation
of an undecidability result from [17, 18] for a fragment of the Logic of Repeating
Values [13]. We therefore concentrate on an orthogonal logic, namely FO without

Parameterized Synthesis for First-Order Logic over Data Words 3

the order on the word positions. First, we show that this logic can essentially
count processes and actions of a given process up to some threshold. Though
it has limited expressive power (albeit orthogonal to that of FO?), it leads to
intricate behaviors in the presence of an uncontrollable environment. In fact, we
show that the synthesis problem is still undecidable. Due to the lack of the order
relation, the proof requires a subtle reduction from the reachability problem in
2-counter Minsky machines. However, it turns out that the synthesis problem is
decidable if the number of processes that are controllable by the environment
is bounded, while the number of system processes remains unbounded. In this
case, there is even a cutoff k, an important measure for parameterized systems
(cf. [5] for an overview): If the system has a winning strategy for k processes,
then it has one for any number of processes greater than k, and the same applies
to the environment. The proofs of both main results rely on a reduction of the
synthesis problem to turn-based parameterized vector games, in which, similar to
Petri nets, tokens corresponding to processes are moved around between states.

The paper is structured as follows. In Section 2, we define FO logic (especially
FO without word order), and in Section 3, we present the parameterized synthesis
problem. In Section 4, we transform a given formula into a normal form and
finally into a parameterized vector game. Based on this reduction, we investigate
cutoff properties and show our (un)decidability results in Section 5. We conclude
in Section 6. Some proof details can be found in the long version of this paper [3]

2 Preliminaries

For a finite or infinite alphabet X, let X* and X* denote the sets of finite and,
respectively, infinite words over X. The empty word is €. Given w € X* U X¥,
let |w| denote the length of w and Pos(w) its set of positions: |w| = n and
Pos(w) = {1,...,n} if w = 0109...0, € X*, and |w| = w and Pos(w) =
{1,2,...} if w € X¥. Let w[i] be the i-th letter of w for all i € Pos(w).

Executions. We consider programs involving a finite (but not fixed) number
of processes. Processes are controlled by antagonistic protagonists, System and
Environment. Accordingly, each process has a type among T = {s, e, se}, and we
let B, P., and .. denote the pairwise disjoint finite sets of processes controlled
by System, by Environment, and by both System and Environment, respectively.
We let P denote the triple (I, P, Pe). Abusing notation, we sometimes refer to
P as the disjoint union Py U B, U Ps.

Given any set S, vectors s € ST are usually referred to as triples s =
(Ss, Se, Sse). Moreover, for s,s' € NT, we write s < s’ if sy < s}, for all § € T.
Finally, let s + 8" = (ss + S., Se + 5., Sse + SLe)-

Processes can execute actions from a finite alphabet A. Whenever an action
is executed, we would like to know whether it was triggered by System or by
Environment. Therefore, A is partitioned into A = AjWA.. Let X5 = Agx (BRUR)
and Yo = Ae X (P UP,). Their union X = XU X, is the set of events. A word
w € X*U XY is called a P-ezecution.

4 B. Bérard et al.

As ={a,b} Ae = {c,d}

@‘ a__, —>d—>c—>a—>c—>a—>d—>g—>?—>?

7 4 6 6 7 6

Fig. 1. Representation of P-execution as a mathematical structure

Logic. Formulas of our logic are evaluated over P-executions. We fix an infinite
supply V = {x,y, z,...} of variables, which are interpreted as processes from P
or positions of the execution. The logic FOs[~, <,+1] is given by the grammar

o u=0@) |alx) |r=ylr~ylz<y|+lz,y) | ¢V |Tzp

where z,y € V, 6 € T, and a € A. Conjunction (A), universal quantification (V),
implication (=), true, and false are obtained as abbreviations as usual.

Let ¢ € FO4[~, <,+1]. By Free(p) C V, we denote the set of variables that
occur free in . If Free(p) =), then we call ¢ a sentence. We sometimes write
o(x1,...,2,) to emphasize the fact that Free(¢) C {z1,...,z,}.

To evaluate ¢ over a P-execution w = (a1, p1)(asz, p2) . . ., we consider (P, w) as
a structure Sp,) = (P W Pos(w), By, e, Pee, (Ra)aca, ~, <, +1) where Pt Pos(w)
is the universe, B P, and P, are interpreted as unary relations, R, is the unary
relation {i € Pos(w) | a; = a}, < = {(4,j) € Pos(w) x Pos(w) | i < j},
+1={(,i+1)|1<i<|wl}, and ~ is the smallest equivalence relation over
P W Pos(w) containing

— (p,i) for all p € P and i € Pos(w) such that p = p;, and
— (4,7) for all (i, j) € Pos(w) x Pos(w) such that p; = p;.

An equivalence class of ~ is often simply referred to as a class. Note that it
contains exactly one process.

Ezample 1. Suppose As = {a,b} and A. = {c,d}. Let the set of processes
P be given by B = {1,2,3}, B. = {4,5}, and R = {6,7,8}. Moreover, let
w = (a,1)(b,8)(d, 7)(c,4)(a,6)(c,6)(a,7)(d,6)(b,2)(d, 7)(a,7) € X*. Figure 1 il-
lustrates Sep). The edge relation represents +1, its transitive closure is <. <

An interpretation for (P,w) is a partial mapping I : V — P U Pos(w). Sup-
pose ¢ € FOy[~, <, +1] such that Free(¢) C dom([). The satisfaction relation
(P,w),I = ¢ is then defined as expected, based on the structure Sep .,y and in-
terpreting free variables according to I. For example, let w = (a1,p1)(az,p2) ...
and ¢ € Pos(w). Then, for I(x) =i, we have (P,w), I = a(z) if a; = a.

We identify some fragments of FO4[~, <, +1]. For R C {~, <, +1}, let FO4[R]
denote the set of formulas that do not use symbols in {~, <,+1} \ R. Moreover,
FO3[R] denotes the fragment of FO4[R] that uses only two (reusable) variables.

Parameterized Synthesis for First-Order Logic over Data Words 5

Let o(x1,...,7n,y) € FOa[~, <,+1] and m € N. We use 32™y.0(z1, - .., Tn,y)
as an abbreviation for

y1 .- Fym- /\ “(yi = y;) A /\ O(T1,- s T, Yi) s

1<i<j<m 1<i<m

if m > 0, and 32%.0(z1,...,2,,y) = true. Thus, 3Z™y.¢ says that there are at
least m distinct elements that verify ¢. We also use 3=™y.¢ as an abbreviation
for 32™my.o A=32MF 1y 0. Note that ¢ € FO4[R] implies that 32™y. € FO4[R]
and 3=™y.o € FO4[R].

Ezample 2. Let A, P, and w be like in Example 1 and Figure 1.

— ¢1 = Va.((s(z) Vse(z)) = Jy.(x ~ y A (aly) vV b(y)))) says that each
process that System can control executes at least one system action. We
have ¢; € FO;[~] and (P,w) }~ 1, as process 3 is idle.

— ¢ =Vz.(d(x) = Fy.(x ~yAaly))) says that, for every d, there is an a
on the same process. We have ¢, € FO3[~] and (P, w) = @s.

— 3 =Vz.(d(z) = Jy.(x ~yAz < yAa(y))) says that every d is eventually

followed by an a executed by the same process. We have @3 € FO3[~, <]

and (P, w) [~ p3: The event (d,6) is not followed by some (a, 6).

o1 = Vo.((F%y.(z ~ y Aa(y))) < (F7%y.(x ~ y Ad(y)))) says that

each class contains exactly two occurrences of a iff it contains exactly two

occurrences of d. Moreover, ¢4 € FOy[~] and (P,w) = ¢4. Note that ¢4 &

FO3[~], as 3=2y requires the use of three different variable names. <

3 Parameterized Synthesis Problem

We define an asynchronous synthesis problem. A P-strategy (for System) is a
mapping f : X* — X U {e}. A P-execution w = o102... € X* U X% is f-
compatible if, for all i € Pos(w) such that o; € X5, we have f(o1...0,-1) = 0.
We call w f-fair if the following hold: (7) If w is finite, then f(w) = ¢, and (i)
if w is infinite and f(o1 ...0;-1) # € for infinitely many ¢ > 1, then o; € X for
infinitely many j > 1.

Let ¢ € FOs[~, <,+1] be a sentence. We say that f is P-winning for ¢ if,
for every P-execution w that is f-compatible and f-fair, we have (P, w) = .

The existence of a P-strategy that is P-winning for a given formula does not
depend on the concrete process identities but only on the cardinality of the sets
P, P., and P... This motivates the following definition of winning triples for a
formula. Given ¢, let Win(p) be the set of triples (ks, ke, kse) € NT for which
there is P = (I, B, Pie) such that [Py| = kg for all # € T and there is a P-strategy
that is P-winning for ¢.

Let 0 = {0} and ke, kse € N. In this paper, we focus on the intersection of
Win(p) with the sets N x 0 x 0 (which corresponds to the usual satisfiability
problem); N x {ke} x {ks} (there is a constant number of environment and
mixed processes); N x N x {ke} (there is a constant number of mixed processes);
0 x 0 x N (each process is controlled by both System and Environment).

6 B. Bérard et al.

Definition 3 (synthesis problem). For fited § € {FO,FO?}, set of relation
symbols R C {~,<,+1}, and N5, Ne, Nee C N, the (parameterized) synthesis
problem is given as follows:

SYNTH(%[R]MA/’&A/(%J\/‘SE)

Input: A= A;W A, and a sentence ¢ € Fa[R]
Question: Win(p) N (Ng x Ne X Nee) 07

The satisfiability problem for F[R] is defined as SYNTH(F[R],N,0,0).

Ezample 4. Suppose As = {a,b} and Ae = {c¢,d}, and consider the formulas
p1—p4 from Example 2.

First, we have Win(p;) = NT. Given an arbitrary P and any total order C
over B, U P, a possible P-strategy f that is P-winning for ¢; maps w € X* to
(a,p) if p is the smallest process from Py U P wrt. C that does not occur in w,
and that returns e for w if all processes from Py U P, already occur in w.

For the three formulas ¢q, ¢3, and ¢4, observe that, since d is an environment
action, if there is at least one process that is exclusively controlled by Environ-
ment, then there is no winning strategy. Hence we must have B. =). In fact,
this condition is sufficient in the three cases and the strategies described below
show that all three sets Win(y2), Win(ys), and Win(p,) are equal to N x 0 x N.

— For s, the very same strategy as for ¢ also works in this case, producing
an a for every process in B U P, whether there is a d or not.

— For 3, a winning strategy f will apply the previous mechanism itera-
tively, performing (a,p) for p € Be = {po,...,Pn—1} over and over again:
f(w) = (a,p;) where i is the number of occurrences of letters from X5 mod-
ulo n. By the fairness assumption, this guarantees satisfaction of ¢3. A more
“economical” winning strategy f may organize pending requests in terms of
d in a queue and acknowledge them successively. More precisely, given u € P*
and o € X, we define another word u®o € P* by u®(d, p) = u-p (inserting p
in the queue) and (p-u)®(a, p) = u (deleting it). In all other cases, u®o = w.
Let w=01...0, € X*, with queue (e®01) ®o2...) @0y =p1...pk. We
let f(w)=¢if k=0, and f(w) = (a,p1) if k > 1.

— For ¢4, the same strategy as for 3 ensures that every d has a corresponding
a so that, in the long run, there are as many a’s as d’s in every class. <

Another interesting question is whether System (or Environment) has a win-
ning strategy as soon as the number of processes is big enough. This leads to the
notion of a cutoff (cf. [5] for an overview): Let N5, Ne, Nee € N and W C NT. We
call kg € NT a cutoff of W wrt. (Ng, Ne, Nee) if ko € Ny x Ne X Nee and either

— for all k € NV x N x N such that k > kg, we have k € W, or
— for all k € Ny x N X N such that k > kg, we have k ¢ W.

Let § € {FO,FO?} and R C {~, <, +1}. If, for every alphabet A = A, A,
and every sentence ¢ € F4[R], the set Win(p) has a computable cutoff wrt.

Parameterized Synthesis for First-Order Logic over Data Words 7

Table 1. Summary of results. Our contributions are highlighted in blue.

Synthesis (N,0,0) (N, {ke}, {kse}) (N,N,0) (0,0,N)
FO?[~, <, +1] decidable [0] ? ? undecidable
FO?[~, <] NEXPTIME-c. [6] ? ? ?
FO[~] decidable decidable 77 undecidable

*We show, however, that there is no cutoff.

(Ns, Ney Nee), then we know that SYNTH(F[R], Ng, Ne, Nee) is decidable, as it
can be reduced to a finite number of simple synthesis problems over a finite
alphabet. The latter can be solved, e.g., using attractor-based backward search
(cf. [?]). This is how we will show decidability of SYNTH(FO[~], N, {ke}, {kse})
for all ke, kse € N.

Our contributions are summarized in Table 1. Note that known satisfiability
results for data logic apply to our logic, as processes can be simulated by treating
every 6 € T as an ordinary letter. Let us first state undecidability of the general
synthesis problem, which motivates the study of other FO fragments.

Theorem 5. The problem SYNTH(FO?[~, <, +1],0,0,N) is undecidable.

Proof (sketch). We adapt the proof from [17, 18] reducing the halting problem
for 2-counter machines. We show that their encoding can be expressed in our
logic, even if we restrict it to two variables, and can also be adapted to the
asynchronous setting. O

4 FO[~] and Parameterized Vector Games

Due to the undecidability result of Theorem 5, one has to switch to other frag-
ments of first-order logic. We will henceforth focus on the logic FO[~] and es-
tablish some important properties, such as a normal form, that will allow us to
deduce a couple of results, both positive and negative.

4.1 Satisfiability and Normal Form for FO[~]

We first show that FO[~] logic essentially allows one to count letters in a class
up to some threshold, and to count such classes up to some other threshold.
Let B € N and ¢ € {0,..., B}*. Intuitively, ¢(a) imposes a constraint on the
number of occurrences of a in a class. We first define an FOu4[~]-formula ¢ ¢(y)
verifying that, in the class defined by y, the number of occurrences of each letter
a € A, counted up to B, is ¢(a):

Yee(y) = /\ sz(a)z.(y ~zAa(z)) A /\ Eze(a)z.(y ~zNa(z))

acA | acA |
L(a)<B £(a)=B

8 B. Bérard et al.

Theorem 6 (normal form for FO[~]). Let ¢ € FO4[~] be a sentence. There
is B € N such that ¢ is effectively equivalent to a disjunction of conjunctions of
formulas of the form 3™y.(0(y) A ¥p(y)) where € {>,=}, meN, § € T,
and £ € {0,..., B}*.

The normal form can be obtained using known normal-form constructions
[24,42] for general FO logic [3], or using Ehrenfeucht-Fraissé games [?], or using
a direct inductive transformation in the spirit of [24].

Ezample 7. Recall the formula ¢4 = Vz.((372y.(z ~ yAa(y))) <= (372y.(x ~
y Ad(y)))) € FOs[~] from Example 2, over A, = {a,b} and A, = {¢,d}. An
equivalent formula in normal form is ¢} = Ager gz 37"y (0(y) A3.6(y)) where
Z is the set of vectors £ € {0,...,3}# such that £(a) = 2 # £(d) or £(d) = 2 #
£(a). The formula indeed says that there is no class with =2 occurrences of a
and #2 occurrences of d or vice versa, which is equivalent to ¢q. <

Thanks to the normal form, it is sufficient to test finitely many structures to
determine whether a given formula is satisfiable:

Corollary 8. The satisfiability problem for FO[~] over data words is decidable.
Moreover, if an FOq[~] formula has an infinite model, then it also has a finite
one.

Note that satisfiability for FO?[~] is already NEXPTIME-hard, which even
holds in the presence of unary relations only [21,23]. It is NEXPTIME-complete
due to the upper bound for FO?*[~, <] [0]. It is also worth mentioning that
FO?[~] on arbitrary structures has the small model property [?].

4.2 From Synthesis to Parameterized Vector Games

Exploiting the normal form for FO4[~], we now present a reduction of the syn-
thesis problem to a strictly turn-based two-player game. This game is conceptu-
ally simpler and easier to reason about. The reduction works in both directions,
which will allow us to derive both decidability and undecidability results.

Note that, given a formula ¢ € FOs[~] (which we suppose to be in normal
form with threshold B), the order of letters in an execution does not matter.
Thus, given some P, a reasonable strategy for Environment would be to just “wait
and see”. More precisely, it does not put Environment into a worse position if,
given the current execution w € X* it lets the System execute as many actions
as it wants in terms of a word u € X¥. Due to the fairness assumption, System
would be able to execute all the letters from u anyway. Environment can even
require System to play a word u such that (P, wu) | ¢. If System is not able to
produce such a word, Environment can just sit back and do nothing. Conversely,
upon wu satisfying ¢, Environment has to be able to come up with a word
v € X¥ such that (P,wuv) K& ¢. This leads to a turn-based game in which
System and Environment play in strictly alternate order and have to provide a
satisfying and, respectively, falsifying execution.

Parameterized Synthesis for First-Order Logic over Data Words 9

In a second step, we can get rid of process identifiers: According to our
normal form, all we are interested in is the number of processes that agree
on their letters counted up to threshold B. That is, a finite execution can be
abstracted as a configuration C : L — NT where L = {0,..., B}*. For ¢ € L and
C(£) = (ns, Ne, Nse), Mo is the number of processes of type 6 whose letter count
up to threshold B corresponds to £. We can also say that ¢ contains ng tokens
of type 6. If it is System’s turn, it will pick some pairs (¢,¢') and move some
tokens of type 6 € {s,se} from ¢ to ¢, provided ¢(a) < ¢'(a) for all a € As and
l(a) = {'(a) for all a € Ae. This actually corresponds to adding more system
letters in the corresponding processes. The Environment proceeds analogously.

Finally, the formula ¢ naturally translates to an acceptance condition F C &
over configurations, where € is the set of local acceptance conditions, which are of
the form (<isns , XNene , MseNse) Where X, e, Xige € {=, >} and ng, ne, nee € N.

We end up with a turn-based game in which, similarly to a VASS game [1,8,

,28,40], System and Environment move tokens along vectors from L. Note that,
however, our games have a very particular structure so that undecidability for
VASS games does not carry over to our setting. Moreover, existing decidability
results do not allow us to infer our cutoff results below.

In the following, we will formalize parameterized vector games.

Definition 9. A parameterized vector game (or simply game) is given by a
triple G = (A, B, F) where A = AW A, is the finite alphabet, B € N is a bound,
and, letting L = {0, ..., B}A, F C ¢l is a finite set called acceptance condition.

Locations. Let £y be the location such that ¢y(a) = 0 for all a € A. For £ € L
and a € A, we define £+ a by (£ + a)(b) = £(b) for b # a and (£ + a)(b) =
max{¢(a) + 1, B} otherwise. This is extended for all u € A* and a € A by
{+e="{and {+ua= ({+u)+a By (w), we denote the location ¢y + w.

Configurations. As explained above, a configuration of G is a mapping C' : L —
NT. Suppose that, for £ € L and 6 € T, we have C({) = (ns, Ne, nse). Then, we
let C'(¢,0) refer to ng. By Conf, we denote the set of all configurations.

Transitions. A system transition (respectively environment transition) is a map-
ping 7 : Lx L — (Nx {0} xN) (respectively 7 : Lx L — ({0} x NxN)) such that,
for all (¢,¢') € Lx L with 7(¢,£") # (0,0,0), there is a word w € A} (respectively
w € A¥) such that ¢ = £+w. Let T, denote the set of system transitions, T, the
set of environment transitions, and T' = Ty U T, the set of all transitions.

For 7 € T, let the mappings out,,in, : L — NT be defined by out,({) =
Yoper T L) and in.(€) = >, (¢, €) (recall that sum is component-wise).
We say that 7 € T is applicable at C € Conf if, for all £ € L, we have out,({) <
C(¢) (component-wise). Abusing notation, we let 7(C') denote the configuration
C’ defined by C'(£) = C(¢) — out,(£) + in,(¢) for all £ € L. Moreover, for
T(€,0") = (ns,Ne, Nse) and 0 € T, we let 7(¢, ¢, 0) refer to ng.

Plays. Let C € Conf. We write C = F if there is k € F such that, for all
£ € L, we have C(¢) = x(¢) (in the expected manner). A C-play, or simply play,
is a finite sequence m = Cy71C172C5 . . . 7,C), alternating between configurations

10 B. Bérard et al.

and transitions (with n > 0) such that Cp = C and, for all i € {1,...,n},
Oi = Ti(o,;_l) and

— if 4 is odd, then 7; € Ty and C; = F (System’s move),
— if 7 is even, then 7; € T, and C; }£ F (Environment’s move).

The set of all C-plays is denoted by Plays.

Strategies. A C-strategy for System is a partial mapping f : Playsc — Ts
such that f(C) is defined and, for all 7 = ComCy ... 7;C; € Playse with 7 =
f(m) defined, we have that 7 is applicable at C; and 7(C;) = F. Play 7 =
CoriC1...7,C,, 18

— f-compatible if, for all odd ¢ € {1,...,n}, 71 = f(ComC1...7,-1Ci_1),
— f-maximal if it is not the strict prefix of an f-compatible play,

— winning it Cp, = F.

We say that f is winning for System (from C) if all f-compatible f-maximal C-
plays are winning. Finally, C' is winning if there is a C-strategy that is winning.
Note that, given an initial configuration C, we deal with an acyclic finite reach-
ability game so that, if there is a winning C-strategy, then there is a positional
one, which only depends on the last configuration.

For k € NT, let C}, denote the configuration that maps ¢ to k and all other
locations to (0,0,0). We set Win(G) = {k € NT | Cy, is winning for System}.

Definition 10 (game problem). For sets Ny, Ne, Nee C N, the game problem
s given as follows:

GAME(N, Ne, Nee)

Input: Parameterized vector game G

Question: Win(G) N (Ng X Ng X Nge) 07

One can show that parameterized vector games are equivalent to the synthesis
problem in the following sense:

Lemma 11. For every sentence ¢ € FOu[~]|, there is a parameterized vector
game G = (A, B, F) such that Win(p) = Win(G). Conversely, for every param-
eterized vector game G = (A, B, F), there is a sentence ¢ € FOs[~] such that
Win(G) = Win(yp). Both directions are effective.

Ezample 12. To illustrate parameterized vector games and the reduction from
the synthesis problem, consider the formula ¢} = Aycr ez F70%.(0(y) Abse(y))
in normal form from Example 7. For simplicity, we assume that As = {a} and
Ae = {d}. That is, Z is the set of vectors (a’d’) € L = {0,...,31{*% such
that ¢ = 2 # j or j = 2 # 4. Figure 2 illustrates a couple of configurations
Co,...,C5 : L — NT. The leftmost location in a configuration is £y, the rightmost

Parameterized Synthesis for First-Order Logic over Data Words 11

Co T1 Ch Ty Cy

System Environment
a -

\C;C)/' Environment

C. 3 T4

System
73

System
Ts5 05

Fig. 2. A play of a parameterized vector game

location (a3d?)), the topmost one (a3), and the one at the bottom {d*). Self-
loops have been omitted, and locations from Z have red background and a dashed
border.

Towards an equivalent game G = (A, 3, F), it remains to determine the accep-
tance condition F. Recall that ¢} says that every class contains two occurrences
of a iff it contains two occurrences of d. This is reflected by the acceptance condi-
tion F = {k} where x({) = (=0,=0,=0) for all £ € Z and x(¢) = (>0, >0,>0)
for all £ € L\ Z. With this, a configuration is accepting iff no token is on a
location from Z (a red location).

We can verify that Win(G) = Win(y¢}) = Nx0xN. In G, a uniform winning
strategy f for System that works for all P with B. =) proceeds as follows:
System first awaits an Environment’s move and then moves each token upwards
as many locations as Environment has moved it downwards. Figure 2 illustrates
an f-maximal C(g,0y-play that is winning for System. We note that f is a
“compressed” version of the winning strategy presented in Example 4, as System
makes her moves only when really needed. <

5 Results for FO[~] via Parameterized Vector Games

In this section, we present our results for the synthesis problem for FO[~], which
we obtain showing corresponding results for parameterized vector games. In
particular, we show that (FO[~],0,0,N) and (FO[~],N,N,0) do not have a
cutoff, whereas (FO[~],N, {ke}, {kse}) has a cutoff for all ke, kse € N. Finally, we
prove that SYNTH(FO[~],0,0,N) is, in fact, undecidable.

Lemma 13. There is a game G = (A, B, F) such that Win(G) does not have a
cutoff wrt. (0,0,N).

Proof. We let Ag = {a} and A, = {b}, as well as B = 2. For k € {0, 1,2}, define
the local acceptance conditions =k = (=0, =0, =k) and Zk = (=0,=0, >k). Set

12 B. Bérard et al.

Fig. 3. Acceptance conditions for a game with no cutoff wrt. (0,0, N)

01 = (a)),ls = {ab)),l3 = (a?b), and {4, = (a®b?). For ko, ..., ks € {0,1,2} and

o, - - -, € {=,>}, let ["0kg, >k, >2ky PBky >4ky] denote k € €L where
k(4;) = (Pk;) for alli € {0,...,4} and x(¢') = (T0) for ¢ ¢ {{o, ..., £¢4}. Finally,
[Z0,2,70,70,20] [20,0,70,2,20] [70,70,70,70,22]
= K
g {[20,—1,—1,—0720] [Z0,=0,70,71,21] U e

where K. = {x¢ | £ € L such that £(b) > £(a)} with xe(¢') = (1) if ¢/ = ¢, and
ke(¢") = (20) otherwise. This is illustrated in Figure 3.

There is a winning strategy for System from any initial configuration of size
2n: Move two tokens from £y to £1, wait until Environment sends them both to
{5, then move them to £3, wait until they are moved to ¢4, then repeat with two
new tokens from £y until all the tokens are removed from ¢y, and Environment
cannot escape J anymore. However, one can check that there is no winning
strategy for initial configurations of odd size. a

Lemma 14. There is a game G = (A, B, F) such that Win(G) does not have a
cutoff wrt. (N,N,0).

Proof. We define G such that System wins only if she has at least as many
processes as Environment. Let As = {a}, Ae = {b}, and B = 2. As there are no
shared processes, we can safely ignore locations with a letter from both System
and Environment. We set F = {k1, k2, k3, k4 } where

k1({a)) = (=1,=0,=0) ra({a)) = (=1,=0,=0) rs({a)) = (=0,=0,=0)
r1((0)) = (=0,=0,=0) r2({b)) = (=0,22,=0) r3((b)) = (=0,=1,=0),

ka(lo) = (=0,=0,=0), and ;(¢') = (>0,>0,=0) for all other ¢ € L and
i e{1,2,3,4). 0

We now turn to the case where the number of processes that can be trig-
gered by Environment is bounded. Note that similar restrictions are imposed
in other settings to get decidability, such as limiting the environment to a fi-
nite (Boolean) domain [17] or restricting to one environment process [1, 19]. We
obtain decidability of the synthesis problem via a cutoff construction:

Parameterized Synthesis for First-Order Logic over Data Words 13

Theorem 15. Given ke, kse € N, every game G = (A, B, F) has a cutoff wrt.
(N, {ke}, {kse}). More precisely: Let K be the largest constant that occurs in F.
Moreover, let Maz = (ke+kse)-|Ae|- B and N = |L|M%+1. K. Then, (N, ke, kse)
is a cutoff of Win(G) wrt. (N,{ke}, {kse})-

Proof. We will show that, for all N > N ,
(N, ke, kse) € Win(G) <= (N + 1, ke, kse) € Win(G).

The main observation is that, when C' contains more than K tokens in a given
£ € L, adding more tokens in ¢ will not change whether C' = F. Given C,C’ €
Conf, we write C' <, C' if C # C’ and there is 7 € T, such that 7(C) = C’. Note
that the length d of a chain Cy <. C7 <c ... <¢ Cy is bounded by Mazx. In other
words, Maz is the maximal number of transitions that Environment can do in a
play. For all d € {0, ..., Maz}, let Conf,; be the set of configurations C' € Conf
such that the longest chain in (Conf, <) starting from C has length d.

Claim. Suppose that C € Confy; and ¢ € L such that C(£) = (N, ne, ns) with
N > |L|%*! - K and ne,nse € N. Set D = C[{ + (N + 1, n¢, nge)]. Then,

C is winning for System <= D is winning for System.

To show the claim, we proceed by induction on d € N, which is illustrated in
Figure 4. In each implication, we distinguish the cases d = 0 and d > 1. For the
latter, we assume that equivalence holds for all values strictly smaller than d.

For 7 € Ty and ¢,¢' € L, we let 7[(¢,¢',s)++) denote the transition n € Ty
given by n(¢1,0l2,e) = 7(¢1,02,e) = 0, n(¢1,Lla,se) = 7(l1,La,5€e), n(l1,Lla,s) =
7'(41762,5) +1if (51762) = (f, 6/), and 17(61,5275) = ’7'((1,5275) if (51,62) 75 (67 6/)
We define 7[(¢,¢',s)--] similarly (provided 7(¢,¢',s) > 1).

—: Let f be a winning strategy for System from C' € Conf,. Let 7" = f(C)
and C' = 7/(C). Note that C’ = F. Since C(¢,s) = N > |L|%*! - K, there is
¢" € L such that ¢ +w = ¢ for some w € A} and C'(¢,;s) = N' > |L|¢ - K.

We show that D = C[¢ — (N+1, ne, ne)] is winning for System by exhibiting
a corresponding winning strategy g from D that will carefully control the position
of the additional token. First, set g(D) = n’ where ' = 7'[(¢,¢',s)++]. Let D' =
7' (D). We obtain D’(¢',;s) = N’ 4+ 1. Note that, since N’ > K, the acceptance
condition F cannot distinguish between C” and D’. Thus, we have D’ = F.

Case d = 0: As, for all transitions n”/ € T, we have n”(D’') = D' = F, we
reached a maximal play that is winning for System. We deduce that D is
winning for System.

Case d > 1: Take any ”” € T, and D" such that D" = n"(D’) }£ F. Let 7"’ =/
and C” = 7"(C"). Note that D" = C"[({',s) — N + 1], C" = D"[(¢',s) —
N], and C",D" € Conf,;- for some d~ < d. As f is a winning strategy
for System from C, we have that C” is winning for System. By induction
hypothesis, D" is winning for System, say by winning strategy ¢”. We let
g(Dn D'y’ w) = ¢"(m) for all D"-plays 7. For all unspecified plays, let g
return any applicable system transition. Altogether, for any choice of 1", we
have that ¢” is winning from D”. Thus, g is a winning strategy from D.

14 B. Bérard et al.

Conf 4 y e Cimfd,
D /’\ D' D" d-<d
O
iz ST A
))
¢ l l
N> |L|* K N' >|L|¢ K
:) N’ nl nl, N nl nl
',~" gl El - él

-N nef‘ Nse (‘) (")
14

4

c >~ ¢

Fig. 4. Induction step in the cutoff construction

<=: Suppose ¢ is a winning strategy for System from D. Thus, for n’ = g(D)
and D' = n/(D), we have D’ = F. Recall that D(¢,s) > (|L|¢* - K) + 1. We
distinguish two cases:

1. Suppose there is ¢/ € L such that £ # ¢, D'(¢';s) = N’ + 1 for some
N'>|L|¢- K, and 1/ (£,¢',s) > 1. Then, we set 7/ = n'[(¢,£',s)--].

2. Otherwise, we have D'({,s) > (|L|¢- K) + 1, and we set 7/ = 1/ (as well as
¢/ =¢and N' = N).

Let C" = 7/(C). Since D' = F, one obtains C’ |= F.

Case d = 0: For all transitions 7" € T,, we have 7"(C") = C' |= F. Thus, we
reached a maximal play that is winning for System. We deduce that C is
winning for System.

Case d > 1: Take any 7”7 € T, such that C” = 7"(C') & F. Let n”/ = 7" and
D" = n’(D"). We have C"" = D"[(¢',s) — N']|, D" = C"[(¢,s) — N' + 1],
and C”, D" € Conf,— for some d~ < d. As D" is winning for System, by
induction hypothesis, C" is winning for System, say by winning strategy f”.
We let f(C 7' C' 1") = f"(n) for all C"-plays 7. For all unspecified plays,
let f return an arbitrary applicable system transition. Again, for any choice
of 7/, f" is winning from C”. Thus, f is a winning strategy from C.

This concludes the proof of the claim and, therefore, of Theorem 15. a

Corollary 16. Let ke, kse € N be the number of environment and the num-
ber of mized processes, respectively. The problems GAME(N, {ke}, {kse}) and
SYNTH(FO[~], N, {ke}, {kse}) are decidable.

Parameterized Synthesis for First-Order Logic over Data Words 15

More precisely, we obtain a reduction to an exponential number of acyclic
finite-state games whose size (and hence the time complexity for determining
the winner) is exponential in the cut-off and, therefore, doubly exponential in
the size of the alphabet, the bound B, and the fixed number of environment
processes.

Theorem 17. GAME(0,0,N) and SYNTH(FOI[~],0,0,N) are undecidable.

Proof. We provide a reduction from the halting problem for 2-counter machines
(2CM) to GAME(0,0,N). A 2CM M = (@, 4, c1,¢2,q0,qn) has two counters,
c; and co, a finite set of states @), and a set of transitions A C @ x Op x @
where Op = {c;++, ¢;—, ¢;==0 | i € {1,2}}. Moreover, we have an initial
state g € @ and a halting state g, € Q. A configuration of M is a triple
v = (q,v1,2) € Q@ x N x N giving the current state and the current respective
counter values. The initial configuration is 79 = (go,0,0) and the set of halting
configurations is F' = {¢n} x N x N. For t € A, configuration (¢’,v},v4) is a
(t-)successor of (q,v1,1s), written (q,v1,v2) by (¢, vy, v5), if there is i € {1,2}
such that v4_, = v3_; and one of the following holds: (¢) ¢ = (q,c¢;++,¢") and
vi=v;+1,0r (ii) t = (¢,¢¢) and v, = v; — 1, or (4it) t = (¢,¢;==0,¢") and
v; = v, =0. A run of M is a (finite or infinite) sequence vy F¢, 71 b, ... The
2CM halting problem asks whether there is a run reaching a configuration in F.
It is known to be undecidable [30].

We fix a 2CM M = (Q, A, c1,¢2,q0,qn)- Let As = QU AU{ay, a2} and Ae =
{b} with a1, ag, and b three fresh symbols. We consider the game G = (4, B, F)
with A = A;WA., B = 4, and F defined below. Let L = {0, ..., B}4. Since there
are only processes shared by System and Environment, we alleviate notation and
consider that a configuration is simply a mapping C' : L — N. From now on, to
avoid confusion, we refer to configurations of the 2CM M as M-configurations,
and to configurations of G as G-configurations.

Intuitively, every valid run of M will be encoded as a play in G, and the
acceptance condition will enforce that, if a player in G deviates from a valid
play, then she will lose immediately. At any point in the play, there will be at
most one process with only a letter from @ played, which will represent the
current state in the simulated 2CM run. Similarly, there will be at most one
process with only a letter from A to represent what transition will be taken
next. Finally, the value of counter c¢; will be encoded by the number of processes
with exactly two occurrences of a; and two occurrences of b (i.e., C({a?b?))).

To increase counter c;, the players will move a new token to (a?b?), and to
decrease it, they will move, together, a token from {a2b?) to {a}b*). Observe
that, if ¢; has value 0, then C({a?b?)) = 0 in the corresponding configuration
of the game. As expected, it is then impossible to simulate the decrement of
¢;. Environment’s only role is to acknowledge System’s actions by playing its
(only) letter when System simulates a valid run. If System tries to cheat, she
loses immediately.

Encoding an M -configuration. Let us be more formal. Suppose v = (¢, v1, v2) is
an M-configuration and C' a G-configuration. We say that C' encodes = if

16 B. Bérard et al.

C((a)) =1, C({ait?*)) = v1, C((a3b?)) = v2,
C0) 2 0 for all € € {Lo} UL(@PI), (%), (albh) | G € Q.t € Ai € {1,2}),
C(¢) =0 for all other ¢ € L.

We then write v = m(C). Let C(v) be the set of G-configurations C' that en-
code v. We say that a G-configuration C' is valid if C' € C(y) for some ~.

Simulating a transition of M. Let us explain how we go from a G-configuration
encoding v to a G-configuration encoding a successor M-configuration +'. Ob-
serve that System cannot change by herself the M-configuration encoded. If, for
instance, she tries to change the current state ¢, she might move one process from
£y to {¢'), but then the G-configuration is not valid anymore. We need to move
the process in {(¢)) into {¢2b?)) and this requires the cooperation of Environment.

Assume that the game is in configuration C' encoding v = (g, v1, v2). System
will pick a transition ¢ starting in state ¢, say, t = (q,c1++,¢’). From con-
figuration C, System will go to the configuration C; defined by Cy({t)) = 1,
Ci({a1))) =1, and C1(¢) = C(¢) for all other £ € L.

If the transition ¢ is correctly chosen, Environment will go to a configura-
tion Cy defined by Cs((q)) = 0, Cs({ab)) = 1, Ca((t)) = 0, Ca({th)) = 1
Cy({a1)) = 0, Co({a1b)) = 1 and, for all other ¢ € L, Co(¢) = Cy(¢). This
means that Environment moves processes in locations (¢), {(q), {(a1) to loca-
tions (tb), (gb), {a1b), respectively.

To finish the transition, System will now move a process to the destination
state ¢’ of ¢, and go to configuration C3 defined by C3({¢')) = 1, C3({tb}))) = 0,
Ca((2)) = 1, Cy((ab)) = 0, Ca({g®b)) = 1, Ca((arb}) = 0, Cs({a?b)) = 1
and C3(¢) = Cy(¢) for all other £ € L.

Finally, Environment moves to configuration Cy given by Cy({t2b)) = 0,
Ci((20%) = Co((B12)) + 1, Ci((a?h)) = 0, Cal(®?)) = Co((a®b?)) + 1.
Cy({a?b)) = 0, C4((a23b?)) = C5((a2b?)) + 1, and Cy4(¢) = C3(¢) for all other
¢ € L. Observe that Cy € C((¢/,v1 + 1,11)).

Other types of transitions will be simulated similarly. To force System to
start the simulation in -y, and not in any M-configuration, the configurations
C such that C({g2b?)) = 0 and C({q)) = 1 for q # qo are not valid, and will be
losing for System.

Acceptance condition. It remains to define F in a way that enforces the above
sequence of G-configurations. Let L, = {fo} U {(a2b?), (aib*) | i € {1,2}} U
{{q®V?) | ¢ € QY U {{t?b*) | t € A} be the set of elements in L whose values do
not affect the acceptance of the configuration. By [¢1 >y nq, ..., L DXy ng], we
denote x € €& such that x(¢;) = (x;n;) for i € {1,. ., k} and /f(é) (=0) for all
£ e L\{{l,...,L}. Moreover, for a set of locatlons L C L, we let L > 0 stand
for “(¢ > 0) for all L e LV,

First, we force Environment to play only in response to System by making
System win as soon as there is a process where Environment has played more
letters than System (see Condition (d) in Table 2).

If 7 is not halting, the configurations in C(y) will not be winning for System.
Hence, System will have to move to win (Condition (a)).

Parameterized Synthesis for First-Order Logic over Data Words 17

Table 2. Acceptance conditions for the game simulating a 2CM

Requirements for System

(a) For all t = (q, op, q/) €Q:

Fan = Ugeoilla) = L (1) =1, (ai) =1, (@) 21, (Lo \ {{a°b*)}) > 0]} if op = ci++
Flan = Useq{1(a) 7«»:L«£¥»:L«fﬁ»217@«\w *)}) > o} ifop=ci
Flary = Ugeollla) = 1, () = 1, (ai®) = 0, (¢°*) > 1, (L, \ {(4""), (aib*)}) = 0]} if op = c;i==0
(b) For all t = (qo,0p,q’) € Q such that op € {c;++,c;==0}:
={l{a0) =1, (t) =1, (ai) =1,4 > 0]} if op=cit+
= {[(@0) = 1, () = 1, £ > 0]} if op = c;==0
(c) For all t = (q,0p,q’) € Q:
Flanay = {1(a®0) =1, (£°b) = 1, (aib) =1, (¢') =1, L, > 0]} if op=ci++
Flanay = {(a"0) =1, (°b) = 1, (aib®) = 1, {(¢') = 1, L, > 0]} ifop=ci—-
Flanay = {{d’b) =1, (¢*°b) =1, L, > 0]} if op = ¢;==0

Requirements for Environment

(d) Let Loce = {£ € L | (Cen, le) <L(b)}. Forall £ € Lece: Fe=1[£>1,(L\{€}) > 0]

(e) For all t = (g,0p,q’) € Q:
[{gbh =1, (t) =1, (ai) =1, L, 20], [{gh =1, (tb) =1, {a:) =1, L, >0
Fo =) =1 ab) = 1, Lo 2 0], [(gb) =1, (#6) =1, fas) =1, Ly 20\ ifop=cos
L {aib) =1, L, > 0], [{ah =1, (tb) =1, {a:b) =1, L, > 0]

[(gb) =1, (t) =1, (aib®) = 1, L, > 0], [(q) =1, (tb) =1, (aib*) =1, L, > 0]
Féw = {[«q» =1, (t)=1,(adb*) =1, Ly > 0], [(gb) =1, (tb) = 1, (alb?) = 1, Ly > 01,} ifop=ci
[(gb) =1, (t) = 1, (aib®) = 1, L, > 0], [(q) =1, (tb) =1, (aib*) =1, L, > 0]
Fén = {ab) =1, (t) =1, L, > 0], [{g) =1, (tb) =1, L, > 0]} if op = ¢;==0
(f) For all t = (q,0p,q’) € Q:
[(d) =1, (¢’b) =1, (t*b) >0, (aib) >0, L, >0],
e _ [(¢) =1, (¢°b) >0, (t*b) =1, (aib) >0, L, > 0], fop— it
@t T [(g) =1, (a°b) >0, (£°b) > 0, (alb) =1, L, > 0], '
[(g'b) =1, (¢°b) >0, () > 0, (aib) >0, L, > 0]
[(d) =1, (¢’b) =1, (t’b) >0, (aib*) >0, L,y > 0]
[(d") =1, (a°b) >0, (*b) =1, (aib®) >0, L, > 0], |
‘F(Zivq’) = ’ 2 2 4,3 if op
[{g) =1, {g°b) >0, {t°b) >0, (a;b") =1, L, > 0],
[(a'b) = 1, (¢°b) >0, (17b) >0, (alb®) >0, Ly > 0]
[(d) =1, (*b) =1, (£*b) >0, L, > 0],
Flta) = [(a') =1, (a’b) >0, (t°b) =1, L, > 0], if op = ¢;==0
[(a'b) =1, (a°b) > 0, (£°b) > 0, (aib®) >0, L, > 0]

18 B. Bérard et al.

The first transition chosen by System must start from the initial state of M.
This is enforced by Condition (b).

Once System has moved, Environment will move other processes to leave
accepting configurations. The only possible move for her is to add b on a pro-
cess in locations {q)), (t), and (a;), if ¢ is a transition incrementing counter
c; (respectively (a3b?) if ¢ is a transition decrementing counter c;). All other
G-configurations accessible by Environment from already defined accepting con-
figurations are winning for System, as established in Condition (e).

System can now encode the successor configuration of M, according to the
chosen transition, by moving a process to the destination state of the transition
(see Condition (c)).

Finally, Environment makes the necessary transitions for the configuration
to be a valid G-configuration. If she deviates, System wins (see Condition (f)).

If Environment reaches a configuration in C(v) for v € F', System can win by
moving the process in ((gp,)) to (g7). From there, all the configurations reachable
by Environment are also winning for System:

Fr={l{a) =1L, 2 0], [{grb) =1, L, 2 0], [{grb*) =1,L., > 0]}.

Finally, the acceptance condition is given by

F=U Ru U AUY U FanYUFenYFarenUFGue) UFe.
LE€Ls<e t=(qo,0p,q’)€EA t=(q,0p,q')EA

Note that a correct play can end in three different ways: either there is a
process in {(gn) and System moves it to (g7), or System has no transition to
pick, or there are not enough processes in ¢y for System to simulate a new
transition. Only the first kind is winning for System.

We can show that there is an accepting run in M iff there is some k such
that System has a winning C(o)-strategy for G. O

6 Conclusion

There are several questions that we left open and that are interesting in their own
right due to their fundamental character. Moreover, in the decidable cases, it will
be worthwhile to provide tight bounds on cutoffs and the algorithmic complexity
of the decision problem. Like in [9,16,17,31,32], our strategies allow the system
to have a global view of the whole program run executed so far. However, it is
also perfectly natural to consider uniform local strategies where each process only
sees its own actions and possibly those that are revealed according to some causal
dependencies. This is, e.g., the setting considered in [4,19] for a fixed number of
processes and in [20] for parameterized systems over ring architectures.

Moreover, we would like to study a parameterized version of the control
problem [37] where, in addition to a specification, a program in terms of an arena
is already given but has to be controlled in a way such that the specification is
satisfied. Finally, our synthesis results crucially rely on the fact that the number
of processes in each execution is finite. It would be interesting to consider the
case with potentially infinitely many processes.

Parameterized Synthesis for First-Order Logic over Data Words 19

References

1.

10.

11.

12.

13.

14.

15.

16.

P. A. Abdulla, R. Mayr, A. Sangnier, and J. Sproston. Solving parity games on
integer vectors. In P. R. D’Argenio and H. C. Melgratti, editors, CONCUR 2013
- Concurrency Theory - 24th International Conference, CONCUR 2013, Buenos
Aires, Argentina, August 27-30, 2013. Proceedings, volume 8052 of Lecture Notes
in Computer Science, pages 106-120. Springer, 2013.

. H. Andréka, I. Németi, and J. van Benthem. Modal languages and bounded frag-

ments of predicate logic. J. Philosophical Logic, 27(3):217-274, 1998.

B. Bérard, B. Bollig, M. Lehaut, and N. Sznajder. Parameterized synthesis for
fragments of first-order logic over data words. CoRR, abs/1910.14294, 2019.

R. Beutner, B. Finkbeiner, and J. Hecking-Harbusch. Translating Asynchronous
Games for Distributed Synthesis. In W. Fokkink and R. van Glabbeek, editors,
30th International Conference on Concurrency Theory (CONCUR 2019), volume
140 of Leibniz International Proceedings in Informatics (LIPIcs), pages 26:1-26:16,
Dagstuhl, Germany, 2019. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith, and J. Widder.
Decidability of Parameterized Verification. Morgan & Claypool Publishers, 2015.
M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-
variable logic on data words. ACM Trans. Comput. Log., 12(4):27, 2011.

B. Bollig and D. Kuske. An optimal construction of Hanf sentences. J. Applied
Logic, 10(2):179-186, 2012.

T. Brézdil, P. Jancar, and A. Kucera. Reachability games on extended vector
addition systems with states. In ICALP’10, Part II, volume 6199 of LNCS, pages
478-489. Springer, 2010.

B. Briitsch and W. Thomas. Playing games in the Baire space. In Proc. Cassting
Workshop on Games for the Synthesis of Complex Systems and 3rd Int. Workshop
on Synthesis of Complex Parameters, volume 220 of EPTCS, pages 1325, 2016.
J. R. Biichi and L. H. Landweber. Solving sequential conditions by finite-state
strategies. Transactions of the American Mathematical Society, 138:295-311, Apr.
1969.

A. Church. Applications of recursive arithmetic to the problem of circuit synthesis.
In Summaries of the Summer Institute of Symbolic Logic — Volume 1, pages 3-50.
Institute for Defense Analyses, 1957.

J. Courtois and S. Schmitz. Alternating vector addition systems with states. In
E. Csuhaj-Varjt, M. Dietzfelbinger, and Z. Esik, editors, Mathematical Founda-
tions of Computer Science 2014 - 39th International Symposium, MFCS 2014,
Budapest, Hungary, August 25-29, 201/. Proceedings, Part I, volume 8634 of Lec-
ture Notes in Computer Science, pages 220-231. Springer, 2014.

S. Demri, D. D’Souza, and R. Gascon. Temporal logics of repeating values. J. Log.
Comput., 22(5):1059-1096, 2012.

S. Demri and R. Lazi¢. LTL with the freeze quantifier and register automata. ACM
Transactions on Computational Logic, 10(3), 2009.

J. Esparza. Keeping a crowd safe: On the complexity of parameterized verification.
In STACS’14, volume 25 of Leibniz International Proceedings in Informatics, pages
1-10. Leibniz-Zentrum fiir Informatik, 2014.

L. Exibard, E. Filiot, and P.-A. Reynier. Synthesis of Data Word Transducers. In
W. Fokkink and R. van Glabbeek, editors, 30th International Conference on Con-
currency Theory (CONCUR 2019), volume 140 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 24:1-24:15, Dagstuhl, Germany, 2019. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

20

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

B. Bérard et al.

D. Figueira and M. Praveen. Playing with repetitions in data words using en-
ergy games. In A. Dawar and E. Gradel, editors, Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Ozford, UK,
July 09-12, 2018, pages 404-413. ACM, 2018.

D. Figueira and M. Praveen. Playing with repetitions in data words using energy
games. arXiv preprint arXiw:1802.07435, 2018.

B. Finkbeiner and E. Olderog. Petri games: Synthesis of distributed systems with
causal memory. Inf. Comput., 253:181-203, 2017.

H. Frenkel, O. Grumberg, and S. Sheinvald. An automata-theoretic approach to
model-checking systems and specifications over infinite data domains. J. Autom.
Reasoning, 63(4):1077-1101, 2019.

M. Fiirer. The computational complexity of the unconstrained limited domino
problem (with implications for logical decision problems). In E. Borger, G. Hasen-
jaeger, and D. Rodding, editors, Logic and Machines: Decision Problems and Com-
plexity, Proceedings of the Symposium ”Rekursive Kombinatorik” held from May
23-28, 1983 at the Institut fiir Mathematische Logik und Grundlagenforschung der
Universitat Miinster/Westfalen, volume 171 of Lecture Notes in Computer Science,
pages 312-319. Springer, 1983.

P. Gastin and N. Sznajder. Fair synthesis for asynchronous distributed systems.
ACM Transactions on Computational Logic, 14(2:9), 2013.

E. Gradel, P. G. Kolaitis, and M. Y. Vardi. On the decision problem for two-
variable first-order logic. Bulletin of Symbolic Logic, 3(1):53-69, 1997.

W. Hanf. Model-theoretic methods in the study of elementary logic. In J. W.
Addison, L. Henkin, and A. Tarski, editors, The Theory of Models. North-Holland,
Amsterdam, 1965.

F. Horn, W. Thomas, N. Wallmeier, and M. Zimmermann. Optimal strategy syn-
thesis for request-response games. RAIRO - Theor. Inf. and Applic., 49(3):179-203,
2015.

S. Jacobs and R. Bloem. Parameterized synthesis. Logical Methods in Computer
Science, 10(1), 2014.

S. Jacobs, L. Tentrup, and M. Zimmermann. Distributed synthesis for parameter-
ized temporal logics. Inf. Comput., 262(Part):311-328, 2018.

P. Jancar. On reachability-related games on vector addition systems with states.
In RP’15, volume 9328 of LNCS, pages 50-62. Springer, 2015.

M. Jenkins, J. Ouaknine, A. Rabinovich, and J. Worrell. The church synthesis
problem with metric. In M. Bezem, editor, Computer Science Logic, 25th Interna-
tional Workshop / 20th Annual Conference of the EACSL, CSL 2011, September
12-15, 2011, Bergen, Norway, Proceedings, volume 12 of LIPIcs, pages 307-321.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

M. Kaminski and N. Francez. Finite-memory automata. Theoretical Computer
Science, 134(2):329-363, 1994.

A. Khalimov and O. Kupferman. Register-Bounded Synthesis. In W. Fokkink and
R. van Glabbeek, editors, 30th International Conference on Concurrency Theory
(CONCUR 2019), volume 140 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 25:1-25:16, Dagstuhl, Germany, 2019. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

A. Khalimov, B. Maderbacher, and R. Bloem. Bounded synthesis of register trans-
ducers. In S. K. Lahiri and C. Wang, editors, Automated Technology for Verifica-
tion and Analysis - 16th International Symposium, ATVA 2018, Los Angeles, CA,
USA, October 7-10, 2018, Proceedings, volume 11138 of Lecture Notes in Computer
Science, pages 494-510. Springer, 2018.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Parameterized Synthesis for First-Order Logic over Data Words 21

D. Kuske and N. Schweikardt. First-order logic with counting. In 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik,
Iceland, June 20-28, 2017, pages 1-12. IEEE Computer Society, 2017.

D. Kuske and N. Schweikardt. Gaifman Normal Forms for Counting Extensions of
First-Order Logic. In I. Chatzigiannakis, C. Kaklamanis, D. Marx, and D. Sannella,
editors, 45th International Colloguium on Automata, Languages, and Programming
(ICALP 2018), volume 107 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 133:1-133:14, Dagstuhl, Germany, 2018. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

L. Libkin, T. Tan, and D. Vrgoc. Regular expressions for data words. J. Comput.
Syst. Sci., 81(7):1278-1297, 2015.

M. L. Minsky. Computation: Finite and Infinite Machines. Prentice Hall, Upper
Saddle River, NJ, USA, 1967.

A. Muscholl. Automated synthesis of distributed controllers. In M. M. Halldérsson,
K. Iwama, N. Kobayashi, and B. Speckmann, editors, Automata, Languages, and
Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-
10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer Science,
pages 11-27. Springer, 2015.

A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesize. In
81st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri,
USA, October 22-24, 1990, Volume II, pages 746-757. IEEE Computer Society,
1990.

M. O. Rabin. Automata on infinite objects and Church’s thesis. Number 13 in
Regional Conference Series in Mathematics. American Mathematical Society, 1972.
J. Raskin, M. Samuelides, and L. V. Begin. Games for counting abstractions.
Electr. Notes Theor. Comput. Sci., 128(6):69-85, 2005.

L. Schroder, D. Kozen, S. Milius, and T. Wilmann. Nominal automata with name
binding. In J. Esparza and A. S. Murawski, editors, Foundations of Software
Science and Computation Structures - 20th International Conference, FOSSACS
2017, Held as Part of the FEuropean Joint Conferences on Theory and Practice of
Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, volume
10203 of Lecture Notes in Computer Science, pages 124-142, 2017.

T. Schwentick and K. Barthelmann. Local normal forms for first-order logic with
applications to games and automata. In Annual Symposium on Theoretical Aspects
of Computer Science, pages 444-454. Springer, 1998.

Y. Velner and A. Rabinovich. Church synthesis problem for noisy input. In M. Hof-
mann, editor, Foundations of Software Science and Computational Structures -
14th International Conference, FOSSACS 2011, Held as Part of the Joint Furo-
pean Conferences on Theory and Practice of Software, ETAPS 2011, Saarbriicken,
Germany, March 26-April 3, 2011. Proceedings, volume 6604 of Lecture Notes in
Computer Science, pages 275-289. Springer, 2011.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/

4.0/), which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

22 B. Bérard et al.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

	Parameterized Synthesis for Fragments of First-Order Logic over Data Words

