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ABSTRACT

In this work, we propose two convolutional neural network classifiers for detecting contaminants in astronomical images. Once
trained, our classifiers are able to identify various contaminants, such as cosmic rays, hot and bad pixels, persistence effects, satellite
or plane trails, residual fringe patterns, nebulous features, saturated pixels, diffraction spikes, and tracking errors in images. They
encompass a broad range of ambient conditions, such as seeing, image sampling, detector type, optics, and stellar density. The first
classifier, MaxiMask, performs semantic segmentation and generates bad pixel maps for each contaminant, based on the probability
that each pixel belongs to a given contaminant class. The second classifier, MaxiTrack, classifies entire images and mosaics, by
computing the probability for the focal plane to be affected by tracking errors. We gathered training and testing data from real data
originating from various modern charged-coupled devices and near-infrared cameras, that are augmented with image simulations. We
quantified the performance of both classifiers and show that MaxiMask achieves state-of-the-art performance for the identification
of cosmic ray hits. Thanks to a built-in Bayesian update mechanism, both classifiers can be tuned to meet specific science goals in
various observational contexts.
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1. Introduction

Catalogs extracted from astronomical images are at the heart of
modern observational astrophysics. Minimizing the number of
spurious detections in these catalogs has become increasingly
important because the noise added by such contaminants can,
in many cases, compromise the scientific objectives of a sur-
vey. Properly identifying and flagging spurious detections yields
substantial scientific gains, but it is complicated by the numer-
ous types of contaminants that pollute images. Some of them
stem from the detector electronics (e.g., dead or hot pixels, per-
sistence, saturation), from the optics (diffraction along the opti-
cal path, scattered and stray light), from post-processing (e.g.,
residual fringes), while others are the results of external events
(cosmic rays, satellites, tracking errors). The amount of data pro-
duced by modern astronomical surveys makes visual inspection
impossible in most cases. For this reason, developing fully auto-
mated methods to separate contaminants from true astrophys-
ical sources is a critical issue in modern astronomical survey
pipelines.

Most current pipelines rely on a fine prior knowledge of
their instruments to detect and mask electronic contaminants
(e.g., Bosch et al. 2018; Morganson et al. 2018) and to some
extent optical contaminants (e.g., Kawanomoto et al. 2016a,b).
Cosmic ray hits can be identified by rejecting outliers in the time-
line, provided that multiple consecutive exposures are available,
by using algorithms sensitive to their peculiar shapes, such as
Laplacian edge detection (e.g., LA Cosmic, van Dokkum 2001)
or wavelets (e.g., Ordénovic et al. 2008). The Radon transform
or the Hough transform have often been used to detect streaks
caused by artificial satellites or planes in images (e.g, Vandame
2002; Nir et al. 2018).

In this work, we want to overcome some of the drawbacks
of the above mentioned methods. First, the typical data volume
produced by modern surveys requires that the software is largely
unsupervised and as efficient as possible. Second, we aim to
develop a robust and versatile tool for the community at large
and therefore want to avoid the pitfall inherent in software that
is tailored to a single or a handful of instruments, without com-
promising on performance. Third, we would like to have a uni-
fied tool able to detect many contaminants at once. Finally, we
want to assign to each pixel a probability of belonging to a given
contaminant class rather than Boolean flags. These constraints
lead us to choose machine learning techniques and in particular
supervised learning and convolutional neural networks (CNNs).

Supervised learning is a field of machine learning dealing
with models that can learn regression or classification tasks
based on a data set containing the inputs and the expected out-
puts. During the learning process, model parameters are adjusted
iteratively to improve the predictions made from the input data.
The learning procedure itself consists of minimizing a loss
function that measures the discrepancy between model predic-
tions and the expected values. Minimization is achieved through
stochastic gradient descent. We recommend Ruder (2016) for an
overview of gradient descent based optimization algorithms.

Convolutional neural networks (LeCun & Bengio 1995) are
particulary well-suited for identifying patterns in images. Unlike
previous approaches that would involve hand crafted feature
detectors, such as SIFT descriptors (Lowe 1999), CNN models
operate directly on pixel data. This is made possible by the use of
trainable convolution kernels to detect features in images. Con-
volution is shift-equivariant, which allows the same features to
be detectable at any image location.
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CNNs are now widely used in various computer vision tasks,
including image classification, that is assigning a label to a whole
image (Krizhevsky et al. 2012; Simonyan & Zisserman 2014;
Szegedy et al. 2015), and semantic segmentation, that is assign-
ing a label to each pixel (Long et al. 2015; Badrinarayanan et al.
2017; Garcia-Garcia et al. 2017).

In this work, we propose to identify contaminants using both
image classification and semantic segmentation.

In the following, we first describe the images that we used
and how we built our data sets. Then, we focus on the neural
network architecture that we used. Finally, we evaluate the mod-
els performance on test sets and on real data.

2. Data
In this section we describe the data used to train our two neural
networks. We distinguish between two types of contaminants:
On the one hand, local contaminants, that affects only a fraction
of the image at specific locations. This includes cosmic rays, hot
columns and lines, dead columns and lines, dead clustered pix-
els, hot pixels, dead pixels, persistence, satellite trails, residual
fringe patterns, “nebulosity”, saturated pixels, diffraction spikes,
and over scanned pixels. These add up to 12 classes. On the other
hand, global contaminants, that affects the whole image, such as
tracking errors.

2.1. Local contaminant data
For local contaminants, we choose to build training samples
by adding defects to uncontaminated images in order to have
a ground truth for each contaminant. In this section we first
describe the library of astronomical images used for our anal-
ysis, then focus on the selection of uncontaminated images, and
finally describe the way each contaminant is added.

2.1.1. Library of real astronomical images
In an effort to have the most realistic dataset, we choose to use
real data as much as possible and take advantage of the private
archive of wide-field images gathered for the COSMIC-DANCE
survey (Bouy et al. 2013). The COSMIC-DANCE library offers
several advantages. First, it includes images from many past
and present optical and near-infrared wide-field cameras. Images
cover a broad range of detector types and ground-based observ-
ing sites, ensuring that our dataset is representative of most
modern astronomical wide-field instruments. Table 1 gives an
overview of the properties of the cameras used to build the
image database. Second, most problematic exposures featur-
ing tracking/guiding loss, defocusing or strong fringing were
already identified by the COSMIC-DANCE pipeline, providing
an invaluable sample of real problematic images.

In all cases except for Megacam, DECam, UKIRT and HSC
exposures, the raw data and associated calibration frames were
downloaded and processed using standard procedures with an
updated version of Alambic (Vandame 2002), a software suite
developed and optimized for the processing of large multi-chip
imagers. In the case of Megacam, the exposures processed and
calibrated with the Elixir pipeline were retrieved from the CADC
archive (Magnier & Cuillandre 2004). In the case of DECam, the
exposures processed with the community pipeline were retrieved
from the NOAO public archive (Valdes et al. 2014). UKIRT
exposures processed by the Cambridge Astronomical Survey
Unit were retrieved from the WFCAM Science Archive. Finally,
the HSC raw images were processed using the official HSC
pipeline (Bosch et al. 2018). In all cases, a bad pixel map is

Table 1. Instruments used in this study.

Telescope Instrument Type Platescale Ref.
[pixel−1]

CTIO Blanco DECam CCD 0′′.26 (1)
CTIO Blanco MOSAIC2 CCD 0′′.26 (2)
KPNO Mayall MOSAIC1 CCD 0′′.26 (2)
KPNO Mayall NEWFIRM IR 0′′.4 (3)
CFHT MegaCam CCD 0′′.18 (4)
CFHT CFH12K CCD 0′′.21 (5)
CFHT UH8K CCD 0′′.21 (6)
INT WFC CCD 0′′.33 (7)
UKIRT WFCAM IR 0′′.4 (8)
LCO Swope Direct CCD CCD 0′′.43 (9)
VST OmegaCam CCD 0′′.21 (10)
Subaru HSC CCD 0′′.17 (11)
VISTA VIRCAM IR 0′′.34 (12)

References. (1) Flaugher et al. (2010); (2) Wolfe et al. (2000);
(3) Autry et al. (2003); (4) Boulade et al. (2003); (5) Cuillandre et al.
(2000); (6) Metzger et al. (1995); (7) Ives (1998); (8) Casali et al.
(2007); (9) Rheault et al. (2014); (10) Kuijken et al. (2002); (11)
Miyazaki et al. (2018); (12) Dalton et al. (2006).

associated to every individual image. In the case of DECam and
HSC, a data quality mask is also associated to each individual
image and provides integer-value codes for pixels which are not
scientifically useful or suspect, including in particular bad pix-
els, saturated pixels, cosmic ray hits, satellite tracks, etc. All the
images in the following consist of individual exposures and not
co-added exposures.

2.1.2. Non-contaminated images

None of the exposures in our library are defect-free. The first
step to create the non-contaminated dataset to be used as “refer-
ence” images consists in identifying the cleanest possible subset
of exposures. CFHT-Megacam (u, r, i, z bands), CTIO-DECam
(g, r, i, z,Y bands) and Subaru-HSC (g, r, i, z, y bands) exposures
are found to have the best cosmetics and are selected to create
the non-contaminated dataset. The defects inevitably present in
these images are handled as follows.

First, dead pixels and columns are identified from flat-
field images and inpainted using Gaussian interpolation (e.g.,
Williams et al. 1998). Then, the vast majority of cosmic rays
are detected using the Astro-SCRAPPY Python implementa-
tion (McCully et al. 2018) of LA Cosmic (van Dokkum 2001)
and also inpainted using Gaussian interpolation. Finally, given
the high performance of the DECam and HSC pipelines,
the corresponding images are perfect candidates for our non-
contaminated datasets. These two pipelines not only efficiently
detect but also interpolate problematic pixels (in particular satu-
rated pixels, hot and bad pixels, cosmic ray hits). Such interpo-
lations being a feature of several modern pipelines (e.g., various
NOAO pipelines, but also the LSST pipeline), we choose to treat
these pixels as regular pixels so that the networks are able to
work with images originating from such pipelines.

Patches of size 400×400 pixels are randomly extracted from
the cleaned images. 75% of them are used to generate training
data and the remaining 25% for test data.

The final non-contaminated dataset includes 50 000 individ-
ual images, ensuring that we have a sufficiently diverse and large
amount of training data for our experiment.

A48, page 2 of 24



M. Paillassa et al.: MaxiMask and MaxiTrack

Fig. 1. Examples of contaminants and their ground truth. Top row: cosmic ray hits, hot columns, bad columns. Bottom row: bad lines, persistence,
satellite trails.

A non-representative training set can severely impact the per-
formance of a CNN and result in significant biases in the clas-
sification task. To prevent this, we measure a number of basic
properties describing prototypical aspects of ground-based astro-
nomical images to verify that their distributions in the uncontam-
inated dataset are wide enough and reasonably well sampled.

The measured properties include, for example, the average
full-width at half-maximum (FWHM) of point-sources is esti-
mated in each image using PSFEx (Bertin 2013). This allows us to
ensure that the training set covers a broad range of ambient (see-
ing) conditions and point spread functions (PSFs) sampling. Also,
the source density (number of sources in the image divided by
the physical size of the image) is measured to make sure that our
training set encompasses a broad range of source crowding, from
sparse cosmological fields to dense, low-galactic latitude stellar
fields.

Additionally, the background is modeled in all the images
following the method used by SExtractor (Bertin & Arnouts
1996), i.e. using a combination of κ.σ-clipping and mode estima-
tion. The background model provides important parameters such
as the standard deviation of the background which is required in
most of the data-processing operations that follow.

2.1.3. Cosmic rays (CR)

“Cosmic ray” hits are produced by particles hitting the detector
or by the photons resulting from the decay of radioactive atoms
near the detector. They appear as bright and sharp patterns with
shapes ranging from dots affecting one or two pixels to long
wandering tracks commonly referred to as “worm”, depending
on incidence angle and detector thickness.

We create a library of real CRs using dark frames with long
exposure times from the CFH12K, HSC, MegaCam, MOSAIC,
and OmegaCam cameras. These cameras comprise both “thick”,
red-sensitive, deep depletion charged-couple devices (CCDs),
more prone to long worms, and thinner, blue-sensitive devices,
more prone to unresolved hits. Dark frames are exposures taken
with the shutter closed, so that the only contributors to the content
of undamaged pixels are the offset, dark current, and CR hits (plus
Poisson and readout noise). A mask M of the pixels affected by
CR hits in a given dark frame D can therefore easily be generated
by applying a simple detection threshold. We conservatively set
this threshold to 3σD above the median value mD of D:

∀p, Mp =

{
1 if Dp > mD + 3σD
0 otherwise. (1)

Among all the dark images used, a bit more than 900 million
cosmic ray pixels are detected after thresholding. Considering
that the average footprint area of a cosmic ray hit is 15 pixels,
this represents a richly diversified population of about 60 million
cosmic ray “objects”.

Next we dilate M with a 3 × 3 pixel kernel to create the
final M (D) mask. This mask is used both as ground truth for the
classifier, and also to generate the final “contaminated” image C
by adding CR pixels with rescaled values to the uncontaminated
image U:

C = U + kC
σU

σD
D � M(D), (2)

where σU is the estimated standard deviation of the uncontam-
inated image background, � denotes the element-wise prod-
uct and kC is a scaling factor empirically set to 1/8. D
has been background-subtracted before this operation, using a
SExtractor-like background estimation.

A typical CR hit added to an image and its ground truth mask
are shown in Fig. 1.

2.1.4. Hot columns and lines, dead columns, lines, and
clustered pixels, hot pixels, and dead pixels (HCL,
DCL, HP, DP)

These contaminants mainly come from electronic defects and the
way the detectors are read. They correspond to pixels having a
response very different from that of neighbors, either much lower
(bad pixels, traps) or much noisier (hot pixels). These blemishes
can be found as single pixels, in small clusters, or affecting a
large fraction of a column or row. We treat single pixels and
clumps, columns, and lines separately, although they may often
share a common origin.

All these hot or dead pixels added to the uncontaminated
images are simulated. The number of these pixels is set as follow.

For columns and lines, a random number of columns and
lines is chosen with a uniform distribution over [1,4]. Each col-
umn or line has a uniform length picked between 30 and the
whole image height or width. It has a uniform thickness in [1,3].
For punctual pixels, a random fraction of pixels is chosen with a
uniform distribution between 0.0002 and 0.0005. Pixels are uni-
formly distributed over the image. Clustered pixels are given a
rectangular or a random convex polygonal shape. The random
convex shapes are constrained to have 5 or 6 edges and to fit in
20 × 20 bounding boxes.
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The values of these pixels are computed as follows. For
hot values, a uniformly distributed random base value v is cho-
sen in the interval [15σU, 100σU]. Then hot values are gen-
erated according to the normal law N(v, (0.02v)2) so that hot
values are randomly distributed over [0.9v, 1.1v]. For dead val-
ues, one of the following three equiprobable recipes is chosen
at random to generate bad pixel values. Either all values are
exactly 0. Either values are generated according to the normal
law N

(
0, (0.02σU)2

)
so that these are close to 0 values but not

exactly 0. Either a random base value v is chosen with a uni-
form distribution in the interval [0.1mU, 0.7mU], where mU is
the median of the uncontaminated image sky background. In
this case, dead pixel values are generated using the normal law
N

(
v, (0.02v)2

)
, so that values fall in the interval [0.9v, 1.1v].

Example of such column and line defaults are shown in
Fig. 1.

2.1.5. Persistence (P)

Persistence occurs when overly bright pixels in a previous expo-
sure leave a remnant image in the following exposures.

To simulate this effect in an uncontaminated image, we
applied the so-called “Fermi model” described in Long et al.
(2015). Persistence, in units of e−.s−1), is modeled as a function
of the initial pixel level xp and time t:

f (xp, t) = Ap

 1

exp (− xp−x0

δx ) + 1

 ( xp

x0

)α ( t
1000

)−γ
. (3)

The goal of Long et al. (2015) was to fit the model parame-
ters x0, δx, α, γ using observations to later predict persistence for
their detector. In our simulations, parameter values are random-
ized to represent various types and amounts of persistence (see
Table 2). To compute the pixel value of the persistence effect,
we derive the number of electrons emitted by the persistence
effect during the exposure. In the following, we note T the dura-
tion of the exposure in which the persistence effect occurs, and
∆t the delay between that exposure and the previous one. We
obtain the number of ADUs collected at pixel p during the inter-
val [∆t,∆t+T ] by integrating Eq. (3) and dividing by the gain G:

Pp =
1
G

∫ ∆t+T

∆t
f (xp, t) dt (4)

=
Ap

G

 1000γ

exp (− xp−x0

δx ) + 1

 ( xp

x0

)α (
(∆t + T )1−γ − ∆t1−γ

1 − γ

)
. (5)

These pixel values are then added to the uncontaminated
image:

C = U + kP σU
P − Pmin

(Pmax − Pmin)
, (6)

where P are the persistence values computed in Eq. (5), Pmin and
Pmax are the minimum and maximum of these values, and kP is
a scaling factor empirically set to 5.

Images of saturated stars are simulated using SkyMaker
(Bertin 2009) and binarized to generate masks of saturated pix-
els. The masks define the footprints of persistence artifacts,
within which the xp’s are computed (Table 2). An example is
shown in Fig. 1.

Table 2. Parameters used for the generation of persistence.

Ap 1

xp (e−) Poisson(xm) with xm ∼ N(15.105, (0.02 × 15.105)2)
x0 (e−) N(9.104, (0.02 × 9.104)2)
δx (e−) N(18.103, (0.02 × 18.103)2)
α 0.178
γ 1.078
G (e−.s−1) N(10, 1)

2.1.6. Trails (TRL)

Satellites or meteors, and even planes crossing the field of view
generate long trails across the frame that are quasi-rectilinear.
We simulate these motion-blurred artifacts by generating close
star images with identical magnitudes along a linear path using
once again SkyMaker. We also generate a second population
of trails with magnitude changes to account for satellite “flares”.
A random, Gaussian-distributed component with a ≈1 pixel stan-
dard deviation is added to every stellar coordinate to simulate
jittering from atmospheric turbulence, so that the stars are not
aligned along a perfect straight line. For meteors, defocusing
must be taken into account (Bektešević et al. 2018). The amount
of defocusing θ, expressed as the apparent width of the pupil
pattern in arc-seconds, is:

θ =
180
π
× 3600 ×

D
d
, (7)

where D is the diameter of the primary mirror, and d the meteor
distance, both in meters. D and d are randomly drawn from flat
distributions in the intervals [2, 8] and [80 000, 120 000], respec-
tively.

The ground truth mask is obtained by binarizing the satel-
lite image at a small and arbitrary threshold above the simulated
background. This mask is then dilated using a 7 × 7 pixel struc-
turing element.

To avoid any visible truncation, we add the whole simulated
satellite image multiplied by a dilated version M(S) of the ground
truth mask to the uncontaminated image:

C = U + kT
σU

σT
T � M(T), (8)

where σS is the standard deviation of the satellite image back-
ground, σU the standard deviation of the uncontaminated image
background, and kT is a scaling factor empirically set to 6. An
example of a satellite trail is shown in Fig. 1.

2.1.7. Fringes (FR)

Fringes are thin-film interference patterns occurring in the detec-
tors. The irregular shape of fringes is caused by thickness vari-
ations within the thin layers. To add fringing to images, we
use real fringe maps produced at the pre-processing level by
Alambic for all the optical CCD cameras of Table 1. These
reconstructed fringe maps are often affected by white noise,
which we mitigate by smoothed using a top-hat kernel with
diameter 7 pixels. The fringe pattern F can affect large areas
in an image but not necessarily all the image. To reproduce this
effect, a random 3rd-degree 2D polynomial envelope E that cov-
ers the whole image is generated. The final fringe envelope E (F)
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Fig. 2. Examples of added fringes and nebulosities. Top: fringes; uncontaminated input exposure, smoothed fringe pattern, contaminated image,
ground truth mask, polynomial envelope. Bottom: nebulosities; uncontaminated input exposure, Herschel 250 µm molecular cloud image, contam-
inated image, ground truth mask.

is computed by normalizing E over the interval [−5, 5] and flat-
tening the result using the sigmoid function:

E(F)
p =

(
1 + exp

(
−5

2Ep − Emax − Emin

Emax − Emin

))−1

, (9)

where Emin and Emax are the minimum and maximum values of
Ep, respectively.

The fringe pattern, modulated by its envelope, is then added
to the uncontaminated image:

C = U + kF
σU

σF
F � E (F), (10)

where σF is the standard deviation of the fringe pattern and kF is
an empirical scaling factor set to 0.6. The ground truth mask is
computed by thresholding the 2D polynomial envelope to −0.20.

An example of a simulated contamination by a fringe pattern
can be found in Fig. 2.

2.1.8. Nebulosity (NEB)

Extended emission originating from dust clouds illuminated by
star light or photo-dissociation regions can be present in astro-
nomical images. These “nebulosities” are not artifacts but they
make the detection and measurement of overlapping stars or
galaxies more difficult; they may also trigger the fringe detector.
Hence, it is useful to have them identified and properly flagged.
Because thermal distribution of dust closely matches that of
reflection nebulae at shorter wavelength (e.g., Ienaka et al.
2013), we use far-infrared images of molecular clouds around
star-forming regions as a source of nebulous contaminants. We
choose pipeline-processed 250 µm images obtained with the
SPIRE instrument (Griffin et al. 2010) on-board the Herschel
Space Observatory (Pilbratt et al. 2010), which we retrieve from
the Herschel Science Archive. The 250 µm channel offers the
best compromise between signal-to-noise ratio and spatial res-
olution. Moreover, at wavelengths of 250 µm and above, low
galactic latitude fields contain mostly extended emission from
the cold gas and almost no point sources (apart from a few
proto-stars and proto-stellar cores). Therefore, they are perfectly

suited to being added to our optical and near-infrared wide-
field exposures. We do not resize or reconvolve the SPIRE
images, taking advantage of the scale-invariance of dust emis-
sion observed down to the arcsecond level in molecular clouds
(Miville-Deschênes et al. 2016).

We add the nebulous contaminant data to our uncontami-
nated images in the same way we do for fringes, except that there
is no 2D polynomial envelope. The whole nebulosity image is
background-subtracted (using a SExtractor-like background
estimation) to form the final nebulosity pattern N which is then
added to the uncontaminated image:

C = U + kN
σU

σN
N, (11)

where kN is an empirical scaling factor set to 1.3. The ground
truth mask is computed by thresholding N at one sigma above
0. This mask is then eroded with a 6 disk diameter structuring
element to remove spurious individual pixels, and dilated with a
22 disk diameter structuring element. An example of added neb-
ulosity is shown in Fig. 2. The light from line-emission nebulae
may not necessarily exhibit the same statistical properties as the
reflection nebulae targeted for training. However line-emission
nebulae are generally brighter and in practice the classifier has
no problem detecting them.

2.1.9. Saturation and bleeding (SAT)

Each detector pixel can accumulate only a limited number of
electrons. Once the full well limit is reached, the pixel becomes
saturated. In CCDs, charges may even overflow, leaving satura-
tion trails (a.k.a bleeding trails) along the transfer direction. Such
pixels are easily be identified in clean images knowing for each
instrument the saturation level.

2.1.10. Diffraction spikes

Diffraction spikes are patterns appearing around bright stars
and caused by light diffracting around the spider supporting
the secondary mirror. Given the typical cross-shape of spi-
ders, the pattern is usually relatively easy to identify. In some
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Fig. 3. Neural network used specifically for spike detection.

cases, the pattern can deviate significantly from a simple cross
because it is affected by various effects, such as distortions,
telescope attitude, the truss structure of spider arms, rough
edges, or cables around the secondary mirror support, reflections
on other telescope structures,. . . A specific strategy was put in
place to build a spikes library to be used to train the CNN.

On the one hand, MegaCam and DECam are mounted on
equatorial telescopes and the orientation of spikes is usually
(under standard northeast orientation) a “+” for Megacam and an
“x” for DECam1. On the other hand, HSC is mounted on the alt-az
Subaru telescope, and spikes do not display any preferred orien-
tation, making their automated identification more complicated.
For this reason, we define a two-step strategy, in which, first, sam-
ples of “+”- and “x”-shaped spikes are extracted from DECam
and Megacam images, and randomly rotated to generate a library
of diffraction spikes with various orientations. The library is then
used to train a new CNN that for identifying spikes in HSC images.

MegaCam and DECam analysis. We first identify the
brightest stars using SExtractor and extract 300 × 300 pixel
image cutouts around them. The cutouts are thresholded at three
sigma above the background and binarized. Element-wise prod-
ucts are computed between these binary images and large “+”-
shaped (Megacam) or “x”-shaped (DECam) synthetic masks to
isolate the central stars. Each point-wise product is then matched-
filtered with a thinner version of the same pattern and binarized
using an arbitrary threshold set to 15 ADUs. The empirical size of
the spike components is estimated in these masks by measuring
the maximum extent of the resulting footprint along any of the
two relevant spike directions (horizontal and vertical or diago-
nals). Finally, the maximum size of the two directions is kept and
empirically rescaled to obtain the final spike length and width. If
the resulting size is too small, we consider that there is no spike
in order to avoid false positives (e.g., a star bright enough to be
detected by SExtractor but without obvious spikes). Figure 5
gives an overview of the whole process.

HSC analysis. We train a new neural network to identify
spikes in all directions. For that purpose, we build a new train-
ing set using the spikes identified in MegaCam and DECam
images as described above and apply a random rotation between
0◦ and 360◦ to ensure rotational invariance. The neural network
has a simple SegNet-like convolutional-deconvolutional archi-
tecture (Badrinarayanan et al. 2015), but it is not based on VGG
hyper-parameters (Simonyan & Zisserman 2014). It uses 21×21,
11 × 11, 7 × 7 and 5 × 5 convolutional kernels in 8, 16, 32 and
32 feature maps, respectively. The model architecture is shown

1 DECam images sometimes also exhibit a horizontal spike of unknown
origin (Melchior et al. 2016).

Fig. 4. Example of a spike mask obtained by inference of the separate
neural network.

in Fig. 3. Activation functions are all ELU except on the last
layer where it is softmax. It is trained to minimize the soft-
max cross entropy loss with the Adam optimizer (Kingma & Ba
2014). Each pixel cost is weighted to balance the disproportion
between spike and background pixels. If ps is the spike pixel pro-
portion in the training set, then spike pixels are weighted with
1 − ps, while background pixel are weighted with ps (this is the
two-class equivalent of the basic weighting scheme described
in Sect. 3.1). Once trained we run inferences on all the bright-
est stars detected with SExtractor in the HSC images. Output
probabilities are binarized based on the MCC (see Eq. (22)) and
the resulting mask is empirically eroded and dilated to obtain a
clean mask. An example is given in Fig. 4.

2.1.11. Overscan (OV)
Overscan regions are common in CCD exposures, showing up as
strips of pixels with very low values at the borders of the frame. To
avoid triggering false predictions on real data, overscans must be
included in our training set. Doing so, and although these are not
truly contaminants, we find it useful to include an “overscan” class
in the list of identified features. Overscan regions are simulated by
including random strips on the sides of images. Pixel values in the
strips are generated in the same way as bad pixel values.

2.1.12. Bright background (BBG) and background (BG)
The objects of interest in this study are the contaminants. Hence,
following standard computer vision terminology, all the other
types of pixels, including both astronomical objects and empty
sky areas, belong to the “background”.

We find that defining a distinct class for each of these types
of background pixels helps with the training procedure. We thus
define the “bright background” (BBG) pixels as pixels belong-
ing to astronomical objects2 (except nebulosity) present in the
uncontaminated images, and background pixels (BG) as pixels
covering an empty sky area.

Ground truth masks for bright background pixels are
obtained by binarizing the image before adding the contaminants
to 10σU. The remaining pixels are sky background pixels, which
are not affected by any labeled feature.

2.2. Global contaminants

We now describe the data used to identify global contaminants.

2 Including astrophysical sources in the “background” class can seem
somewhat counter-intuitive in a purely astronomical context, but for
consistency we choose to follow the computer vision terminology and
meaning.
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Fig. 5. Empirical spike flagging process. From left to right: source image centered on a bright star candidate, the same image thresholded, the two
pointwise products, the matched filtered pointwise products, the final mask drawed from the empirical size computed with the two previous masks.

Fig. 6. Examples of images affected by tracking errors.

Tracking errors happen when the telescope moves during an
exposure due to, for instance, telescope guiding or tracking fail-
ures, wind gusts, or earthquakes. As illustrated in Fig. 6, this
causes all the sources to be blurred along a path on the celes-
tial sphere generated by the motion of the telescope. Because
tracking errors affect the entire focal plane, the analysis is per-
formed globally on the whole image. The library of real images
affected by TR events is a compilation of exposures identified
in the COSMIC-DANCE survey for the cameras of Table 1, and
images that were gathered over the years at the UKIRT telescope,
kindly provided to us by Mike Read.

2.3. Generating training samples
Both types of contaminants – global and local contaminants –
must be handled separately: they require different neural network
architectures, and different training data sets as well.

Cosmic Dance private archives

Global
contaminants

images

Sky background
maps

Skymaker
and 

Simulated data

Local
contaminants

images

Cleaned  
images

Local
contaminants

samples 

Global
contaminants

samples 

CR darks  
FR maps 

NEB examples Herschel
archives

Fig. 7. Schematic view of the sample production pipeline. All
COSMIC-DANCe archive images have their background map com-
puted. Clean images are built from the COSMIC-DANCe archives.
Contaminants from diverse sources (COSMIC-DANCe archives,
Herschel archives or simulations) are added to clean images; this step
uses the background maps. The resulting local contaminant images are
dynamically compressed (see Sect. 2.3.3) and ready to be fetched into
the neural network. Global contaminant samples are directly obtained
from the COSMIC DANCe archives and dynamically compressed.

Figure 7 gives a synthetic view of the sample production
pipeline and the various data sources.

The breakdown per imaging instrument of the COSMIC
DANCe dataset is listed Table 3.

The following subsections treat about some special features
of the sample generation.

2.3.1. Local contaminants
The order in which local contaminants are added is important.
Bad columns, lines, and pixels are added last because they are
static defaults defining the final value of a pixel, no matter how
many photons hit them.

In our neural network architecture contaminant classes do
not need to be mutually exclusive. Each pixel can be assigned
several classes as several defaults can affect a given pixel
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Table 3. COSMIC-DANCE archive usage per imaging instrument.

Instrument Clean CR No TR TR

DECam X X
MOSAIC2 X
MOSAIC1 X
NEWFIRM X X
Megacam X X X X
CFH12K X X X
CFH8K X
WFC X X
WFCAM X X
Direct CCD (LCO Swope) X X
VST X X X
HSC X X X
VIRCAM X X

Notes. Clean is for uncontaminated images, CR for dark images used
for cosmic ray identification, No TR is for images not affected by track-
ing errors, and TR for images affected by tracking errors.

Table 4. All the contaminants and their abbreviated names.

Contaminant Abbreviation

Cosmic rays CR
Hot columns/lines HCL
Dead columns/lines/clusters DCL
Hot pixels HP
Dead pixels DP
Persistence P
Trails TRL
Fringes FR
Nebulosities NEB
Saturated pixels SAT
Diffraction spikes SP
Overscanned pixels OV
Bright background BBG
Background BG

(e.g., fringes and cosmic ray hit). On the other hand, the faint
background class that defines pixels not affected by any default
excludes all other classes. A list of all the contaminants included
in this study are presented in Table 4.

Figure 8 shows examples of local contaminant sample input
images, each with its color-coded ground truth.

2.3.2. Global contaminants
The global contaminant dataset contains images that have been
hand labeled as affected by tracking errors or not. The images,
taken from the COSMIC DANCe archives, are not cleaned,
hence they are potentially affected by preexisting local con-
taminants. This is because the global contaminant detector is
intended to be operated before the local one.

2.3.3. Dynamic compression
All images are dynamically compressed before being fed to the
neural networks using the following procedure:

C̃ = arsinh
C − B +N(0, σ2

U)
σU

.

Fig. 8. Examples of input (left) and their ground truth (right). Each class
is assigned a color so that the ground truth can be represented as a single
image (red: CR, dark green: HCL, dark blue: BCL, green: HP, blue: BP,
yellow: P, orange: TRL, gray: FR, light gray: NEB, purple: SAT, light
purple: SP, brown: OV, pink: BBG, dark gray: BG). Pixels that belong to
several classes are represented in black. In the interest of visualization,
hot and dead pixel masks have been morphologically dilated so that they
appear as 3 × 3 pixel areas in this representation.

The aim of dynamic compression is to reduce the dynamic
range of pixel values, which is found to help neural network
convergence. The image is first background subtracted. Then, a
small random offset is added to increase robustness regarding
background subtraction residuals. The resulting image is nor-
malized by the standard deviation of the background noise and
finally compressed through the arsinh function, which has the
property to behave linearly around zero and logarithmically for
large (positive or negative) values.

2.3.4. Data augmentation
We deploy data augmentation techniques to use our data to the
maximum of its information potential. The two following data
augmentation procedures are applied to the set of local contam-
inant training samples. First, random rotations, using as angles
multiples of 90◦, are applied to cosmic ray, fringe patterns, and
nebulosity patterns. Secondly, some images are rebinned. When
picking up a clean image, we check if the image can be 2 × 2
rebinned with the constraint that the FWHM remains greater
than 2 pixels – the FWHM of the image was previously estimated
using SExtractor (Bertin & Arnouts 1996). This value is cho-
sen on the basis of the plate sampling offered by current ground-
based imagers. If the image can be 2× 2 rebinned while meeting
the condition above, it has a 50% probability to be rebinned.

3. Convolutional neural networks

In this section, we describe the convolutional neural networks
used for our analysis. The first one, MaxiMask, classifies pixels
(“local contaminants”) while the second one, MaxiTrack, clas-
sifies images (“global contaminants”).
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Fig. 9. Example of an unpooling process. Indices of max-pooling are
kept up and reused to upsample the feature maps.

3.1. Local contaminant neural network

3.1.1. Architecture

The model used for the semantic segmentation of the local
contaminants, MaxiMask, is based on Badrinarayanan et al.
(2015) and Yang et al. (2018), which both rely on a VGG-like
architecture (Simonyan & Zisserman 2014). It consists of three
parts.

The first part contains single and double convolutional layers
followed by max-pooling downsampling. This enables the net-
work to compute relevant feature maps at different scales. During
this step, max-pooling pixel indices are kept up for later reuse.

The second part also incorporates convolutional layers and
recovers spatial resolution by upsampling feature maps using
the max-pooling indices. An example of unpooling is given in
Fig. 9. At each resolution level, the feature maps of the first part
are summed with the corresponding upsampled feature maps to
make use of the maximum of information.

The third part is made of extra unpool-convolution paths
(UCPs) that recover the highest image resolution from each
feature map resolution so that the network can exploit the
maximum of information of each resolution. Thus, it results 5
pre-predictions, one for each resolution.

The 5 pre-predictions are finally concatenated and a last con-
volution layer builds the final predictions. The sigmoid acti-
vation functions in this last layer are not softmax-normalized,
to allow non-mutually exclusive classes to be assigned jointly
to pixels. All convolutional layers use 3 × 3 kernels and apply
ReLU activations. The architecture is represented in Fig. 10 and
hyperparameters are described more precisely in Table 5. The
neural network is implemented using the TensorFlow library
(Abadi et al. 2016) on a TITAN X Nvidia GPU.

3.1.2. Training and loss function

Training is done for 30 epochs on 50 000 images, with mini-
batches shuffled at every epoch. The batch size is kept small (10)
to maintain a reasonable memory footprint. The model is trained
end-to-end using the Adam optimizer (Kingma & Ba 2014). The
loss function L is the sigmoid cross-entropy (Rubinstein 1999)
summed over all classes and pixels, and averaged across batch
images:

L = −
1

card(B)

∑
b∈B

∑
p∈P

w′p,b
∑
ωc∈C

(
yb,p,c log ŷb,p,c

+ (1 − yb,p,c) log(1 − ŷb,p,c)
)
, (12)

where B is the set of batch images, P is the set of all image
pixels, C is the set of all contaminant classes, w′p,b is a weight
applied to pixel p of image b in the batch (see below), ŷb,p,c is
the sigmoid prediction for class ωc of pixel p of image b in the

batch, and yb,p,c is the ground truth label for class ωc of pixel p
of image b defined as:

yb,p,c =

{
1 if ωc ∈ Cp,b
0 otherwise , (13)

where Cp,b ⊂ C is the set of contaminant classes labeling pixel p
of image b in the batch. In order to improve the back-propagation
of error gradients down to the deepest layers, several losses are
combined. In addition to the main sigmoid cross-entropy loss
L computed on the final predictions, we can compute a sigmoid
cross-entropy for each of the 5 pre-predictions. There are several
ways to associate all of these losses. Like Yang et al. (2018), we
find that adding respectively 33% or 50% of each of the 3 or 2
smallest resolution losses to the main loss works best. The two
main rules here are that the additional loss weights should sum
to 1 and that higher resolution pre-predictions become less infor-
mative as they get closer to the one at full resolution.

Basic training procedures are vulnerable to strong class
imbalance, which makes it more likely for the neural network
to converge to a state where rare contaminants are not properly
detected. Contaminant classes are so statistically insignificant
(down to one part in 106 with real data, typically) that the clas-
sifier may be tricked into assigning all pixels to the background
class. To prevent this, we start by applying a basic weighting
scheme to each pixel according to its class representation in the
training set, that is each pixel p of batch image b belonging to
classes in Cp,b is weighted by wp,b defined as

wp,b =
∑

ωc∈Cp,b

wc, (14)

with

wc =

P(ωc|T )
∑

i

1
P(ωi|T )

−1

, (15)

where P(ωc|T ) is the fraction of pixels labeled with class ωc
in the training dataset T . The P(ωc|T )’s do not sum to one as
many pixels belong to several classes and are thus counted sev-
eral times. We find that the weighting scheme brings slightly
better results and less variability in the training if weights are
computed at once from the class proportions of the whole set,
instead of being recomputed for each image. From Eq. (15) we
have:

∀i ∈ C,∀ j ∈ C,
wi

w j
=

P(ω j|T )
P(ωi|T )

and
∑
ωc∈C

wc = 1. (16)

However, with this simple weighting scheme, background
class pixels that are close to rare features are given very low
weights, although they are decisive for classification. To circum-
vent this, weight maps are smoothed with a 3 × 3 Gaussian ker-
nel with unit standard deviation so that highly weighted regions
spread over larger areas. Other kernel sizes and standard devia-
tions were tested but we find 3 and 1 to give the best results. The
resulting weights of this smoothing are the w′p,b presented in the
loss function of Eq. (12).

Finally, the solution is regularized by the l2 norm of all the N
network weights, by adding the following term to the total loss:

L2reg = λ

N∑
i

‖ki‖2, (17)

where the ki’s are the convolution kernel vectors. λ sets the reg-
ularization strength. We find λ = 1 to provide the best results.
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Fig. 10. Scheme representation of the local contaminants neural network architecture.

Table 5. Description of the local contaminants neural network architec-
ture, including map dimensions.

Layer Size UCP from each resolution

Input 400× 400× 1
Conv 400× 400× 32
Maxpool 200× 200× 32
Conv 200× 200× 64
Maxpool 100× 100× 64
Conv 100× 100× 128
Conv 100× 100× 128
Maxpool 50× 50× 128
Conv 50× 50× 256
Conv 50× 50× 256
Maxpool 25× 25× 256
Conv 25× 25× 256
Conv 25× 25× 256
Maxpool 13× 13× 256
Conv 13× 13× 256
Unpooling 25× 25× 256
Conv 25× 25× 256
Conv 25× 25× 256 UCP
Unpooling 50× 50× 256 Idem
Conv 50× 50× 256 None
Conv 50× 50× 128 Idem UCP
Unpooling 100× 100× 128 Idem Idem
Conv 100× 100× 128 None None
Conv 100× 100× 64 Idem Idem UCP
Unpooling 200× 200× 64 Idem Idem Idem
Conv 200× 200× 32 Idem Idem Idem UCP
Unpooling 400× 400× 32 Idem Idem Idem Idem
Conv 400× 400× 14 Idem Idem Idem Idem
Concat 400× 400× 70
Conv 400× 400× 14

Notes. All convolution kernels are 3 × 3 and max-pooling kernels are
2× 2. All activation functions (not shown for brevity) are ReLU, except
in the output layer where the sigmoid is used.

3.2. Global contaminant neural network architecture

The convolutional neural network that detects global contami-
nants (tracking errors), MaxiTrack, is a simple network made
of convolutional layers followed by max-pooling and fully con-
nected layers. The architecture of the network is schematized
in Fig. 11 and detailed in Table 6. Because the two classes are
mutually exclusive (affected by tracking errors or not), we adopt
for the output layer a softmax activation function and a softmax
cross-entropy loss function (Rubinstein 1999). Training is done
for 48 epochs on 50 000 images with a mini-batch size of 64
samples, using the Adam optimizer.

4. Results with test data and quality assessment

4.1. Local contaminants neural network

We evaluate the quality of the results in several ways. First, we
estimate the performance of the network on test data, both quan-
titatively through various metrics, and qualitatively. We verify
that there is no over-fitting by checking that performance on the
test set is comparable to that on the training set. Next, we show
that performance is immune to the presence or absence of other
contaminants in a given image. We finally compare the perfor-
mance of the cosmic ray detector to that of a classical algorithm.

4.1.1. Performance metrics

We first estimate classification performance on a benchmark test
set comprising 5000 images. Because the network is a binary
classifier for every class, we can compute a Receiver Operating
Characteristic (ROC) curve for each of them. ROC curves rep-
resent the True Positive Rate (TPR) vs. the False Positive Rate
(FPR):

T PR =
T P
P

=
T P

T P + FN
, (18)

FPR =
FP
N

=
FP

T N + FP
, (19)
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Fig. 11. Scheme representation of the global contaminants neural network architecture.

Table 6. Description of the global contaminant neural network architec-
ture, including map dimensions.

Layer Size

Input 400× 400× 1
Conv 400× 400× 16
Maxpool 200× 200× 16
Conv 200× 200× 32
Maxpool 100× 100× 32
Conv 100× 100× 64
Maxpool 50× 50× 64
Conv 50× 50× 128
Maxpool 25× 25× 128
Conv 25× 25× 128
Maxpool 13× 13× 128
Flatten 21 632
Fully connected 64
Fully connected 64
Fully connected 2

Notes. All convolution kernels are 9 × 9 and max-pooling kernels are
2× 2. All activation functions (not shown for brevity) are ReLU, except
in the output layer where predictions are done using softmax.

where P is the number of contaminated pixels, TP is the num-
ber of true positives (contaminated pixels successfully recov-
ered as contaminated), FN is the number of false negatives
(contaminated pixels wrongly classified as non-contaminated),
N is the number of non-contaminated pixels, FP is the
number of false positives (non-contaminated pixels wrongly
classified as contaminated), and TN is the number of true neg-
atives (non-contaminated pixels successfully recovered as non-
contaminated).

The accuracy (ACC) is subsequently defined as

ACC =
T P + T N

P + N
· (20)

The more the ROC curve bends toward the upper left part
of the graph, the better the classifier. However with strongly
imbalanced datasets, such as our pixel data, one must be very
cautious with the TPR, FPR and ACC values for assessing the
quality of the results. For example, if one assumes that there are
1000 pixels of the contaminant class (P) and 159 000 pixels of
the background class (N) in a 400× 400 pixel sub-image, a TPR
of 99% and a FPR of 1%, corresponding to an accuracy of 99%,
would actually represent a poor performance, as it would imply
990 true positives, 10 false negatives, 157 410 true negatives, and
1590 false positives. In the end, there would be more false pos-
itives FP (pixels wrongly classified as contaminated) than true
positives TP.

For this reason the ROC curves in Fig. A.1 are displayed
with a logarithmic scale on the FPR axis. We require the FPR to
be very low (e.g smaller than 10−3) to consider that the network
performs properly.

On the other hand, recovering the exact footprint of large,
fuzzy defects is almost impossible at the level of individual
pixels, which makes the classification performance for persis-
tence, satellite trails, fringes, nebulosities, spikes and back-
ground classes look worse in Fig. A.1 than it really is in practice.

Also, two ROC curves are drawn for cosmic rays and trails.
The second one (in green) is computed using only the instances
of the class that are above a specific level of the sky background.
These instances were defined by retaining those which had more
than a half of their pixels above 3σ. These second curves shows
that the network performs better on more obvious cases.

In addition to the FPR, TPR, ACC and AUC, we use two
other metrics helpful for assessing the network performance:
the purity (or precision), representing the fraction of correct
predictions among the positively classified samples, and the
Matthews correlation coefficient (MCC, Matthews 1975), which
is an accuracy measure that takes into account the strong imbal-
ance between classes.

PUR =
T P

T P + FP
= Purity or Precision, (21)

MCC =
T P × T N − FP × FN

√
(T P + FP)(T P + FN)(T N + FP)(T N + FN)

. (22)

In the above example, the purity would reach only 38% and
the MCC only 61%, highlighting the classifier poor positive class
discrimination.

Figure A.3 shows the true positive rate against the purity.
Again, the purple curve represents how a random classifier
would perform. In these curves the best classifier would sit in
the top right (T PR = 1 and PUR = 1). The darkest points also
represent lowest thresholds while the lighter are the highest ones.

Some qualitative results are presented in Fig. 12. A given
pixel is assigned a given class if its probability to belong to this
class is higher than the best threshold in the sense of the MCC.

Finally, MCCs are represented in Fig. A.2, as a function of
the output threshold. In each curve, the threshold giving the best
MCC is annotated around the best MCC point. It is important to
note that the best threshold depends on the modification of the
prior that has been applied to the raw output probabilities. This
update of the prior is explained in Sect. 5.

4.1.2. Robustness regarding the context

The MaxiMask neural network is trained using mostly images
that include all contaminant classes. Hence, we must check if
the network performs equally well independently of the context,
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Fig. 12. Examples of qualitative results on test data. Left: input; middle: ground truth; right: predictions. Each class is assigned a color so that the
ground truth can be represented in one single image. Class predictions are done according to the threshold giving the highest MC coefficient. The
color coding is identical to that of Fig. 8.

that is if it delivers equally good results for images containing,
for example, a single class of contaminant.

To this aim, for every contaminant class, we generate a
dataset of 1000 images affected only by this type of contaminant
(except saturated and background pixels), and another dataset
of 1000 images containing only saturated and background pix-
els. We then compare the performance of MaxiMask for each
class with the that obtain on the corresponding dataset. We find
that performance (AUC) is similar or even slightly higher for the
majority of the classes. This shows that the network is not con-
ditioned to work only in the exact context of the training. The
results are presented in Table 7.

As it can be seen, for all classes but fringes and nebulos-
ity, performance improves when a single type of contaminant is
present. The slight improvement may come from the fact that
ambiguous cases (when pixels are affected by more than one
contaminant class, e.g., a cosmic ray or a hot pixel over a satellite
trail) are not present in the single contaminant test set.

4.1.3. Cosmic rays: effect of PSF undersampling and
comparison with LA Cosmic

Undersampling makes cosmic ray hits harder to distinguish from
point-sources. To solve this issue, van Dokkum (2001) has devel-
oped LA Cosmic, a method based on a variation of Laplacian
edge detection. It is largely insensitive to cosmic ray morphology
and PSF sampling. LA Cosmic thus offers an excellent oppor-
tunity to test the performance of MaxiMask on undersampled
exposures.

Table 7. AUC of each class depending on the test set context.

Class All contaminant Single contaminant
set AUC set AUC

CR 0.96927 0.98314
HCL 0.99763 0.99957
DCL 0.99872 0.99976
HP 0.99741 0.99965
DP 0.99739 0.99975
P 0.99352 0.99951
TRL 0.99511 0.99813
FR 0.98057 0.93326
NEB 0.97895 0.84575
SAT 0.99965 0.99974
SP 0.96125 0.98061
OV 0.99997 1.00000
BBG 0.98484 0.99165
BG 0.96895 0.98371

To do so, we generate two datasets containing only the
cosmic ray contaminant class (plus object and background). A
well sampled set of images with FWHMs larger than 2.5 pixels,
and an undersampled image set with FWHMs smaller than
2.5 pixels. We run MaxiMask and the Astro-SCRAPPY Python
implementation LA Cosmic. To make a fair comparison, LA
Cosmic masks are dilated in the same way as the ground truth
cosmic ray masks of MaxiMask. However, while MaxiMask
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Fig. 13. CR detection performance comparison with LA Cosmic.
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Fig. 14. Global contaminant neural network ROC curve; the steps are a
consequence of limited statistics.

generates probability maps that can be thresholded at different
levels, LA Cosmic only outputs a binary mask. To compare the
results we therefore build ROC curves for the neural network
and over-plot a single point representing the result obtained with
LA Cosmic.

Figure 13 shows that the neural network performs better than
LA Cosmic in both regimes with our data.

4.2. Global contaminants neural network

The ROC curve for the global contaminant neural network is
shown in Fig. 14. It is computed from a test set of 5000 images.

5. Modifying priors

If one knows what class proportions are expected in the obser-
vation data, output probabilities can be updated to better match
these priors (e.g., Saerens et al. 2002; Bailer-Jones et al. 2008).

The outputs of a perfectly trained neural network clas-
sifier with a cross-entropy loss function can be interpreted
as Bayesian posterior probabilities (e.g., Richard & Lippmann
1991; Hampshire & Pearlmutter 1991; Rojas 1996). Under this

assumption and using Bayes’ rule, the output for the class ωc
of the trained neural network model defined by a training set T
writes:

P(ωc| x,T ) =
p(x|ωc,T )P(ωc|T )∑

ω∈{ωc,ω̄c}

p(x|ω,T )P(ω|T )
, (23)

where x is the input image data around the pixel of interest,
p(x|ωc,T ) is the distribution of x conditional to class ωc in the
training set T , and P(ωc|T ) is the prior probability of a pixel to
belong to the class ωc in the trained model.

As each output acts as a binary classifier, the sum is done on
the class ωc (contaminant) and its complementary ω̄c (“not the
contaminant”).

With the observation data set O we may similarly write:

P(ωc|x,O) =
p(x|ωc,O)P(ωc|O)∑

ω∈{ωc,ω̄c}

p(x|ω,O)P(ω|O)
, (24)

where P(ωc|O) is the expected fraction of pixels with class
ωc in O.

Now, if the appearance of defects in O matches that in the
training set T , we have p(x|ωc,T ) = p(x|ωc,O), and we can
rewrite (24) as:

P(ωc|x,O) =
P(ωc|x,T ) P(ωc |O)

P(ωc |T )∑
ω∈{ωc,ω̄c}

P(ω|x,T ) P(ω|O)
P(ω|T )

(25)

=
1

1 +
(

1
P(ωc |x,T ) − 1

)
P(ωc |T )
P(ωc |O)

1−P(ωc |O)
1−P(ωc |T )

. (26)

If pixels were all weighted equally, the training priors
P(ωc|T ) would simply be the class proportions in the training
set. However, this is not the case here, and pixel weights have
to be taken into account. To do so, we follow Bailer-Jones et al.
(2008)’s approach, by using as an estimator of P(ωc|T ) the poste-
rior mean on the test set T ′ (which by construction is distributed
identically to the training set):

P̂(ωc|T ) =
1

card(T ′)

∑
x∈T ′

P(ωc|x,T ′). (27)

These corrected probabilities are used to compute the MC
coefficient curves in Fig. A.2 (whereas the prior correction does
not affect the ROC and purity curves).

MaxiMask comes with the P(ωc|T ) values already set,
therefore one only needs to specify the expected class propor-
tions in the data, that is the P(ωc|O)’s.

6. Application to other data

As a sanity check, we apply MaxiMask to data obtained from
different instruments not part of the training set. Examples of the
resulting contaminant maps are shown in appendix.

Our first external check is with ZTF (Bellm et al. 2019) data.
The MaxiMask output for a science image featuring a promi-
nent trail with variable amplitude is shown in Fig. A.4. We can
note the ability of MaxiMask to properly flag both the trail and
overlapping sources.

Our second external check is with the ACS instrument
onboard the Hubble Space Telescope (Fig. A.5 and A.6). This
test illustrates MaxiMask’s ability to distinguish cosmic rays
from poorly sampled, diffraction-limited point source images.
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Given the seemingly good performance of MaxiMask on
images from instruments not part of the training set, one ques-
tion that may arise is whether MaxiMask can readily be used on
production for such instruments, without any retraining or trans-
fer learning. Our limited experience with MaxiMask seems to
indicate that this is indeed the case, although retraining may
be beneficial for specific instrumental features. As shown here,
excellent performance can be reached by training with 50 000
400 × 400 images taken from three different instruments. We
think that a minimum of 10 000 400 × 400 would be a good
start to train on a single instrument. Assuming CCDs of approxi-
mately 2000×2000 pixels, thus containing 25 400×400 images,
it would just need 400 CCDs, equivalent to 10 fields for a 40
CCD camera.

Our last series of tests is conducted on digital images of nat-
ural scenes (landscape, cat, human face), to check for possible
inconsistencies on data that are totally unlike those from the
training set. Reassuringly, the maps produced by MaxiMask
are consistent with the expected patterns. For instance, the cat’s
whiskers are identified as cosmic ray impacts, and pixels with
the lowest values as bad pixels.

7. Using MaxiMask and MaxiTrack

MaxiMask and MaxiTrack are available online3.
MaxiMask is a Python module that infers probability
maps from FITS images. It can process a whole mosaic, a
specific FITS image extension, or all the FITS files from a
directory or a file list. For every FITS file being processed a
new FITS image is generated with the same HDU (Header
Data Unit) structure as the input. Every input image HDU has
a matching contaminant map HDU in output, with one image
plane per requested contaminant. The header contains metadata
related to the contaminant, including the prior and threshold
used. An option can be set to generate a single image plane for
all contaminants, using a binary code for each contaminant.
Such composite contaminant maps can easily be used as flag
maps, for example, in SExtractor. Based on command
line arguments and configuration parameters, one can select
specific classes, apply updates to the priors and thresholds
to the probability maps. The code relies on the TensorFlow
library and can work on both CPUs or GPUs, although the CPU
version is expected to be much slower: MaxiMask processes
about 1.2 megapixel per second with an NVidia Titan X GPU,
and about 60 times less on a 2.7 GHz Intel i7 dual-core CPU.
Yet, there is probabily room for improvement in processing
efficiency for both the CPU and GPU versions.

MaxiTrack is used the same way as MaxiMask, except
that the output is a text file indicating the probability for the input
image(s) to be affected by tracking errors (one probability per
extension if the image contains several HDUs). It can also apply
an update to the prior. It runs at 60 megapixels s−1 with an NVidia
Titan X GPU and is 9 times slower on a 2.7 GHz Intel i7 dual-
core CPU.

8. Summary and perspectives

We have built a data set and trained convolutional neural net-
work classifiers named MaxiMask and MaxiTrack to iden-
tify contaminants in astronomical images. We have shown that
they achieve good performance on test data, both real and sim-
ulated. By delivering posterior probabilities, MaxiMask and
MaxiTrack give the user the flexibility to set appropriate

3 https://www.github.com/mpaillassa/MaxiMask

threshold levels and achieve the desired TPR/FPR trade-offs
depending on the scientific objectives and requirements. Both
classifiers require no input parameters or knowledge of the cam-
era properties.

Even though the mix of contaminants in the training set is
unrealistic, being dictated by training requirements, we have
checked that this does not impact performance. Output proba-
bilities can be corrected to adapt the behavior of MaxiMask to
any mix of contaminants in the data.

We are aware that several types of contaminants and images
are missing from the current version and may be added in the
future.

Local contaminants include two particularly prominent
classes of contaminants: optical and electronics ghosts.
Unwanted reflections within the optics result in stray light in
exposures. These reflections can produce spurious images from
bright sources commonly referred to as “optical ghosts”. Some-
times, reflections from very bright stars outside of the field may
also be seen. Detectors read through multiple ports also suffer
from a form of electronic ghost known as cross-talk. Electronic
cross-talk causes bright sources in one of the CCD quadrants to
generate a ghost pattern in other quadrants. The ghosts may be
negative or positive and are typically at the level of 1:104. Both
effects are a significant source of nuisance in wide field expo-
sures, especially in crowded fields and deep images, where they
generate false, transient sources, and can affect high precision
astrometric and photometric measurements.

Another category of common issues is defocused or exces-
sively aberrated exposures, as well as trails caused by charge
transfer inefficiency, all of which which could easily be imple-
mented in MaxiTrack.

Also, the training set used in the current version of
MaxiMask and MaxiTrack does not include images from
space-born telescopes nor, more generally, diffraction-limited
imagers. Therefore, they are unlikely to perform optimally with
such data, although limited testing indicates that they may
remain usable for most features, an example of prediction on
HST data is shown in Figs. A.5 and A.6.

Finally, MaxiMask could be extended to not only detect
contaminants, but also to generate an inpainted (i.e., “corrected”)
version of the damaged image areas wherever possible.
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Appendix A: Performance metric curves and qualitative tests
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Fig. A.1. ROC curves: TPR vs. FPR. The FPR axis in in logarithmic scale so that very low FPR are best visualized. The ROC curve and the AUC
are provided for each class.
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Fig. A.1. continued.
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Fig. A.2. MC coefficient curves: MC coefficient vs. detection threshold. On each curve is annotated the threshold for which the MC coefficient is
the highest. These curves were computed using the probabilities corrected from priors using empirical training priors.
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Fig. A.2. continued.
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Fig. A.3. Purity curves: TPR vs. PUR.
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Fig. A.3. continued.
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Fig. A.4. Prediction example for an instrument not used in training: ZTF (Bellm et al. 2019). Left: a science image exposure. Top right: mask from
the ZTF pipeline. Bottom right: flagging by MaxiMask; the trail is correctly recovered. Also, MaxiMask CNN is able to correctly flag pixels
where the trail overlaps sources whereas in the ZTF pipeline, all pixels (i.e., pixels belonging only to the trail, pixels belonging only to sources,
and pixels belonging to both the trail and sources) are flagged as both trail and source.
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Fig. A.5. Example of a prediction for a space instrument (HST) not used in training (ACS exposure). Left: a calibrated (flat-fielded, CTE-corrected)
individual exposure of a stellar field in the Pleiades. Top right: fully calibrated, geometrically-corrected, dither-combined image where cosmic rays
and artifacts have been removed. Bottom right: MaxiMask contaminant identification. Each class is assigned a color so that the ground truth can
be represented as a single image (red: CR, dark green: HCL, dark blue: BCL, green: HP, blue: BP, yellow: P, orange: TRL, gray: FR, light gray:
NEB, purple: SAT, light purple: SP, brown: OV, pink: BBG, dark gray: BG). Pixels that belong to several classes are represented in black. For the
sake of visualization, hot and dead pixel masks have been morphologically dilated so that they appear as 3 × 3 pixel areas in this representation.
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Fig. A.6. Same as Fig. A.5 at a different location in the field to illustrate the ability of MaxiMask to differentiate poorly sampled stellar images
from cosmic rays.

A48, page 24 of 24

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936345&pdf_id=23

	Introduction
	Data
	Local contaminant data
	Library of real astronomical images
	Non-contaminated images
	Cosmic rays (CR)
	Hot columns and lines, dead columns, lines, and clustered pixels, hot pixels, and dead pixels (HCL, DCL, HP, DP)
	Persistence (P)
	Trails (TRL)
	Fringes (FR)
	Nebulosity (NEB)
	Saturation and bleeding (SAT)
	Diffraction spikes
	Overscan (OV)
	Bright background (BBG) and background (BG)

	Global contaminants
	Generating training samples
	Local contaminants
	Global contaminants
	Dynamic compression
	Data augmentation


	Convolutional neural networks
	Local contaminant neural network
	Architecture
	Training and loss function

	Global contaminant neural network architecture

	Results with test data and quality assessment
	Local contaminants neural network
	Performance metrics
	Robustness regarding the context
	Cosmic rays: effect of PSF undersampling and comparison with LA Cosmic 

	Global contaminants neural network

	Modifying priors
	Application to other data
	Using MaxiMask and MaxiTrack
	Summary and perspectives
	References
	Performance metric curves and qualitative tests

