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Regret-Based Elicitation for Solving Multi-Objective
Knapsack Problems with Rank-Dependent Aggregators

Nawal Benabbou and Cassandre Leroy and Thibaut Lust1

Abstract. In this paper, we consider multi-objective knapsack prob-
lems where the decision maker’s preferences are represented by a
non-linear aggregation function whose parameters are initially not
known. More precisely, we focus on rank-dependent aggregators
such as ordered weighted averages (OWA) and Choquet integrals
which are non-linear scalarizing functions that assign weights to
ranks rather than to objectives in the aggregation process, so as to
control the importance attached to the bottom performance or to any
other order statistics; for instance, an OWA operator with decreas-
ing weights helps promoting balanced solutions while ensuring over-
all efficiency. In this setting, we propose new interactive heuristic
methods consisting in combining regret-based preference elicitation
and heuristic search so as to quickly focus the search on the most
promising solutions. For OWA operators and Choquet integrals, the
proposed methods run in polynomial time and are guaranteed to gen-
erate no more than a polynomial number of queries. We perform nu-
merical tests comparing our methods to different interactive solving
methods in order to show the practical efficiency of our approach in
terms of number of queries, computation time and gap to optimality.

1 INTRODUCTION

Multi-Objective Combinatorial Optimization (MOCO) is concerned
with problems involving alternatives that are evaluated with respect
to several conflicting viewpoints/objectives to be optimized simul-
taneously (e.g., cost, time, profit), with various applications in Arti-
ficial Intelligence (AI) such as investments planning, resource allo-
cation, group configuration, recommendation systems and electronic
commerce. To model the preferences of the Decision Maker (DM)
over feasible solutions, an aggregation function is often used to syn-
thesize the different evaluations into scalar values representing the
overall performances of alternatives. Recently there has been a grow-
ing interest in rank-dependent aggregators such as Choquet integrals
[26], which enable to model complex decision behaviors by consider-
ing possible (positive and negative) synergies between the objectives.
They also make it possible to model preferences for “well-balanced”
efficient solutions that cannot be obtained by optimizing a weighted
sum. While most contributions focus on the elaboration of algorithms
allowing the fast determination of the optimal solutions given a pref-
erence model, a key question is how to assess the preference parame-
ters of such sophisticated models to best fit the DM’s preferences. In
this paper, we address both issues simultaneously by studying the in-
tegration of preference elicitation into the resolution of MOCO prob-
lems with rank-dependent aggregators.
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Preference elicitation on combinatorial domains is an active topic
studied within the AI community that has motivated several contri-
butions in various contexts, e.g., in multi-objective state space search
[7], in multi-agents systems [8, 13], in stable matching problems
[20], in constraint satisfaction problems [14], in Markov Decision
Processes [38, 45] and in MOCO problems [10]. Here we focus on
regret-based incremental preference elicitation, an approach recently
designed by AI researchers, as it was proved to be very effective in
practice [6, 14, 44]. The idea is to use the minimax regret decision
criterion to select informative preference queries at each step of the
elicitation process, so as to progressively reduce the set of admissible
parameters until a robust recommendation can be made. This elici-
tation approach has been mainly studied with linear models and/or
explicit sets of solutions. In this paper, we show how to efficiently
extend this approach to MOCO problems with imprecise preferences
represented by rank-dependent aggregation functions; the proposed
approach is illustrated on the multi-objective knapsack problem.

The paper is organized as follows: first we introduce the formal
framework (Section 2) and present some related works (Section 3).
Then, we introduce two regret-based interactive procedures for the
multi-objective knapsack problem with unknown preferences: a lo-
cal search method and a greedy algorithm. We prove that both pro-
cedures run in polynomial time and ask no more than a polynomial
number of preference queries to the DM (Section 3). Finally, we pro-
vide numerical tests that demonstrate the practical efficiency of the
proposed methods, comparing our results to those obtained by two
existing methods: a two-phase method and the state-of-the-art regret-
based solving method for general MOCO problems (Section 4).

2 THE GENERAL FRAMEWORK
2.1 The Multi-Objective Knapsack Problem
We consider a decision problem where the DM has to select a set of
items (e.g., candidates, projects, objects) in a set I = {1, . . . , p}. In
this problem, any subset of items can be represented by a solution
vector x = (x1, . . . , xp) ∈ {0, 1}p where xi = 1 if item i is in
the subset and xi = 0 otherwise. In the standard knapsack problem,
the set X of admissible solutions is defined by linear constraints of
the form

∑p
i=1 wixi ≤ W where wi ≥ 0 is the weight of item i

and W ≥ 0 is the maximum total weight. For instance, in commit-
tee election problems, cardinality constraints are usually imposed to
control the size of the elected committee or to ensure gender parity.
For the simplicity of the presentation, we will only consider one car-
dinality constraint in this paper but the proposed algorithm can be
easily adapted to problems with additional feasibility constraints.

In the multi-objective knapsack problem, we consider a finite set
of objectives yj : I → R+, with j ∈ N = {1, . . . , n}, to be



maximized. Thus any item i ∈ I is associated with a performance
vector y(i) = (y1(i), . . . , yn(i)) ∈ Rn+ where yj(i) is the evalu-
ation of item i on the j-th objective; for instance, yj(i) can be the
utility of voter j for candidate i in committee election problems.
Any solution x ∈ X is then characterized by a performance vec-
tor y(x) = (y1(x), . . . , yj(x)) defined by yj(x) =

∑p
i=1 xiyj(i)

for all j ∈ N = {1, . . . , n}. In this framework, solutions are
usually compared through their images in the objective space us-
ing the Pareto dominance relation: we say that performance vec-
tor a = (a1, . . . , an) ∈ Rn Pareto dominates performance vec-
tor b = (b1, . . . , bn) ∈ Rn (denoted by a �P b) if and only if
aj ≥ bj for all j ∈ N , with at least one strict inequality. Then a
solution is said to be Pareto-optimal if and only its performance vec-
tor is not Pareto-dominated by that of any other admissible solution.
A standard way to model preferences over vectors consists in using
an aggregation function fω : Rn+ → R+ that maps performance
vectors to scalar values: given two solutions x, x′ representing two
subsets of items, x is at least as good as x′ for the DM whenever
fω(y(x)) ≥ fω(y(x′)). In this paper, we focus on rank-dependent
aggregation functions.

2.2 Rank-Dependent Aggregation Functions
Rank-dependent aggregation functions are scalarizing functions that
sort the performance values by increasing order before mapping
the performance vector into a scalar value, thus enabling to assign
weighting coefficients to ranks rather than to objectives. To specify
such aggregation functions, we will often denote by (·) a permutation
defined on {1, . . . , n} such that y(1)(x) ≤ ... ≤ y(n)(x), sorting the
performance values of a given solution x from the smallest to the
largest. Here we focus on two families of rank-dependent aggrega-
tors, namely ordered weighted averages and Choquet integrals.

2.2.1 Ordered Weighted Averages

Ordered Weighted Averages (OWA) is one of the simplest families
of rank-dependent aggregation functions: it is simply defined as the
weighted sum applied on the sorted performance vectors [46]. OWA
is specified by a normalized weighting vector ω = (ω1, . . . , ωn) ∈
[0, 1]n where ωj is the weight associated to the performance ranked
in the j-th position.

Definition 1 (OWA operator) The OWA value of solution x∈X is:

fω(y(x)) =

n∑
j=1

ωjy(j)(x)

This family of aggregators includes the minimum, maximum, me-
dian and all order statistics as a special case. It is often used in so-
cial choice theory with decreasing weights in order to favor well-
balanced Pareto-optimal solutions (see e.g., [29, 30, 35] in fair allo-
cation problems or [25, 21] in voting problems).

2.2.2 Choquet Integrals

Choquet Integrals [18, 40, 26] is a more general family of aggrega-
tors which is appealing because it offers a wider flexibility due to a
greater number of preference parameters. More precisely, these ag-
gregators are specified by a capacity function ω : 2N → [0, 1] such
that ω(∅) = 0, ω(N) = 1 and ω(A) ≤ ω(B) for all A ⊂ B ⊆ N ,
allowing a fine control of interactions between the objectives by as-
signing weights to coalitions of objectives.

Definition 2 (Choquet integral) The Choquet value of x ∈ X is:

fω(y(x)) =

n∑
j=1

(
y(j)(x)− y(j−1)(x)

)
ω(X(j)) with y(0)(x)=0

where X(j) = {(j), . . . , (n)} is the set of objectives with respect to
which x has a performance greater or equal to y(j)(x).

For illustration purposes, consider the following capacity function:

∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
ω 0 0.2 0.1 0.3 0.4 0.7 0.6 1

For a solution x with performance vector y(x) = (3, 2, 5), the Cho-
quet integral value is fω(x) = (2 − 0) × ω({1, 2, 3}) + (3 − 2) ×
ω({1, 3}) + (5− 3)× ω({3}) = 2× 1 + 1× 0.7 + 2× 0.3 = 3.3.

The family of Choquet integrals includes the weighted sums
(when ω is additive), OWA aggregators (when ω is symmetric) and
weighted OWA operators [43] as a special case. Moreover, using a
convex capacity (e.g., a belief function [41]) enables to model pref-
erences for well-balanced Pareto-optimal solutions (see e.g., [16]).

2.3 Regret-Based Preference Elicitation
In this work, we assume that preference parameters ω are not known
initially. Instead, we are given a (possibly empty) set Θ of pairs
(a, b) ∈ Rn+ × Rn+ such that vector a is known to be preferred to
vector b; such preference statements can be obtained by asking com-
parison queries to the DM. Let ΩΘ be the set of all parameters ω
that are compatible with Θ, i.e. all parameters ω that satisfy the con-
straints fω(a) ≥ fω(b) for all (a, b) ∈ Θ.

Minimax regret is a decision criterion that is commonly used
within the AI community to make robust recommendations under
preference imprecision (e.g., [8, 14]). It can be defined as follows:

Definition 3 (Pairwise Max Regret) The Pairwise Max Regret
(PMR) of solution x ∈ X with respect to solution x′ ∈ X is:

PMR(x, x′,ΩΘ) = max
ω∈ΩΘ

{
fω(y(x′))− fω(y(x))

}
In other words, PMR(x, x′,ΩΘ) is the worst-case loss when rec-
ommending solution x instead of solution x′ to the DM.

Definition 4 (Max Regret) The Max Regret (MR) of x∈X is:

MR(x,X ,ΩΘ) = max
x′∈X

PMR(x, x′,ΩΘ)

Thus MR(x,X ,ΩΘ) is the worst-case loss when choosing solution
x instead of any other feasible solution x′ ∈ X .

Definition 5 (Minimax Regret) The MiniMax Regret (MMR) is:

MMR(X ,ΩΘ) = min
x∈X

MR(x,X ,ΩΘ)

According to the minimax regret criterion, an optimal solution is
a solution that achieves the minimax regret (i.e., any solution in
arg minx∈X MR(x,X ,ΩΘ)). By definition, recommending any of
these solutions enables to minimize the worst-case loss.

Note that, depending on Θ the set of available preference state-
ments, the worst-case loss ensured by the minimax regret criterion
might be at unacceptable level for the DM. Note also that the inequal-
ity PMR(·, ·,Ω) ≤ PMR(·, ·,Ω′) holds for any two sets Ω ⊆ Ω′.

2



Thus this worst-case loss can be decreased by collecting new pref-
erence information from the DM (inducing new constraints on ΩΘ

the set of admissible parameters). This observation has led to the fol-
lowing elicitation approach: progressively ask preference queries to
the DM until the MMR value drops below a given threshold δ ≥ 0
representing the maximum allowable gap to optimality [14]; if we
set δ = 0, then we obtain the best solution for the DM at the end of
the execution. This approach, sometimes referred to as regret-based
incremental elicitation, was efficiently used in various contexts, such
as multicriteria decision making [12, 37] and voting problems [8, 31].

3 RELATED WORKS

Recently it has been proposed to integrate regret-based incremental
elicitation into constructive algorithms so as to produce efficient ex-
act solving methods for MOCO problems. The general principle is
to construct the optimal solution from optimal sub-solutions using
the available preference information, and to ask preference queries
only when necessary (see [11] for a synthesis). This approach has
been mainly studied with linear aggregators in order to produce ex-
act solving methods. In this paper, we extend this approach to rank-
dependent aggregators by proposing a very efficient regret-based
greedy method for the knapsack problem that is guaranteed to run in
polynomial time with no more than a polynomial number of queries.

Local search is a popular heuristic approach for solving hard com-
binatorial optimization problems [1]. It can yield high-quality so-
lutions by iteratively applying small modifications (local moves) to
a solution with the goal of generating improving solutions. Thanks
to its flexibility, local search has been successfully applied to a wide
range of domains, including matching problems [24, 34], multi-agent
problems [27] and natural language parsing [19]. A regret-based lo-
cal search method called Interactive Local Search (ILS) has been re-
cently proposed for MOCO problems with rank-dependent aggrega-
tors, requiring that a (near-)optimal solution can be efficiently de-
termined when the aggregation function is precisely known [4]. In
practice, this requirement is quite restrictive since most existing ef-
ficient algorithms for rank-dependent aggregators are designed for
subclasses representing very specific decision behaviors or for prob-
lems involving very few objectives (e.g., [23, 33]). In this paper, we
propose a regret-based local search procedure specially designed for
the knapsack problem that does not require existing solving methods.

Another regret-based method has been recently introduced for
rank-dependent aggregators [5, 13]. The idea is to identify informa-
tive queries by exploiting the extreme points of the polyhedron rep-
resenting the admissible preference parameters; in the following, this
exact method will be called IEEP for Incremental Elicitation based
on Extreme Points. In [5], it is shown that IEEP outperforms the
constructive regret-based algorithm presented in [11] for the multi-
objective spanning tree problem with the weighted sum model. How-
ever, IEEP requires that (near-)optimal solutions can be determined
efficiently when the preferences are known (as ILS). Our methods
also differ from IEEP with respect to performance guarantees: IEEP
is an exact exponential time method that may generate an exponen-
tial number of queries, whereas our heuristic methods run in polyno-
mial time and ask no more than a polynomial number of queries. Our
methods and IEEP will be compared in the numerical section.

Committee election (or multi-winner election) is another active
topic studied within the AI community. The goal is to select indi-
viduals from a pool of candidates to form a committee that is con-
sistent with the voters’ preferences (e.g., [21, 22]). This multi-agent
variant of the knapsack problem is mostly studied with multi-winner

voting rules (e.g., the Chamberlin–Courant rule [15]) and social wel-
fare functions (e.g., Nash welfare) from a computational complex-
ity perspective, assuming that voters’ preferences are known. There
are a few notable exceptions: two regret-based incremental elicita-
tion procedures designed for approval voting [8] and the Chamber-
lin–Courant rule [32] respectively. In these papers, the authors as-
sume that the voting rule (i.e. the aggregation function) is known but
not individual utilities (i.e., performance vectors); we make the op-
posite assumption in this paper. More recently, a regret-based branch
and bound procedure has been proposed for solving the multi-agent
knapsack problem with an OWA operator, but it has been shown that
IEEP achieves better results on this problem [13].

4 NEW INTERACTIVE HEURISTIC METHODS
For MOCO problems, computing MMR(X ,ΩΘ) at every step of
the elicitation procedure may induce prohibitive computation times
due to the possibly large number of Pareto-optimal solutions; this
may indeed require to compute the pairwise max regrets for all pairs
of distinct Pareto-optimal solutions in X (see Definitions 3, 4 and
5). Therefore, we propose instead to combine heuristic search and
regret-based incremental elicitation so as to reduce both computation
times and number of queries by focusing on promising solutions.

4.1 A Regret-Based Local Search
We now introduce an interactive local search procedure that uses
regret-based incremental elicitation techniques to select solutions
from generated neighborhoods; this algorithm, called RBLS for
Regret-Based Local Search, is summarized in Algorithm 1.

Initialization. First, we identify a promising feasible solution by
applying the following greedy algorithm: starting from an empty set
of items, we iteratively select an item i (among the remaining items)
that maximizes the arithmetic mean 1/n

∑n
j=1 yj(i) so as to con-

struct a good compromise solution in polynomial time.

Interactive local search. Then, starting from the solution obtained
at the initialization step (denoted by x∗ hereafter), we iteratively
move from solution to solution by considering local improvements:

• Firstly, we generate a set X∗ of feasible solutions from solution
x∗ using the neighborhood function consisting in removing one
item from subset x∗ and adding one item to x∗ (all combinations
are performed). Then, any solution that is Pareto-dominated by an-
other solution is removed from X∗. Note that for OWA operators
the most discriminant Lorenz dominance can be used instead [36].

• Secondly, we select a solution for the next iteration step by apply-
ing the standard regret-based incremental elicitation approach on
set X∗. More precisely, while MMR(X∗,ΩΘ) > δ holds, the
DM is asked to compare two performance vectors a, b ∈ Rn+ and
then ΩΘ is restricted by inserting the linear constraint fω(a) ≤
fω(b) (or fω(b) ≥ fω(b) depending on her answer). Finally, if
MR(x∗, X∗,ΩΘ) ≤ δ holds at the end of the elicitation process,
then we stop by returning x∗ (no local improvement). Otherwise,
for the next iteration step, x∗ is replaced by a neighbor solution
that minimizes the max regret in X∗.

Termination. We stop the process by returning solution x∗ after at
mostmax it number of iteration steps, wheremax it is polynomial
in the problem size.
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Algorithm 1 RBLS
IN ↓ P : a multi-objective knapsack problem; fω: a family of rank-
dependent operators; Θ: a set of statements; δ: a positive threshold.
- -| Initialization:
ΩΘ ← {ω : ∀(a, b) ∈ Θ, fω(a) ≥ fω(b)}
x∗ ← ComputeInitialSolution(P )
it← 0
improve← true
- -| Local Search:
while improve and (it < max it) do

- -| Generation of neighbors:
X∗ ← ComputeAllSwaps(x∗)
- -| Standard regret-based elicitation:
while MMR(X∗,ΩΘ) > δ do

- -| Ask the DM to compare two solutions:
(a, b)← AskQuery(X∗,ΩΘ)
- -| Update preference information:
Θ← Θ ∪ {(a, b)}
ΩΘ ← {ω : ∀(a, b) ∈ Θ, fω(a) ≥ fω(b)}

end while
- -|Move to another solution:
if MR(x∗, X∗,ΩΘ) > δ then
x∗ ← Select(arg minx∈X∗MR(x,X∗,ΩΘ))
it← it+ 1

else
improve← false

end if
end while
return x∗

Example 1 We now present an execution of RBLS. Consider an in-
stance of the 3-objectives knapsack problem with 10 items (denoted
by i1, . . . , i10), where X the set of feasible solutions only includes
the subsets of size at most 5. The performance vectors are as follows:

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

y1 4 10 3 10 4 4 10 8 1 3
y2 4 1 7 2 6 1 3 3 4 5
y3 3 9 7 2 9 7 8 9 10 10

Table 1. Performance vectors attached to items.

We assume here that the DM’s preferences can be represented by
an OWA operator fω∗ with the hidden decreasing weights ω∗ =
(0.7, 0.2, 0.1). We start the execution of RBLS with an empty set of
preference statements (i.e. Θ = ∅) and δ = 0. Hence ΩΘ is initially
the set of all weighting vectors ω = (ω1, ω2, ω3) ∈ [0, 1]3 such that
ω1 + ω2 + ω3 = 1 and ω1 ≥ ω2 ≥ ω3. Note that ΩΘ is a convex
polyhedron since fω(a) is linear in ω for fixed performance vector
a. The extreme points of ΩΘ are (0.5, 0.5, 0), ( 1

3
, 1

3
, 1

3
) and (1, 0, 0)

initially; in Figure 1, ΩΘ is represented by the triangle ABC in the
space (ω1, ω2), ω3 being implicitly defined by ω3 = 1− ω1 − ω2.

Initialization step: First, we compute the optimal solution for the
weighted sum with weights ( 1

3
, 1

3
, 1

3
) by using our greedy algorithm.

We obtain solution x∗ = (0, 1, 0, 0, 1, 0, 1, 1, 0, 1) whose perfor-
mance vector is y(x∗) = (35, 18, 45).

Local Search: At the first iteration step, only two neighbors of x∗

are non-dominated, and the setX∗ contains three solutions, denoted
by x1(= x∗), x2 and x3, which are evaluated as follows: y(x1) =

ω1

ω2

•

•

•ω
∗

+

B

0.5

+

A

0
•
C

1

Figure 1. Initial set ΩΘ.
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Figure 2. ΩΘ after 1 query.
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Figure 3. ΩΘ after 2 queries.

(35, 18, 45), y(x2) = (24, 28, 43) and y(x3) = (20, 35, 42). Since
MMR(X∗,ΩΘ) = 1.5 > 0, we ask the DM to compare two so-
lutions in X∗, say x2 and x3. We have fω∗(y(x2)) = 26.7 >
fω∗(y(x3)) = 25.2. Therefore the DM prefers solution x2 to so-
lution x3. Thus we obtain Θ = {((24, 28, 43), (20, 35, 42))} and
ΩΘ is restricted by the linear constraint fω(y(x2)) ≥ fω(y(x3)),
i.e. ω2 ≤ 1

8
+ 3

8
ω1 (see Figure 2 where ΩΘ is represented by CDE).

Now we have MMR(X∗,ΩΘ) = MR(x2, X∗,ΩΘ) = 0. There-
fore we stop asking queries and we move from solution x∗ = x1 to
solution x2 for the next step (i.e., we now set x∗ = x2).

At the second step, X∗ includes only 5 non-dominated solu-
tions denoted by x1(= x∗), x2, x3, x4 and x5 with the fol-
lowing evaluations: y(x1) = (24, 28, 43), y(x2) = (35, 18, 45),
y(x3)=(30, 23, 36), y(x4)=(35, 20, 42) and y(x5)=(35, 21, 35).
Since MMR(X∗,ΩΘ) = 7

11
≥ 0, the DM is asked to com-

pare two solutions, say x∗ and x5. Since fω∗(y(x1)) = 26.7 >
fω∗(y(x5)) = 25.2, the DM prefers x∗ to x5. Then Θ is set to
{((24, 28, 43), (20, 35, 42)), ((24, 28, 43), (35, 21, 35))} and ΩΘ

is restricted byω2 ≤ 8
15
− 1

3
ω1 (see Figure 3 where ΩΘ is represented

by CDFG). Now we have MR(x∗, X∗,ΩΘ) = 0. Therefore x∗ is a
local optimum (variable improve is set to false and the while loop
ends). RBLS ends by returning x∗ = (0, 0, 1, 0, 1, 0, 1, 1, 0, 1) which
is the preferred solution. Thus only 2 queries were needed to discrim-
inate between the 27 Pareto-optimal solutions of this instance.

4.2 A Regret-Based Greedy Algorithm

In this subsection, we propose a new interactive solving method that
consists in integrating regret-based incremental elicitation techniques
into a greedy algorithm. Our algorithm, called RBGA for Regret-
Based Greedy Algorithm, starts from an empty set of items (denoted
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by S hereafter) and then iterates as follows:

• First, we compute X∗ the set of all (partial) solutions obtained by
adding one item to set S; formally X∗ = {S ∪ {i} : i ∈ I\S}.
Then, while MMR(X∗,ΩΘ) > δ holds, we ask preference
queries to the DM and update the set of admissible preference
parameters accordingly.

• OnceMMR(X∗,ΩΘ) ≤ δ holds, we select an item i∗ from I\S
such that S ∪ {i∗} minimizes the max regret. Finally, item i∗ is
added to set S for the next iteration step.

Termination. RBGA stops whenever the knapsack capacity is
reached, i.e. after exactly W iteration steps (see Algorithm 2).

Algorithm 2 RBGA
IN ↓ P : a multi-objective knapsack problem; fω: a family of rank-
dependent operators; Θ: a set of statements; δ: a positive threshold.
- -| Initialization:
ΩΘ ← {ω : ∀(a, b) ∈ Θ, fω(a) ≥ fω(b)}
S ← ∅
it← 0
- -| Greedy Search:
while it < W do
X∗ ← {S ∪ {i} : i ∈ I\S}
- -| Standard Regret-Based Elicitation:
while MMR(X∗,ΩΘ) > δ do

- -| Ask the DM to compare two solutions:
(a, b)← Query(X∗)
- -| Update preference information:
Θ← Θ ∪ {(a, b)}
ΩΘ ← {ω : ∀(a, b) ∈ Θ, fω(a) ≥ fω(b)}

end while
- -| Item Selection:
i∗ ← Select(arg mini∈I\SMR(S ∪ {i}, X∗,ΩΘ))
S ← S ∪ {i∗}
it← it+ 1

end while
return S

Note that, when the DM’s preferences are represented by a
weighted sum that is precisely known, an optimal solution can be
obtained by a greedy algorithm that simply selects an item maximiz-
ing the aggregated value at each iteration step, until the knapsack
capacity is reached (here after W steps). When the weighted sum is
imprecisely known, one may ask preference queries at each step un-
til identifying an item maximizing the “unknown” aggregated value
(i.e., until there is an item with a max regret equal to zero); that is
precisely what RBGA does when δ = 0. Thus, RBGA necessarily
returns an optimal solution according to the DM’s preferences when
fω is a weighted sum and δ = 0 (for δ > 0, one can easily prove that
the worst-case loss is bounded above by W × δ). Moreover, we ob-
served in practice that it often returns the optimal solution with OWA
operators and Choquet integrals (see Section 4), and it constructs the
optimal solution when applied to Example 1 with only two queries.

4.3 Performance guarantees
This subsection is devoted to the proof of the following result:

Proposition 1 RBLS and RBGA can be implemented in such way
that they run in polynomial time and ask no more than a polynomial
number of queries for OWA aggregators and Choquet integrals.

We remark first that the number of iteration steps of the outer loop
is polynomial (in the problem size) for both procedures, and this is
also the case for the size of X∗ at each iteration step.

4.3.1 OWA operators

On the number of preference queries. Since the number of itera-
tion steps of the outer loop is polynomial for both RBLS and RBGA,
the number of generated queries is also polynomial if and only if the
minimax regret of X∗ drops below δ after a polynomial number of
comparison queries at each iteration step of the search procedures.
To do so, one can simply apply the Current Solution Strategy (CSS)
[14] which consists in asking to compare a solution x achieving the
minimax regret to one of its adversary’s choice (i.e. a solution in
arg maxx′∈X∗ PMR(x, x′,ΩΘ)) at each iteration step of the elici-
tation process. By doing so, one can ensure that the minimax regret
will be equal to zero after at most |X∗| − 1 queries since at least one
solution is eliminated after every comparison query.

On the computation times. Recall that both the number of steps
and the size of X∗ at each step are polynomial in the problem size.
Moreover, we have just proved that, at each step of the outer loop, the
number of preference queries (hence the number of steps of the in-
ner loop) is polynomial when applying the CSS strategy. Therefore,
we only need to prove that MMR-computations can be performed
in polytime. Recall that MMR(X∗,ΩΘ) can be obtained by solv-
ing at most |X∗|2 pairwise max regrets (see Definitions 4 and 5).
Therefore, it is sufficient to show that pairwise max regrets can be
computed in polynomial time. For OWA aggregators, even though
fω(a) =

∑n
j=1 ωja(j) is non-linear in a for fixed parameters ω, it

is linear in ω for fixed a. Thus PMR(x, x′,ΩΘ) can be obtained in
polynomial time by solving the following linear program:

max
ω

n∑
j=1

ωjy(j)(x
′)−

n∑
j=1

ωjy(j)(x)

s.t.
∑
j∈N

ωj = 1

ωj ≥ 0, ∀j ∈ N
n∑
j=1

ωja(j) −
n∑
j=1

ωjb(j) ≥ 0, ∀ (a, b) ∈ Θ

The constraints ωj ≥ ωj+1 for all j ∈ {1, . . . , n − 1} can be
added so as to favor well-balanced solutions.

4.3.2 Choquet integrals

As regards the number of queries, the same reasoning as for OWA ag-
gregators applies for Choquet integrals. This is not the case for com-
putation times. More precisely, since fω(a) is linear in ω for fixed
a with Choquet integrals, PMR(x, x′,ΩΘ) can also be obtained by
solving the following program:

However, in this linear program, the number of variables and con-
straints is exponential in the number of variables. This linear program
can be simplified for some subclasses of Choquet integrals defined
using an alternative formulation in terms of Möbius masses m [17]:

fω(y(x)) =

n∑
A⊆N

m(A) min
j∈A

yj(x)
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max
ω

n∑
j=1

(
y(j)(x

′
)−y(j−1)(x

′
)
)
ω(X

′
(j))−

(
y(j)(x)−y(j−1)(x)

)
ω(X(j))

s.t. ω(∅) = 0, ω(N) = 1

ω(A) ≤ ω(B), ∀A ⊂ B ⊆ N

n∑
j=1

(
a(j)−a(j−1)

)
ω(A(j))−

(
b(j)−b(j−1)

)
ω(B(j))≥0, ∀(a, b)∈Θ

where m(A) =
∑
B⊆A(−1)|A\B|ω(B) for all A ⊆ N . For in-

stance, for the subclass of convex capacities characterized by pos-
itive Möbius masses (a.k.a. belief functions [41]), the monotonic-
ity constraints ω(A) ≤ ω(B), with A ⊂ B ⊆ N , are naturally
satisfied due to the non-negativity of Möbius masses. For the sub-
class of 2-additive capacities (i.e., m(A) = 0 for all |A| > 2 and
m(A) 6= 0 for some set |A| = 2), it has been proposed to use the
fact that these particular capacities form a convex polytope with only
n2 extreme points (see e.g., [42]), yielding a linear formulation in-
volving a quadratic number of variables and constraints; hence for
2-additive capacities, our procedures combined with the CSS strat-
egy run in polynomial time and generate no more than a polynomial
number of queries.

For general capacities, it has been shown in [12] that PMR-
optimization problems can be formulated as linear programs with
only a linear number of variables and constraints, provided that the
DM is only asked to compare binary alternatives to constant utility
profiles. In the same paper, the authors propose a query generation
strategy that is very efficient in practice but no theoretical guarantee
is provided regarding the number of queries. In fact, the proposed
query generation strategy can be adapted to ensure a polynomial
number of queries by simply selecting the constant utility profile in
the middle of the interval representing the possible capacity values,
instead of selecting the query that minimizes the worst-case mini-
max regret (see e.g., [9]). Thus, our procedures are also polynomial
for general Choquet integrals.

5 EXPERIMENTAL RESULTS
We now provide numerical results showing the practical efficiency
of our algorithms in terms of computation times (given in seconds),
number of queries and gap to optimality (error) expressed in terms of
percentage from the optimal solution. The results are averaged over
30 runs and “/” means that the timeout (30 mins) is exceeded.

Instances. We consider instances of the multi-objective knapsack
problem with |I| = 50 and 100 items and we vary n the number of
criteria from 2 to 6. Instances are generated as follows: performance
vectors y(i), i ∈ I, are uniformly drawn in {1, . . . , 1000}n and
W the knapsack capacity is set to 0.5 × |I| so as to obtain difficult
instances (i.e., with a large number of Pareto-optimal solutions).

Preferences. The DM’s preferences are represented by the follow-
ing aggregation models:

• OWA: OWA aggregators with decreasing positive weights to
model preferences for well-balanced performance vectors.

• Choquet: Choquet integrals with 2-additive belief functions (see
Section 4.3.2) to model interactions between criteria and favor
well-balanced vectors.

We start the executions with an empty set of preference statements;
therefore ΩΘ is initially equal to:

• {ω ∈ Rn+ : ∀j ∈{1, . . . , n − 1}, ωj+1 ≥ ωj ;
∑n
j=1 ωj = 1} for

the OWA model.
• {mA∈R+, A⊆N, |A|≤2 : ∃A, |A|=2,mA 6=0;

∑
AmA=1}

for Choquet integrals.

During the execution of the methods, the answers to queries are sim-
ulated using a weighting vector (ω for OWA, m for Choquet) that
is randomly generated before running the methods. The weighting
vector is generated using the procedure presented in [39] so as to
guarantee a uniform distribution of the weights.

Regret-Based Solving Methods. In this section, we compare the
results obtained by the following regret-based procedures:

• RBLS: the proposed local search method with max it = 100.
• RBGA: the proposed greedy method.
• Two-Phaseδ: a two-phase method which consists in first construct-

ing a “well-represented” Pareto set and then applying the CSS
strategy on this set until the minimax regret drops below threshold
δ ≥ 0; here we generate sets of size at most 3000.

• IEEPδ: the solving method introduced in [5] for general MOCO
problems, which is based on the extreme points of ΩΘ. This
method is guaranteed to return a solution x ∈ X such that
MR(x,X ,ΩΘ) ≤ δ holds at the end of the execution. To com-
pute the optimal solutions attached to extreme points, we simply
return the solutions that maximize the corresponding aggregated
values in the representative Pareto set.

To generate Pareto sets for both Two-Phaseδ and IEEPδ , we use dy-
namic programming [2] and fast Pareto dominance checking [28] to
reduce computation times (e.g., the Pareto set includes about 2×106

solutions for the instances with 50 items and 6 objectives). For both
procedures, the reported computation times do not include the time
needed to generate the Pareto set.

Implementation details. Numerical tests were performed on a In-
tel Core i7-950 @ 3.06 GHz with 11,7 GB of RAM, with a program
written in C++, and pairwise max regret optimizations are performed
by CPLEX Optimizer2.

Results for OWA. First we compare the results obtained by the
two proposed procedures (see Table 2). We observe that RBLS is
more efficient that RBGA in terms of number of queries and error in
all the settings (while achieving comparable computation times); for
instance, when using RBLS instead of RBGA for n = 6 with δ =
0.5, the number of queries is divided by 2 and the error is decreased
by a factor of 4. Note that the error is very low in all the settings
(below 1%) and that varying δ from 0 to 0.5 does not really impact
on the performances of both procedures for OWA aggregators.

Now we compare RBLS to IEEPδ and Two-Phaseδ (see Table 3);
here we set δ = 0.01 to allow for the same error as our method (to be
as fair as possible). We observe that RBLS is drastically faster than
IEEP0.01 and generates far fewer queries in all the settings. To give
an example, when using IEEP0.01 instead of RBLS (with δ = 0.5)
for n = 6, the computation time is reduced by a factor of 260 and the
number of queries is divided by 3. Finally, we see that RBLS is much
faster than Two-Phase0.01 but the former asks a few more preference
queries than the latter (at most 3 queries with δ = 0.5).

2 https://www.ibm.com/analytics/cplex-optimizer
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OWA Choquet
RBLS RBGA RBLS RBGA

n time queries error time queries error time queries error time queries error

δ = 0

2 0.07 3.0 0.00 0.08 6.4 0.81 0.42 5.6 0.14 0.44 10.70 0.10
3 0.20 7.9 0.13 0.16 10.4 0.91 7.99 19.7 0.16 2.31 33.83 0.17
4 0.02 3.0 0.00 0.19 18.2 0.63 48.04 54.0 0.15 7.27 70.13 0.63
5 0.27 8.3 0.18 0.25 17.4 0.64 144.67 79.3 0.09 19.5 119.97 0.59
6 0.65 17.2 0.24 0.29 17.1 0.81 975.96 154.0 0.23 38.9 179.93 0.21

δ = 0.5

2 0.08 3.6 0.00 0.08 6.5 0.92 0.43 4.73 0.15 0.36 9.03 0.00
3 0.15 5.7 0.10 0.13 8.9 0.94 3.76 9.36 1.16 1.60 24.76 0.16
4 0.02 2.0 0.00 0.18 16.1 0.79 20.17 20.13 0.18 4.12 39.90 0.27
5 0.23 6.4 0.19 0.22 14.8 0.65 43.56 26.40 0.12 7.12 51.83 0.54
6 0.31 7.3 0.18 0.27 14.6 0.85 129.18 32.83 0.28 8.82 66.27 0.32

Table 2. Results obtained by RBLS and RBGA the two proposed procedures for 50 items.

OWA Choquet
Two-Phase0.01 IEEP0.01 Two-Phase0.02 IEEP0.02

n time queries error time queries error time queries error time queries error
2 4.3 2.5 0.02 10.1 4.7 0.00 1.6 4.2 0.04 8.4 3.9 0.01
3 36.4 3.1 0.05 16.9 8.0 0.03 298.4 12.5 0.13 19.5 9.0 0.17
4 46.4 2.7 0.46 33.9 15.0 0.00 416.6 30.2 0.32 / / /
5 82.1 4.5 0.68 40.6 18.3 0.00 859.3 55.8 0.52 / / /
6 95.3 4.1 0.96 80.6 26.8 0.00 / / / / / /

Table 3. Results obtained by IEEPδ and Two-Phaseδ for 50 items.

OWA Choquet
RBLS RBGA RBLS RBGA

n time queries error time queries error time queries error time queries error
2 0.1 3.4 0.04 0.2 8.5 1.52 1.9 7.0 0.30 1.2 12.6 0.28
3 0.3 5.5 0.01 0.7 13.6 1.15 25.8 15.5 0.91 9.1 34.3 0.23
4 1.1 11.4 0.16 0.7 21.6 0.71 124.4 27.2 0.06 27.3 53.1 0.43
5 4.1 26.5 0.29 1.1 24.5 0.54 516.4 38.8 0.11 44.5 80.6 0.26
6 5.2 28.3 0.42 1.0 25.7 0.72 1183.5 47.8 0.10 64.3 107.0 0.23

Table 4. Results obtained by RBLS and RBGA the two proposed procedures for 100 items (δ = 0.5).

Results for Choquet. In Table 2, we see that varying δ from 0
to 0.5 allows to significantly reduce the computation time and the
number of preference queries of both RBLS and RBGA without in-
creasing the error too much (at most 2%). For instance, for n = 6,
RBLS ends after 16 minutes and 154 queries for δ = 0 against 2
minutes and 32 queries for δ = 0.5. This is mainly due to the fact
that more preference information is needed (more preference param-
eters) and PMR-optimizations are more computationally demanding
(a quadratic number of variables) when considering Choquet instead
of OWA. Now, when comparing our procedures, we see that RBLS
is better than RBGA in terms of number of queries but the latter is
much faster than the former on the bigger instances. For example,
for n = 6 and δ = 0.5, RBLS generates two times less preference
queries than RBGA but RBGA is about 15 times faster than RBLS.

Finally, we compare our procedures to IEEPδ and Two-Phaseδ
(see Table 3) with δ = 0.02 to allow for the same error as our
methods. We see that both IEEP0.02 and Two-Phase0.02 induce pro-
hibitive computation times when increasing the number of criteria
(even when ignoring the time required to compute the representa-
tive Pareto set). For IEEP0.02, the problem is even more dramatic
since the timeout is reached as soon as n ≥ 4. This is mainly due to
the very large number of extreme points of ΩΘ, which increases ex-
ponentially with the number of collected preference statements; for
instance, we stopped IEEP0.02 after 3 hours for n = 4 and we ob-
served that only 25 queries were asked and 104 extreme points were
generated on average. In fact, our procedures can be applied to bigger
instances, as shown in Table 4 with 100 items.

6 CONCLUSION

In this paper, we have proposed two new regret-based interactive pro-
cedures to solve multi-objective knapsack problems with unknown
preferences: a local search method (called RBLS) and a greedy algo-
rithm (called RBGA). To model the DM’s preferences, we have con-
sidered the following two families of non-linear aggregators: OWA
operators and Choquet integrals. We have proved that both RBLS and
RBGA run in polynomial time and ask no more than a polynomial
number of queries. Moreover, we have compared the performances
achieved by RBLS and RBGA with that of two different regret-based
solving methods. In particular, it is shown that the latter two proce-
dures are both outperformed by RBLS and RBGA in all considered
instances. We have also observed that RBLS performs better than
RBGA for OWA operators, but RBGA is much faster for Choquet
integrals (even if RBLS may still be preferred to minimize the num-
ber of queries). An interesting direction of research is to compare our
methods to a very recent heuristic approach based on genetic algo-
rithms, which may require to adapt the latter approach to efficiently
handle rank-dependant aggregators [3].
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