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Abstract. In this paper, we study the problem of matching a set of
items to a set of agents partitioned into types so as to balance fairness
towards the types against overall utility. We extend multiple desirable
properties of an allocation of indivisible goods to our model and in-
vestigate the possibility and hardness of achieving combinations of these
properties, e.g. we prove that maximizing utilitarian social welfare under
constraints of typewise envy-freeness up to one item (TEF1) is compu-
tationally intractable. In particular, we define a new concept of waste
for this setting; we show experimentally that augmenting an existing
algorithm with a marginal utility maximization heuristic can produce
a TEF1 solution with reduced waste, and also provide a polynomial-
time algorithm for computing a non-wasteful TEF1 allocation for binary
agent-item utilities.

Keywords: Fair Allocation of Indivisible Items · Typewise Envy-freeness
up to one item · Non-wasteful Allocation.

1 Introduction

Consider an academic department faced with the task of assigning incoming
graduate students to advisers. It has computed a score for each potential advisor-
advisee pair and cares about the overall score of the matching; but the faculty is
divided into research groups and the department might also wish to achieve a fair
distribution of students (or, more correctly, student scores) across these groups.
A similar trade-off between efficiency/welfare and fairness might be desirable in
other planning/allocation scenarios such as public housing allocation, e.g. agents
are potential tenant households and items are flats in public housing blocks,
individual agents having utilities over flats and a central authority desiring a
fair allocation across groups of agents (in the same vein as the ethnicity quotas
of the Singapore Housing and Development Board [3]).

We can model these problems as a variant of the problem of fair allocation
of indivisible goods (see e.g. [4]): here, we have an underlying weighted bipartite
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matching problem, with the nodes on the two sides being called items and agents
for convenience, but the parties we are trying to be fair towards are not individual
agents but subsets forming a partition over agents – we call these subsets types
of agents. An important aspect of this problem is that all agents in a type do not
derive utility from all items in the bundle allocated to that type (unlike the public
goods scenario [12]): within a type, we assign items to agents under matching
constraints with no regard to other types. Hence, the parties under consideration
end up violating the additive bundle-valuation assumption present in much of
recent work. There are some approaches (e.g. [20]) that achieve good fairness
guarantees but are agnostic to how a party computes its bundle valuation, hence
if we use them näıvely, they can result in allocations that are wasteful/inefficient
in some way given the structure of our problem. These considerations necessitate
novel solution concepts and techniques for our setting.

1.1 Our contributions

We describe a new model of typewise fair allocation and define our desirable
properties in Section 2 – in particular, non-wastefulness and typewise envy-
freeness up to one item (TEF1) as well as a marginal envy-based variant of the
latter (TMEF1). In Sections 3 and 4, we explore the problems of determining
Pareto optimal, TMEF1 allocations and TEF1 allocations that maximize overall
sum of weights respectively. In Section 5, we show experimentally that Lipton et
al. [20]’s classic algorithm equipped with a simple heuristic can produce TEF1
allocations with significantly reduced waste. Section 6 details a polynomial-time
algorithm for computing a non-wasteful TEF1 allocation for binary agent-item
utilities. We conclude with future research directions in Section 7.

1.2 Related work

There is a rich body of work on approaches towards the fair allocation of indi-
visible goods [4,23]. A popular fairness concept is envy-freeness [14]. A complete
envy-free (EF) allocation may not exist but a relaxation that always does is one
that is envy-free up to one item (EF1) [6] where any envy towards an agent
can be eliminated by removing an item from its bundle. The bounded-envy,
polynomial-time algorithm due to Lipton et al. [20] also produces an EF1 allo-
cation for general valuation functions [25].

Extensions of envy-freeness to groups include strict envy-freeness [30]; coali-
tion fairness or group envy-freeness [19] as well as envy-freeness of an individ-
ual/a group towards a group [28], both under monetary transfers; group fairness
as defined by Conitzer et al. [8]. Barman et al. [1] recently defined a groupwise
extension to the maximin share-based fairness concept. A major difference of
these contributions with our model is that they deal with a σ-algebra of subsets
of agents rather than an exogenously defined partition over agents. Notable pa-
pers that define fairness with respect to pre-defined groups of multiple players
include those by Suksompong along with Manurangsi and Segal-Halevi [22,27,26]
where the utility structure is significantly different from ours, and Elzayn et
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al. [11] whose concepts of utility and fairness are significantly different from
ours. Recent work [12,13] has also explored non-envy-based fairness criteria in
the allocation of public goods under additive valuations.

We must also mention the literature on statistical fairness (also called group
fairness) in the fundamentally different problem domain of classification in ma-
chine learning: the equalization of some statistical property of the classifier across
groups of data instances based on sensitive/protected attributes ([10,16,17] and
references therein); we are interested in fairness notions in terms of subjective
valuations of items from the economics/social choice literature.

2 Model and definitions

Throughout the paper, [r] will denote the set {1, 2, · · · , r} for any positive integer
r. Our model, an extension of the classic framework of matching on a weighted
bipartite graph [21], has the following ingredients:

(i) a set N of n vertices called agents partitioned into k types N1, . . . , Nk,
(ii) a set M of m vertices called items,

(iii) a weight/utility u(i, j) ∈ R+ for each agent-item edge (i, j) ∈ N ×M , such
that for each i ∈ N (resp. at least one j ∈M), there is at least one j ∈M
(resp. each i ∈ N) with u(i, j) > 0.

For any T ⊆ N and any S ⊆M , a (T, S)-matching is defined as a subset of the
edges T × S such that every vertex in T ∪ S is incident on at most one of the
edges or, equivalently, as a binary matrix X = (xij)i∈T,j∈S such that for each
agent i (resp. item j), there is at most one item j (resp. agent i) with xij = 1,
i.e. each item is assigned to at most one agent and each agent is assigned at most
one item. The utilitarian social welfare USW(X) (or total weight) of a matching
X is defined as the sum of the realized utilities of all agents under that matching:

USW(X) ,
∑
i∈T

∑
j∈S

xiju(i, j).

An optimal matching is one that maximizes the corresponding utilitarian social
welfare. We are interested in a (N,M)-matching that trades off some welfare
concept characterizing the entire agent population against some fairness criterion
defined with respect to the agent types. More precisely, for every type p ∈ [k],
we are given a type-value function vp : 2M → R+ which quantifies some concept
of overall welfare derived by Np from some bundle or subset of items S ⊆ M
in terms of the weights u(i, j), (i, j) ∈ Np × S. In this paper, we will use the
following specific type-value function for every type:

Definition 1 (Utilitarian type-value function) The utilitarian type-value
of any type p ∈ [k] for any bundle S ⊆ M is defined as the total weight of an
optimal (Np, S)-matching:

vp(S) ,

{
maxX∈X (Np,S) USW(X), if S 6= ∅;
0, otherwise.
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where X (Np, S) is the collection of all (Np, S)-matchings.

We will define the marginal utility ∆p(S; j) of an item j ∈M for a type p ∈ [k]
and a bundle S ⊆M as:

∆p(S; j) ,

{
vp(S ∪ {j})− vp(S), if j 6∈ S;

vp(S)− vp(S\{j}), otherwise.

Given a type p and a bundle S, there can be multiple optimal (Np, S)-matchings
with the same type-value but possibly differing in other efficiency and/or fairness
properties (see discussion on Figure 1 at the end of this section) – with this in
mind, we define an allocation in our setting as follows:

Definition 2 (Allocation) An allocation A is a collection of bundles MA1 ,· · · ,
MAk , such that MA1 ∪ . . .∪MAk ⊆M and MAp ∩MAq = ∅ for all p, q ∈ [k] with p 6=
q, along with an optimal matching between each type Np and the corresponding
bundle MAp for all p ∈ [k], thereby inducing a unique (N,M)-matching XA =

(xAij)i∈N,j∈M .

We call MAp the allocated bundle of type p under A and MA0 = M\ ∪p∈[k] MAp
the set of withheld items. We will sometimes drop the superscript A when there
is no ambiguity. A type p envies a type q if vp(MAp ) < vp(MAq ); p envies q

up to ν items, ν ∈ [|MAq |], if there is a subset C ⊆ MAq of size |C| = ν such

that vp(MAp ) ≥ vp(MAq \C) and, for every subset C ′ ⊆ MAq with |C ′| < ν,

vp(MAp ) < vp(MAq \C ′). We can analogously define the envy of a type for a
bundle (up to any number of items).

With these fundamentals in place, we now define the desiderata of an allo-
cation A that we investigate in this paper. The first three are concerned with
efficiency; the rest are extensions of efficiency-agnostic fairness concepts intro-
duced by Budish [6] and Caragiannis et al. [7] respectively.

Definition 3 (Type-completeness) A is type-complete if ∪p∈[k]MAp = M ;
otherwise it is type-incomplete.4

Definition 4 (Waste and non-wastefulness) An item j ∈ M is said to be
wasted by an allocation A if it has a positive marginal utility for some type
p∈ [k] (i.e. ∆p(MAp ; j)>0) but is either withheld (i.e. j ∈MA0 ) or belongs to the
allocated bundle of some type q 6= p for which it has zero marginal utility (i.e.
j ∈MAq and ∆q(MAq ; j) = 0). A is called non-wasteful if it has no wasted item,
and wasteful otherwise.

Definition 5 (Typewise Pareto optimality) Allocation A1 is said to type-
wise Pareto dominate another allocation A2 if vp(MA1

p )≥vp(MA2
p ) for all types

p∈ [k] and vp(MA1
p )>vp(MA2

p ) for some type p ∈ [k]. An allocation that is not
typewise Pareto dominated by any other allocation is typewise Pareto optimal.

4 Type-completness does not preclude an item j ∈ MA
p remaining unassigned in the

(Np,M
A
p )-matching.
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Definition 6 (Typewise envy-freeness up to one item) Allocation A is type-
wise envy-free up to one item (TEF1) if for any two types p, q ∈ [k], p either
does not envy q or envies q up to one item, i.e. there exists an item j ∈ MAq
such that vp(MAp ) ≥ vp(MAq \{j}).

Definition 7 (Typewise marginal envy-freeness up to one item) Allocation
A is typewise marginally envy-free up to one item (TMEF1) if for any p, q∈ [k],
there is an item j∈MAq such that vp(MAp )≥vp(MAp ∪MAq \{j})−vp(MAp ).

We are now ready to formulate and analyze specific problems that approach
‘good’ allocations in different ways. But first, we will provide a problem instance
that we will use as a running example throughout the rest of the paper.

Example 1 Consider the problem depicted in Figure 1 and the bundles M1 =
{1, 2, 6}, M2 = M\M1: there is a unique optimal (N2,M2)-matching with 3, 4, 5
assigned to b1, b2, b3 respectively; but there are two optimal (N1,M1)-matchings
in both of which 2 is assigned to a2: if 1 is assigned to a1 and 6 remains unas-
signed, then we have a wasteful allocation since 6 could be assigned to b4 so that
∆2(M2; 6) = 1; but if 6 is assigned to a1 instead, the allocation is non-wasteful
since no agent in N2 has a positive utility for item 1.

Fig. 1: Our running example: 2 types N1 = {a1, . . . , a4} and N2 = {b1, . . . , b4}; items
M = [6]; u(i, j) is 1 if there is an edge between agent i and item j, and 0 otherwise.

3 Typewise Pareto optimal TMEF1 allocation

In this section, we will adapt a result of Caragiannis et al. [7] to our setting.
To that end, we first state without proof a property of our type-value function
(Definition 1) that is part of the folklore of weighted bipartite matching.

Theorem 1. The utilitarian type-value function vp(S) is a non-additive, mono-
tone submodular function of S ∈ 2M .
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Moreover, we define the Nash type-welfare of an allocation A as the product of
the type-values, i.e.

∏k
p=1 vp(MAp ).

Theorem 2. Every type-complete allocation that maximizes the Nash type-welfare
is typewise Pareto optimal and TMEF1.

Proof. An “allocation”, as defined in [7] as a partition of the set of items among
all agents, translates to a type-complete allocation in our setting; also, since each
vp(·) is monotone submodular by Theorem 1, we can use the natural extension
of Theorem 3.5 of [7] to conclude that every maximum Nash type-welfare, type-
complete allocation is TMEF1 as well as typewise Pareto optimal. ut

The next result establishes that non-wastefulness is a weakening of typewise
Pareto optimality in our setting.

Lemma 1. Any typewise Pareto optimal allocation is non-wasteful but the con-
verse is not true.

Proof. If an allocation A had a wasted item j with positive marginal utility for
a type q, then, by the definition of waste, we could augment MAq with j for an
improved type-value without reducing any other type-value, resulting in an allo-
cation that Pareto dominates A. For the converse, Example 1 provides a coun-
terexample: Take again the allocation A1 with bundles MA1

1 = {1, 2, 6}, MA1
2 =

M\MA1
1 , item 1 remaining unassigned and 2, . . . , 6 assigned to a2, b1, b2, b3, a1

respectively. This is non-wasteful (and incidentally also TEF1) but is Pareto
dominated by allocation A2 with bundles MA2

1 = {1, 2, 3}, MA2
2 = M\MA2

1

since v1(MA2
1 ) = 3 > 2 = v1(MA1

1 ) and v2(MA2
2 ) = v2(MA1

2 ) = 3. ut

This result implies, in conjunction with Theorem 2, that a maximum Nash
type-welfare, type-complete allocation is also non-wasteful. In spite of the above
existence results, maximizing Nash welfare with indivisible items is known to
be hard in general, and the above guarantees may break down for constant-
factor approximations [7]. Moreover, marginal envy-freeness up to one item is a
relatively new fairness concept that is hard to explain and not extensively used as
yet. Hence, in subsequent chapters, we will focus on efficient TEF1 allocations.

4 Assignment under TEF1 constraints

We first study the problem of finding a TEF1 allocation A that maximizes the
sum of weights of the induced matching:

USW(XA) ,
∑
i∈N

∑
j∈M

xAiju(i, j) =
∑
p∈[k]

vp(MAp ).

This is equivalent to the assignment problem [24] under TEF1 constraints spec-
ified in Definition 6. We define the decision version of the problem as follows:
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Definition 8 (AssignTEF1) An instance of the Assignment under TEF1 con-
straints (AssignTEF1) problem is given by parameters (i) to (iii) of Section 2
as well as a value U ∈ R+; it is a ‘yes’-instance iff it admits a TEF1 allocation
A with a utilitarian social welfare at least U .

A TEF1 allocation always exists under our Definition 2 (see Section 5 for further
details); we prove next that it is hard to compute one with the maximum USW.

Theorem 3. The AssignTEF1 problem is NP-complete, even with only 3 types.

Proof. The problem is in NP: given an allocation A, we need to evaluate k type-
value function, solving the polynomial-time unconstrained assignment problem
(see e.g. [18]) each time, and can hence verify that A satisfies all requirements
in polynomial time.

We will now describe a polynomial-time reduction to AssignTEF1 from
the NP-complete partition problem [15]. An instance of the latter is given by
a set S = {sj}j∈[l] of l positive integers that sum to σ; it is a ‘yes’-instance
iff S can be partitioned into two subsets S1 and S2 such that both sum to
σ/2. Given an instance of the partition problem, we construct an AssignTEF1
instance as follows. We have a set of l + 2 items M = [l + 2] and a set of
2l + 4 agents N partitioned into k = 3 types N1 = {ai}i∈[l+1], N2 = {bi}i∈[l+1],
and N3 = {c1, c2}. The utilities are given by u(aj , j) = u(bj , j) = sj , ∀j ∈ [l];
u(al+1, j) =u(bl+1, j) =σ/2, ∀j ∈{l + 1, l + 2}; u(c1, l + 1) =u(c2, l + 2) = κ for
an arbitrarily large constant κ>σ; u(i, j)=0 for every other (i, j)-pair. Finally,
let U=2κ+ σ.

First, we prove that, for any ‘yes’-instance of the partition problem, so is
the corresponding AssignTEF1 instance we constructed. Given the two parts
S1 and S2 of S as above, consider the bundles M1 = {j ∈ M : sj ∈ S1},
M2 = {j ∈ M : sj ∈ S2}, and M3 = {l + 1, l + 2} allocated to N1, N2, and
N3 respectively, with no withheld items; evidently, assigning item j to agent aj
(resp. bj) for every sj in S1 (resp. S2), l+ 1 to c1, and l+ 2 to c2 constitutes the
unique optimal matching between each type and its allocated bundle, inducing
an allocation A (Definition 2). We want to prove that A is TEF1. Note that for
the above utilities, v3(M3)=2κ>0=v3(Mq) for all q∈{1, 2}; v1(M1)=v2(M1)=∑

sj∈S1
sj =σ/2 and also v2(M2)=v1(M2)=

∑
sj∈S2

sj =σ/2 from the definition

of a ‘yes’-instance of the partition problem; v1(M3\{j})=v2(M3\{j})=σ/2 for
all j∈M3. Hence, each type envies any other type up to at most one item under
A. Finally, USW(XA)=σ/2 + σ/2 + 2κ=2κ+ σ=U .

Next, we prove that, assuming our constructed AssignTEF1 instance to be
a ‘yes’-instance, so is the partition instance. Let A be an allocation verifying
all desiderata. Since κ>σ and the maximum sum of realized utilities that can
be achieved from items j ∈ [l] is σ, the only way for USW(XA) to be at least
U = 2κ + σ is to have {l + 1, l + 2} ⊆MA3 with c1 (resp. c2) assigned to l + 1
(resp. l + 2). Moreover, since the other items must contribute a sum of realized
utilities at least σ, the utility structure implies that each j∈ [l] must be assigned
to either aj or bj ; hence, M3 = {l + 1, l + 2}, there are no withheld items, and
v1(MA1 ) + v2(MA2 )=σ. Now consider the sets S1 = {sj ∈ S : j ∈MA1 } and S2 =
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{sj ∈ S : j ∈MA2 }: It is evident that they form a partition of S such that the sum
of the values in S1 (resp. S2) equals v1(MA1 ) (resp. v2(MA2 )). Since A is TEF1,
we must have v1(MA1 ) ≥ v1(MA3 \{j}) for some j ∈MA3 ; but, from our utility
structure, v1(MA3 \{j})=σ/2 for all j∈MA3 and so the inequality v1(MA1 )≥σ/2
holds. Arguing similarly, v2(MA2 )≥σ/2. But since v1(MA1 ) + v2(MA1 ) = σ, then∑

sj∈S1
sj =v1(MA1 )=

∑
sj∈S2

sj =v2(MA2 )=σ/2. ut

Since vp(·) is a particular submodular function, Theorem 3 implies the following
result that applies to the traditional indivisible item allocation setting where
each agent receives a bundle.

Corollary 1 For submodular agent valuation functions over bundles, it is NP -
hard to compute the EF1 allocation that maximizes the sum of valuations.

One might conjecture that the maximum-USW TEF1 allocation is non-wasteful.
But the following surprising result belies this intuition, and raises the question:
Does a non-wasteful, TEF1 allocation always exist?

Proposition 1 The TEF1 allocation that maximizes the utilitarian social wel-
fare may waste items, even in a problem instance that admits a non-wasteful
TEF1 allocation.

Proof. Consider a problem with itemsM = {1, 2, 3, 4, 5}, agentsN = {1, 2, 3, 4, 5}
divided into 2 types N1 ={1, 2} and N2 ={3, 4, 5}, and utilities u(i, 1) = u(i, 2) =
2, u(i, 3) = u(i, 4) = 4, u(i, 5) = 1 for every i ∈ N1; u(i, 1) = u(i, 2) = 0,
u(i, 3) = u(i, 4) = 8, u(i, 5) = 1 for every i ∈ N2. Any allocation with bundles
M1 = {1, 2} and M2 = {3, 4}, and no other allocation, maximizes USW under
TEF1 constraints with USW = 20. But, such an allocation is wasteful since item
5 is withheld although ∆2(M2; 5) = 1. However, any allocation with bundles
M ′1 = {1, 3} and M ′2 = {2, 4, 5} is non-wasteful and TEF1 but has USW = 17. ut

5 TEF1 allocation with waste reduction

In our quest for a TEF1 allocation with no (or, at least, low) waste, we note
that it is possible to obtain a type-complete TEF1 allocation in polynomial time
by a natural extension (called L hereafter) of the algorithm due to Lipton et
al. [20]: Iterate over the items j ∈ M , giving item j to a type, say p, that is
currently not envied by any other type for its current bundle Mp; compute an
optimal matching with the augmented bundle Mp∪{j}; construct the envy graph
where there is a directed edge from a type q to a type r whenever q envies r and
eliminate any cycle in this graph by transferring the bundle of every type on this
cycle to its predecessor on this cycle (to ensure that there is an unenvied type
in each iteration), followed by re-matching within each such type. Although no
item is withheld, it is possible for the final allocation to be wasteful: an item
may be allocated to a type which has zero marginal utility for it or may become
unassigned after a bundle is transferred between types.
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One heuristic that could reduce waste is to allocate the item to the unen-
vied type that has the maximum marginal utility for it, breaking further ties
uniformly at random, rather than to an arbitrary unenvied type – we call L,
augmented with this heuristic, H. Unfortunately, Example 1 shows that, H can
be wasteful in general. Consider the order 1, 2, · · · , 6 over items: 1 and 2 are ob-
viously allocated to N1 while, depending on how ties are broken, 3, 4, 5 can all be
given to N2. With this allocation of item 5, envy appears for the first time and N1

is the only unenvied type. Hence, 6 must go to N1 although ∆1({1, 2}; 6) = 0 and
is wasted. Notice further that if 6 were allocated to N2, it would increase N2’s
own type-value but make N1 envy N2 up to 2 items although N1 does not want
6 in conjunction with its current bundle! This is especially disappointing since
Example 1 admits three non-wasteful TEF1 allocations, which are also typewise
Pareto optimal and maximize USW, with bundles M∗1 = {1, 2, 3}, {1, 2, 5}, or
{1, 2, 3, 5}, and M∗2 = M\M∗1 (each resulting in a unique optimal matching for
each type).

Nevertheless, To see how the marginal utility maximization heuristic per-
forms in practice, we experimentally compared procedures L and H using the
percentage of items wasted as our performance metric. We simulated two sets of
problem instances with n = 100 agents partitioned into k = 3 types: Unequal:
|N1| = 74, |N2| = 13, |N3| = 135; Equal: |Np| ≈ n/k for all types p ∈ [k].
For each, we used m ∈ {50, 100} items; for each agent, we sampled m numbers
uniformly at random from [0, 1] and normalized them to generate utilities for all
m items. We report results averaged over 100 runs each.

We find that L wastes 39% (resp. 13%) of the items on average with m =
100 (resp. m = 50) for Unequal, and, for Equal, 0.005% of the items with
m = 100 and no item with m = 50; H gives non-wasteful solutions for all
instances. Thus, we can conclude that the performance of L the natural extension
of [20] strongly depends on parameters such as type proportions and the number
of items, whereas augmenting it with the heuristic under consideration gives
surprisingly good results over a variety of input instances.

6 Binary utilities: non-wasteful TEF1 allocation

In this section, we fill focus on the binary utility model : u(i, j) ∈ {0, 1}, ∀i ∈ N ,
∀j ∈M . This captures scenarios where each agent either approves or disapproves
of an item but does not distinguish among its approved items. There exists
prior work on fair allocation algorithms producing allocations with binary item
utilities [2] but most assume additive bundle valuations.

Theorem 4. For any problem instance with a binary utility model, there exists
a non-wasteful TEF1 allocation that can be computed in polynomial time.

Our proof is constructive: We provide and analyze an allocation algorithm for
the problem (Algorithm 1). Like Lipton et al. [20], we iterate over the items

5 These numbers roughly follow the proportions of Chinese, Malay, and Indian/Other
residents of Singapore according to the 2010 census report [9].
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Algorithm 1: PMURR({Np}p∈[k],M, (u(i, j))i∈N,j∈M )

Withheld set M0 ←M ;
Temporary set MT ← ∅;
Allocated bundles Mp ← ∅ ∀p ∈ [k].
repeat

for j ∈M0 do
if ∆p(Mp; j) = 0 ∀p ∈ [k] then

M0 ←M0\{j}; MT ←MT ∪ {j}.
else

Find a type p such that ∆p(Mp; j) > 0.
M0 ←M0\{j}; Mp ←Mp ∪ {j}.
if some type envies p up to more than 1 item then

/*Revocation and reallocation*/
repeat

Find types q, r such that r envies q up to more than 1 item.
Find item j′ ∈Mq such that ∆r(Mr; j′) = 1.
Mq ←Mq\{j′}; Mr ←Mr ∪ {j′}.

until no type envies another up to more than 1 item.

end
M0 ←MT ; MT ← ∅.

until M0 = ∅ or ∆p(Mp; j) = 0 ∀j ∈M0, ∀p ∈ [k].

but decide to augment a type’s bundle with an item not based on (the absence
of) envy towards it but on the marginal utility of the type for the item. Let
us call any algorithm that starts with empty bundles and follows the principle
of augmenting the current bundle Mp of a type p with an item j only if p has
positive marginal utility (i.e. ∆p(Mp; j)>0) a PMU algorithm.

Proposition 2 Under the binary utility model, we have vp(S) ≤ min{|Np|, |S|},
∀p ∈ [k], ∀S ⊆ M . In particular, any type’s value for its allocated bundle at
any stage of a PMU algorithm is equal to the cardinality of the bundle, i.e.
vp(Mp) = |Mp|, ∀p ∈ [k].

Proof. The first part follows directly from the fact, for binary utilities, that any
item can contribute either 1 or 0 to the type-value of any bundle, i.e. ∆p(S; j) ∈
{0, 1} for any p ∈ [k], S ⊆ M , and j 6∈ S. For the second part, note that each
type starts with an empty bundle (hence zero type-value) and increases its type-
value by 1 every time it acquires an item under a PMU algorithm; moreover,
since all positive utilities are equal, the only way for an item j to improve the
type-value of p is to ensure that every item is assigned to an agent in every
(Np,Mp∪{j})-matching – hence, if an item is revoked, both the bundle-size and
type-value diminish by 1. ut

Corollary 2 A type p ∈ [k] with |Mp| = |Np| under a PMU algorithm cannot
envy any bundle S⊆M since vp(S)≤|Np|.

If after receiving a new item, a type is still envied by all others up to at most 1
item, no further action is necessary. But a PMU approach by itself cannot ensure
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that no type will start envying the recipient up to more than 1 item if the latter
was already envied up to 1 item. If envy does exceed the acceptable limit, we
execute a special revocation and reallocation (RR) subroutine repeatedly until
we restore the TEF1 property – hence, we call our algorithm PMURR. The
functioning of the RR subroutine depends on the following result:

Proposition 3 At any stage of a PMU algorithm, if type p envies type q up to
ν or more items, then |Mq| ≥ |Mp|+ ν.

Proof. It follows from the definition of envy up to ν (or more) items: for any
subset C ⊆Mq with |C| = ν − 1, vp(Mp) < vp(Mq\C). But, from Proposition 2
(and since C ⊆Mq), we must have vp(Mq\C) ≤ |Mq\C| = |Mq| − |C| = |Mq| −
ν + 1. Combining this with the fact that vp(Mp) = |Mp| (Proposition 2), we get
|Mp| < |Mq| − ν + 1, i.e. |Mp| ≤ |Mq| − ν. ut

Corollary 3 Type p can envy another type q only if q has an allocated bundle
of a larger size than p which, in turn, implies that there can be no cycles in the
envy graph among types for binary utilities under a PMU algorithm.

The following lemma proves that the existence of envy is sufficient for having an
item that can be revoked and reallocated.

Lemma 2. At any stage of a PMU algorithm, if type p envies type q, then there
is an item j ∈Mq which has a positive marginal utility for p, i.e. ∆p(Mp; j) = 1.

Proof. By Proposition 2 and Corollary 2, if N ′p is the subset of agents who are
assigned items in the current (Np,Mp)-matching, then we must have vp(Mp) =
|Mp| = |N ′p| < |Np| for p to envy q. Now, if Nq

p is the subset of agents who
would be assigned items in a (Np,Mq)-matching, we must have |Nq

p | = vp(Mq) >
vp(Mp) = |N ′p|, so that |Nq

p\N ′p| ≥ |Nq
p | − |N ′p| > 0. Since Nq

p\N ′p ⊆ Np\N ′p,
each agent in Nq

p\N ′p is assigned no item under the current matching but has a
positive utility for a distinct item in Mq. ut

Evidently, a revocation from q (resp. a reallocation to r) decrements (resp. incre-
ments) its type-value. But, it is not immediately obvious how it affects all envy
relations (other types that already envied q or r up to 1 or more items, types
that q might start envying up to 1 or more items, etc.) and whether we could
trigger a never-ending chain reaction. Our final lemma dispels such doubts.

Lemma 3. The revocation and reallocation subroutine produces a TEF1 alloca-
tion in a polynomial number of steps.

Proof. First note that computing a type-value for any bundle is polynomial-time
and so is checking whether r envies q up to more than 1 item (i.e. vr(Mr) <
vq(Mq\{j}) for some j ∈ Mq). Now, for an iteration of the RR subroutine
to occur, we must have a type r envying a type q up to 2 or more items, so
that |Mq| ≥ |Mr| + 2 by Proposition 3. For any collection of bundles M =

{M1, . . .M2}, define the potential function Φ(M) ,
∑

p∈[k] |Mp|2, and let M
′

=
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{M ′1, . . .M ′2} be the collection of bundles after revocation from q and reallocation
to r. Hence we have |M ′q| = |Mq| − 1 and |M ′r| = |Mr| + 1 (by Proposition 2)
but |M ′p| = |Mp| for every other type p. Thus, upon simplification,

Φ(M
′
)− Φ(M) = |M ′q|2 − |Mq|2 + |M ′r|2 − |Mr|2 = 2(1 + |Mr| − |Mq|)

≤ 2(1− 2) = −2,

i.e. Φ strictly decreases with each RR iteration, and obviously lies between 0 and
m2 (since

∑
p∈[k] |Mp| ≤ m). Hence, RR terminates after a polynomial number

of iterations; by the stop criterion, the final allocation is TEF1. ut

We are now ready to prove the main result of this section.

Proof (Theorem 4).
Non-wastefulness: By construction, no bundle-augmentation and revocation-

and-reallocation allow an item in an allocated bundle to remain unassigned; by
Corollary 3, no envy cycles are ever formed in the envy graph among types,
hence bundles are never passed between types (unlike in the decycling procedure
of [20]) and so no item once assigned can become unassigned (or transferred to
the temporary set). However, within the for loop, the revocation(s) might re-
sult in an agent becoming unassigned who has a positive utility for a currently
withheld item that was put in the temporary set because it previously had zero
marginal utility for each type (hence this item now becomes a wasted item).
This necessitates the outer repeat loop whose stop criterion ensures that there
are no wasted items in the withheld set at the end of the algorithm.

TEF1 property: Lemma 3 ensures that the allocation is TEF1 after every
iteration of the for loop, hence upon termination of the algorithm.

Polynomial time-complexity: Computing vp(·) and ∆p(·), verifying envy
up to more than 1 item, and finding an item to revoke and reallocate are all
polynomial-time; Lemma 3 ensures that each iteration of the for loop takes
polynomial time. With each iteration of the outer repeat loop, the size of the
withheld set, which starts at m, strictly decreases (if it does not, it must mean
that each withheld item has zero marginal utility for every type – a stop crite-
rion), hence we have a linear number of iterations. ut

7 Discussion and future work

We have introduced and investigated new fairness and efficiency concepts for
the allocation of indivisible goods to agents of pre-defined types. Evidently, the
most important open question is whether a non-wasteful TEF1 allocation exists
for every problem instance with arbitrary (non-negative) agent-item utilities.
Important properties (such as the equality of bundle size and type-value) do not
carry over from binary to arbitrary utilities, hence extensions of our PMURR
algorithm to general utility models remain elusive.

It will also be interesting to deduce a theoretical upper bound on the number
of wasted items for heuristic approaches such as the one in Section 5.
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We considered one type-value function (Definition 1) here, which already
posed interesting challenges. A natural alternative, the average utilitarian type-
value v̂p(S) , vp(S)/|Np| is equivalent to vp(S) for all intents and purposes in
this paper. More complex functions such as OWA operators [29] or those that
address fairness within a type (e.g. [5]) merit further analysis.

Other possible directions for future research include non-envy-based fairness
concepts (egalitarian type-welfare, proportionality, maximin share etc.) as well
as strategic implications of typewise fair allocation algorithms.
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