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Apartado Postal 20-126, Ciudad de México 01000, México.

Abstract
We study the Bernstein-Landau paradox in the collisionless motion of an electrostatic plasma in the presence of a

constant external magnetic field. The Bernstein-Landau paradox consists in that in the presence of the magnetic field,
the electric field and the charge density fluctuation have an oscillatory behavior in time. This is radically different from
Landau damping, in the case without magnetic field, where the electric field tends to zero for large times. We consider
this problem from a new point of view. Instead of analyzing the linear Vlasov-Poisson system, as it is usually done, we
study the linear Vlasov-Ampère system. We formulate the Vlasov-Ampère system as a Schrödinger equation with a
selfadjoint Vlasov-Ampère operator in the Hilbert space of states with finite energy. The Vlasov-Ampère operator has
a complete set of orthonormal eigenfunctions, that include the Bernstein modes. The expansion of the solution of the
Vlasov-Ampère system in the eigenfunctions shows the oscillatory behavior in time. We prove the convergence of the
expansion under optimal conditions, assuming only that the initial state has finite energy. This solves a problem that
was recently posed in the literature. The Bernstein modes are not complete. To have a complete system it is necessary
to add eigenfunctions that are associated with eigenvalues at all the integer multiples of the cyclotron frequency. These
special plasma oscillations actually exist on their own, without the excitation of the other modes. In the limit when
the magnetic fields goes to zero the spectrum of the Vlasov-Ampère operator changes drastically from pure point to
absolutely continuous in the orthogonal complement to its kernel, due to a sharp change on its domain. This explains
the Bernstein-Landau paradox. Furthermore, we present numerical simulations that illustrate the Bernstein-Landau
paradox.

1 Introduction

Collisionless motion of an electrostatic plasma can exhibit wave damping, a phenomenon identified by Landau in [18],
and that is called Landau damping. It consists in the decay for large times of the electric field. There is a very
extensive literature on Landau damping. See for example, [10, 11, 12, 27, 30, 31], and the references quoted there.
For a recent deep mathematical study of Landau damping in the nonlinear case see [21]. On the contrary, it is known
that magnetized plasmas can prevent Landau damping [6]. In fact, it was shown by Bernstein [6] that in the presence
of a constant magnetic field the electric field does not decay for large times, and that, actually, it has an oscillatory
behaviour as a function of time. This phenomenon is called the Bernstein-Landau paradox, see for example [32],
because it seems paradoxical that even an arbitray small, but nonzero, value of the external constant magnetic field
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can be the cause of this radical change in the behaviour of the electric field for large times. The standard theory of
the Bernstein-Landau paradox in the physics literature is based on the representation of the solutions to the Vlasov-
Poisson system of equations in terms of the Bernstein modes. See, for example, [30][section 9.16] and [31][section
4.4.1]. A recent mathematical work [5] reexamined the Bernstein theory by establishing that the Fourier-Laplace
method for the analysis of the Vlasov-Poisson system is complete, i.e., that it allows to represent the charge density
fluctuation obtained from the solution to the Vlasov-Poisson system as a series of Bernstein modes, provided that the
initial values of the solution satisfy rather strong conditions in regularity and on decay. The work [5] also considers
other problems.

It is the purpose of the present work to revisit the Bernstein-Landau paradox from a new point of view. Instead of
considering the Vlasov-Poisson system we study the Vlasov-Ampère system. We write the Vlasov-Ampère system as a
Schrödinger equation where the Vlasov-Ampère operator plays the role of the Hamiltonian. We construct a realization
of the Vlasov-Ampère operator as a selfadjoint operator in the Hilbert space, that we call H, that consists of the
charge density functions that are square integrable and of the electric fields that are square integrable and of mean
zero. Actually, the square of the norm of H is the energy. From the physical point of view this permits us to use the
conservation of the energy in a very explicit way. On the mathematical side, this allows us to bring into the fore the
powerful methods of the spectral theory of selfadjoint operators in a Hilbert space. There is a very extensive literature
in spectral theory, see for example [15, 23, 24, 25, 26]. This approach has previously been used in the case without
magnetic field to analyze the Landau-damping in [11, 12]. Within this framework the study of the Bernstein-Landau
paradox reduces to the proof that the Vlasov-Ampère operator only has pure point spectrum, i.e., that its spectrum
consists only of eigenvalues. Then, the fact that the Vlasov-Ampère operator has a complete set of orthonormal
eigenfunctions follows from the abstract spectral theory of selfadjoint operators. We expand the general solutions to
the Vlasov-Ampère system in the orthonormal basis of eigenfunctions of the Vlasov-Ampère operator. The coefficients
of this expansion are the product of the scalar product of the initial state with the corresponding eigenfunction, and of
the phase e−itλ, where t is time and λ is the eigenvalue of the eigenfunction. This representation of the solution shows
the oscillatory behavior in time, that is to say the Bernstein-Landau paradox. Moreover, our representation of the
solution as an expansion in the orthonormal basis of eigenfunctions of the Vlasov-Ampère operator converges strongly
in H for any initial data in H, that is to say for any square integrable initial state without any further restriction in
regularity and decay. Note that our result is optimal, since square integrability is the minimum that we can require,
even to pose precisely the problem. A physical state has to have finite energy, i.e., it has to be square integrable. Our
result solves, in the case of one dimension in space and two dimensions in velocity, the open problem posed in Remark
3 of [5] of justifying the expansion in the Bernstein modes of the charge density fluctuation, without the regularity in
space and decay in velocity that they assume in [5]. We prove that the spectrum of the Vlasov-Ampère operator is
pure point in two different ways. In the first one, we actually compute the eigenvalues and we explicitly construct a
orthonormal basis of eigenfunctions, i.e., a complete set of orthonormal eigenfunctions. This, of course, gives us much
more than just the existence of the Bernstein expansion, and is interesting in its own right, because it can be used for
many other purposes. Actually, our analysis shows that the Bernstein modes alone are not a complete orthonormal
system. In fact, to have a complete orthonormal system it is necessary to add eigenfunctions that are associated with
eigenvalues at all the integer multiples of the cyclotron frequency, including the zero eigenvalue. These eigenfunctions
have nontrivial density function, but the electric field and the charge density fluctuation are zero. Recall that the charge
density fluctuation is obtained averaging the density function over the velocities. In consequence, these eigenfunctions
do not appear in the Bernstein expansion of the charge density fluctuation. Anyhow, these eigenfunctions are physically
interesting because they show that there are plasma oscillations such that at each point the charge density fluctuation
and the electric field are zero. Some of then are time independent. Note that since our eigenfunctions are orthonormal,
these special plasma oscillations actually exist on their own, without the excitation of the other modes. It appears that
this fact has not been observed previously in the literature. In the second one we use an abstract operator theoretical
argument based on the celebrated Weyl theorem on the invariance of the essential spectrum of a selfadjoint operators
in Hilbert space. This argument allows us to prove that the Vlasov-Ampère operator has pure point spectrum. It gives
a less detailed information about where the eigenvalues are located, and it tells us nothing about the eigenfunctions.
However, it is enough for the proof of the existence of the Bernstein-Landau paradox without going through the
detailed calculations of the first approach. It also tells us why the Bernstein-Landau paradox exists from a general
principle in spectral theory.

On the contrary in the case where the magnetic field is zero, it was proven in [11, 12] that the spectrum of the
Vlasov-Ampère operator is made of an absolutely continuous part and of a kernel. The Landau damping follows from
the well known fact that for a selfadjoint operator H, the operator e−itHP0 goes weakly to zero as t → ±∞ (here
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P0 is the projection on the absolutely continuous part of the spectrum). It has been remarked in [10] that there are
”interesting analogies with Lax and Phillips scattering theory ” [19]. In fact, the results of [11, 12] prove that it is not
just an analogy, but the consequence of a convenient reformulation of Landau damping in terms of the Vlasov-Ampère
system. The sharp change in the spectrum of the Vlasov-Ampère operator when the magnetic field goes to zero, i.e.
from pure point to absolutely continuous in the orthogonal complement to its kernel, may appear to be paradoxical
because the formal Vlasov-Ampère operator is formally analytic in the magnetic field. The issue is that the domain
of the selfadjoint realization of the Vlasov-Ampère operator changes abruptly when the magnetic field is zero. It is a
well known fact in the spectral theory of families of linear operators that the spectrum can change sharply at values of
the parameter where the domain of the operator sharply changes. For a comprehensive presentation of these results
the reader can consult, for example, [15]. Summing up, this shows that there is no paradox in the Bernstein-Landau
paradox, just a well known fact of spectral theory, but, of course, in the physics literature the domains of the operators
are usually not taken into account. Perhaps the reason why the absence of Landau damping for arbitrarily small
magnetic fields is considered as paradoxical is related to the fact that the Vlasov-Poisson system somehow hides the
underlying mathematical physics structure of our problem, in spite of the fact that it is a convenient tool, particularly
for computational purposes. Let us explain what we mean. The full Maxwell equations consist of the Maxwell-Faraday
equation, the Ampère equation, the Gauss law, and the Gauss low for magnetism, i.e., the divergence of the magnetic
field is zero. In our case the Maxwell-Faraday equation and the Gauss law for magnetism are automatically satisfied.
So, of the Vlasov-Maxwell equations, only the Vlasov equation remains, as well as the Ampère equation, and the
Gauss law. Furthermore, the Gauss law is a constraint that is only necessary to impose at the initial time, since
it is propagated by the Vlasov-Ampère system. Further, both the Vlasov and the Ampère equations are evolution
equations. So, the natural way to proceed is to solve the Vlasov-Ampère system as an evolution problem, and to
restrict the initial data to those who satisfy the Gauss law. The situation with the Vlasov-Poisson system is different.
In the Vlasov-Poisson system the Ampère equation is not taken into account. So, one could think that the Vlasov-
Poisson system is incomplete. The remedy is that instead of imposing the Gauss law only at the initial time, it is
required at all times. We actually prove in Section 2 that the Vlasov-Poisson system is indeed equivalent to the
Vlasov-Ampère system plus the validity of the Gauss law at the initial time. However, the Vlasov-Poisson system is a
hybrid one where the Vlasov equation is an evolution equation and the Poisson equation is an elliptic equation, without
time derivative.This is one way to understand why in the Vlasov-Poisson system the basic mathematical physics of
our problem is not so apparent. On the contrary, as we mentioned above, the Vlasov-Ampère system is an evolution
problem, that moreover, as we already mentioned, and as we explain in Section 2, has a conserved energy that is
explicitly expressed in terms of the density function and the electric field that appear in the Vlasov-Ampère system.
These two facts are the reasons why the Vlasov-Ampère system has a selfadjoint formulation in Hilbert space, and
then, it is clear that there is no paradox in the Bernstein-Landau paradox, as we explained above.

Once the selfadjointness of the Vlasov-Ampère formulation is established, it is a matter of explicit calculations to
determine the eigenfunctions. The technicalities of the calculations are related to the fact that three different natural
decomposition are combined. The first one is based on Fourier decomposition (factors einx), the second one is based
on a direct sum of the kernel of the operator and its orthogonal (it will be denoted as H = Ker[H] ⊕ Ker[H]⊥) and
the third one starts from the determination of the eigenfunctions with a vanishing electric field (it will be denoted as
F = 0). The combination of these three decompositions is made compatible with convenient notations.

The organization of this work is as follows. In Section 2 we introduce the Vlasov-Poisson and the Vlasov-Ampère
systems, and we prove their equivalence. In Section 3 we give the notations and definitions that we use. In sections 4
we consider the case of a pure Vlasov equation without coupling. We construct a selfadjoint realization of the Vlasov
operator, we explicitly compute the eigenvalues and we explicitly construct an orthonormal system of eigenfunctions
that is complete, i.e., it is a basis of the Hilbert space. In Section 5 we construct a selfadjoint realization of the Vlasov-
Ampère operator, we compute the eigenvalues, and we construct an orthonormal systems of eigenfunctions that is
complete, that is to say that is a basis of the Hilbert space. In Section 6 we obtain a representation of the general
solution to the Vlasov-Ampère system as an expansion in our orthonormal basis of eigenfunctions. In particular we
prove the convergence of the Bernstein expansion [6], [5], under optimal conditions on the initial state. In Section 7
we give a operator theoretical proof of the existence of the Bernstein-Landau paradox, with an argument based on
the Weyl theorem for the invariance of the essential spectrum. In Section 8 we illustrate our results with numerical
calculations. Finally, in the appendix we study the properties of the secular equation.
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2 The Vlasov-Poisson and the Vlasov Ampère systems

We adopt the Klimontovitch approach [16, 14] where the Newton equation of a very large number of charged particles
with velocity v moving in an electromagnetic field is approximated by a continuous density function f(t, x, v) ≥ 0. The
variable t is time. We assume that the charged particles undergo a one dimensional motion, and that the real variable
x is the position of the charged particles. Furthermore, we suppose that the velocity, v, of the charged particles is two
dimensional, i.e., v = (v1, v2) ∈ R2. Further, we take the motion of the charged particles along the first coordinate
axis of the velocity of the charged particles. The density function is a solution of a Vlasov equation,

∂tf + v1∂xf + F · ∇vf = 0. (2.1)

We assume, for simplicity, that the motion of the charged particles is a 2π-periodic oscillation, that is a usual assump-
tion [10]. Hence, we look for solutions to (2.1), f(t, x, v), for t ∈ R, x ∈ [0, 2π], v = (v1, v2) ∈ R2, that are periodic in
x, i.e., f(t, 0, v) = f(t, 2π, v). The electromagnetic Lorentz force,

F(t, x) =
q

m
(E(t, x) + v ×B(t,x)) , (2.2)

is divergence free with respect to the velocity variable, that is ∇v · F = 0. The Maxwell’s equations are simplified,
assuming that the magnetic field B(t,x) = B0 is constant in space-time. Following the convention adopted in [4, 32], we
suppose that the two dimensional velocity v is perpendicular to the constant magnetic field, i.e., B0 = (0, 0, B0), B0 > 0.
Moreover, we assume that the electric field is directed along the first coordinate axis, E(t, x) = (E(t, x), 0, 0). We adopt
a convenient normalization adapted to electrons, that is qref = −1 and mref = 1, where qref is the charge of the electron,
and mref is the mass of the electron. The electric field satisfies the Gauss law,

∂xE(t, x) = 2π −
∫
R2

fdv, (2.3)

where 2π is the constant density of the heavy ions, that do not move. We take the density of the ions equal to 2π to
simplify some of the calculations below. The term −

∫
R2 f dv is the charge density of the particles with charge −1.

With these notations and normalizations (2.1), and (2.3) are written as the following system,
∂tf + v1∂xf − E∂v1f + ωc (−v2∂v1 + v1∂v2) f = 0,

∂xE(t, x) = 2π −
∫
R2

fdv.
(2.4)

We denote the cyclotron frequency by ωc := B0.
We retain the potential part of the electric field

E(t, x) = −∂xϕ(t, x), (2.5)

where the potential ϕ(t,x) is a solution to the Poison equation,

−∆ϕ = 2π −
∫
R2

fdv. (2.6)

The electric field and the potential are assumed to be periodic with period 2π, i.e. E(t, 0) = E(t, 2π), ϕ(t, 0) = ϕ(t, 2π).
Note that since the potential ϕ(t, x) is periodic it follows from (2.5) that the mean value of the electric field is zero,∫ 2π

0

E(t, x) dx = 0. (2.7)

Two important properties of the Vlasov-Poisson system (2.4, (2.5), and (2.6) are that the density function satisfies
the maximum principle

inf
(x,v)∈[0,2π]×R2

fini(x, v) ≤ f(t, x, v) ≤ sup
(x,v)∈[0,2π]×R2

fini(x, v),

where fini is the initial value of the solution, f(t, x, v), and that the total energy is constant in time,

d

dt

(∫
[0,2π]×R2

|v|2

2
fdxdv +

∫
[0,2π]

|E|2

2
dx

)
= 0. (2.8)
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Following [6], a linearization of the equations around a homogeneous Maxwellian equilibrium state f0(v), where,

f0(v) := e
−v2

2 is performed. Here the Maxwellian distribution is normalized for Tref kB = 1, where Tref is the reference
temperature and kB is Boltzmann’s constant. It corresponds to the expansion

f(t, x, v) = f0(v) + ε
√
f0(v)u(t, x, v) +O(ε2), (2.9)

and
E(t, x) = E0 + εF (t, x) +O(ε2), (2.10)

with a null reference electric field E0 = 0. Inserting (2.9) and (2.10) into (2.4), and keeping the terms up to linear in
ε, one gets the linearized Vlasov-Poisson system written as,

∂tu+ v1∂xu+ Fv1
√
f0 + ωc (−v2∂v1 + v1∂v2)u = 0,

∂xF = −
∫
R2

u
√
f0dv,∫

[0,2π]

F = 0,

(2.11)

where in the third equation we have added the constraint that the mean value of the electric field F is zero, as in
(2.7). Moreover, the electric field F (t, x) = −∂xϕ(t, x) is obtained from a potential as in (2.5), where the potential is
periodic, ϕ(t, 0) = ϕ(t, 2π), and it solves the Poisson equation,

∆ϕ = −
∫
R2

u
√
f0dv. (2.12)

Observe that the second equation in (2.11) is the Gauss law,

∂xF (t, x) = ρ(t, x), (2.13)

where ρ(t, x) is the charge density fluctuation of the perturbation of the Maxwellian equilibrium state,

ρ(t, x) := −
∫
R2

u(t, x, v)
√
f0(v)dv. (2.14)

The study of the solutions to the Vlasov-Poisson system is the standard method to analyze the dynamics of a very
large number of charged particles moving in the presence of a constant external magnetic field. For the case of the
Bernstein-Landau paradox see, for example,[6], [32], [30][section 9.16], [31][[section 4.4.1] and [5]. We now present an
alternate method to study this problem. In the full Maxwell equations one of the equation is the Ampère equation

∂tF =

∫
R2

v1 u
√
f0dv, (2.15)

where we have taken the dielectric constant ε0 = 1. We consider here the following modified Ampère equation

∂tF = I∗
∫
R2

v1
√
f0 u dv, (2.16)

where I∗ is the space operator such that I∗g = g − [g] and the mean value in space of a function g is denoted by [g],

that is to say, I∗g(x) := g(x)− 1
2π

∫ 2π

0
g(y) dy. With this convention the Vlasov-Ampère system is written as follows,

∂tu+ v1∂xu+ Fv1
√
f0 + ωc (−v2∂v1 + v1∂v2)u = 0,

∂tF = I∗
∫
R2

v1
√
f0 udv.

(2.17)

To the Vlasov-Ampère system (2.17), we add conditions for Fini := F (0, ·) and uini = u(0, ·, ·) : the integral constraint,∫ 2π

0

Fini dx = 0, (2.18)

is satisfied at initial time, and the Gauss law (2.13), (2.14) is also satisfied at the initial time,

d

dx
Fini = −

∫
R2

uini
√
f0dv. (2.19)
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LEMMA 2.1. The linearized Vlasov-Poisson system (2.11) is equivalent to the Vlasov-Ampère system (2.17) with
initial conditions that satisfy (2.18), (2.19).

Proof. Let (u, F ) be a solution the Vlasov-Ampère system (2.17) that satisfy (2.18), (2.19). It follows from the Ampère
equation that

∂t

∫ 2π

0

F (t, x) dx =

∫ 2π

0

I∗
∫
R2

v1
√
f0 u = 0

and consequently the integral constraint (2.18) is propagated to all times. The Gauss law (2.19) is propagated also
to all times by the Vlasov-Ampère system, as we proceed to prove. Multiplying the first equation in (2.17) by

√
f0,

integrating in v over R2, using that f0 is an even function of |v| and using integration by parts, we prove the following
continuity equation,

∂t

∫
R2

u
√
f0dv + ∂x

∫
R2

v1u
√
f0dv = 0. (2.20)

Deriving (2.16) with respect to x we obtain, 0 = ∂x
(
∂tF − I∗

∫
R2 v1u

√
f0dv

)
= ∂x

(
∂tF −

∫
R2 v1u

√
f0dv

)
, because

∂x = ∂xI
∗. Then, by (2.20)

0 = ∂t

(
∂xF +

∫
R2

u
√
f0 dv

)
,

from which the Gauss law follows for all times. We have proven that a solution to the Vlasov-Ampère system (2.17)
that satisfies the initial conditions (2.18), (2.19) solves the Vlasov-Poisson system (2.11).
On the contrary let (u, F ) be a solution to the Vlasov-Poisson system (2.11). Then by the second equation in (2.11)
and (2.20),

0 = ∂x∂tF + ∂t

∫
R2

u
√
f0dv = ∂x

(
∂tF −

∫
R2

v1u
√
f0dv

)
.

So ∂tF =
∫
R2 v1u

√
f0dv + C(t), where C(t) is constant in space. Then, ∂tI

∗F = I∗
∫
R2 v1u

√
f0dv. But F has zero

mean value, so I∗F = F , and it follows that the Ampère law in (2.16) holds. Hence, the Vlasov-Poisson system implies
the Vlasov-Ampère system (2.17) and the initial conditions (2.18), (2.19).

From now on we only consider the Vlasov-Ampère system (2.17) with conditions (2.18), (2.19). A fundamental
energy relation is easily shown for solutions of the Vlasov-Ampère formulation (2.17)

d

dt

(∫
[0,2π]×R2

u2

2
dxdv +

∫
[0,2π]

F 2

2
dx

)
= 0. (2.21)

It is the counterpart of the energy identity (2.8), so the term
∫
[0,2π]×R2

∫
v
u2

2 dxdv is identified with the kinetic energy

of the negatively charged particles, and the term
∫
[0,2π]

F 2

2 dx is the energy of the electric field. This identity is known

since [17, 3]. As we show in the next sections, the identity (2.21) is the basis of our formulation of the Vlasov-Ampère
system as a Schrödinger equation in Hilbert space, where the Vlasov-Ampère operator plays the role of the selfadjoint
Hamiltonian.

3 Notations and Definitions

We will write the Vlasov-Ampère system as a Schrödinger equation with a selfadjoint Hamiltonian in an appropriate
Hilbert space. We find it convenient to borrow some terminology from quantum mechanics. For this purpose, we first
introduce some notations and definitions. We designate by R+ the positive real semi-axis, i.e., R+ := (0,∞), and by
R2 the plane. The set of all integers is denoted by Z and the set of all nonzero integers by Z∗. The positive natural
numbers are designated by N. By C we designate the complex numbers. We denote by C a generic constant whose
value does not have to be the same when it appears in different places. By C∞([0, 2π]) we designate the set of all
infinitely differentiable functions in [0, 2π], and by C∞0 (R2) we denote the set of all infinitely differentiable functions
in R2 with compact support. Let B be a set of vectors in a Hilbert space, H. We denote by Span[B] the closure in the
strong convergence in H of all finite linear combinations of elements of B, in other words,

Span[B] := closure


N∑
j=1

αjXj : αj ∈ C, Xj ∈ B, N ∈ N∗
 .
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Let M be a subset of a Hilbert space H. We define the orthogonal complement of M, in symbol, M⊥, as follows,

M⊥ := {f ∈ H : (f, u)H = 0, for allu ∈M}.

Let H be a Hilbert space, and let Hj , j = 1, . . . , N, 2 ≤ N ≤ ∞, be mutually orthogonal closed subspaces of H, that is
to say,

Hj ⊂ H⊥m, and Hm ⊂ H⊥j , j 6= m, 1 ≤ j,m ≤ N.

Note that if Hj and Hm are mutually orthogonal, then one has (f, u)H = 0, f ∈ Hj , u ∈ Hm. We say that H is the
direct sum of the Hj , j = 1, . . . , N, 2 ≤ N ≤ ∞, mutually orthogonal closed subspaces of H, and we write,

H = ⊕Nj=1 Hj ,

if for any f ∈ H, there are fj ∈ Hj , j = 1, . . . , N, such that, f =
∑N
j=1 fj . Note that the fj , j = 1, . . . , N are unique

for a given f, and that ‖f‖2H =
∑N
j=1 ‖fj‖2H.

Let A be an operator in a Hilbert space H, and let us denote by D[A] the domain of A. We say that the operator
B is an extension of the operator A, in symbol, A ⊂ B, if D[A] ⊂ D[B], and if Au = Bu, for all u ∈ D[A]. Suppose
that the domain of A is dense in H. We denote by A† the adjoint of A, that is defined as follows,

D[A†] := {v ∈ H : (Au, v)H = (u, f)H, for some f ∈ H, and for allu ∈ D[A]},

and
A†v = f, v ∈ D[A†].

We say that A is symmetric if A ⊂ A†, and that A is selfadjoint if A = A†, that is to say if D[A] = D[A†], and
Au = A†u, u ∈ D[A] = D[A†]. An essentially selfadjoint operator has only one selfadjoint extension. For any operator
A we denote by Ker[A] := {u ∈ D[A] : Au = 0} the set of all eigenvectors of A with eigenvalue zero. For more
information on the theory of operators in Hilbert space the reader can consult [15] and [23].

We denote by L2(0, 2π) the standard Hilbert space of functions that are square integrable in (0, 2π). Furthermore,
we designate by L2

0(0, 2π) the closed subspace of L2(0, 2π) consisting of all functions with zero mean value, i.e.,

L2
0(2, π) :=

{
F ∈ L2(0, 2π) :

∫ 2π

0

F (x) dx = 0

}
. (3.1)

Note that since all the functions in L2(0, 2π) are integrable over (0, 2π) the space L2
0(0, 2π) is well defined. Further,

we denote by L2(R2) the standard Hilbert space of all functions that are square integrable in R2. Let us denote by A
the tensor product of L2(0, 2π) and of L2(R2), namely,

A := L2(0, 2π)⊗ L2(R2). (3.2)

For the definition and the properties of tensor products of Hilbert spaces the reader can consult Section 4 of Chapter II
of [23]. We often make use of the fact that the tensor product of an orthonormal basis in L2(0, 2π) and an orthonormal
basis in L2(R2) is an orthonormal basis in A. As shown in Section 4 of Chapter II of [23], the space A can be identified
with the standard Hilbert space L2((0, 2π)×R2) of square integrable functions in (0, 2π)×R2 with the scalar product,

(u, f)L2((0,2π)×R2) :=

∫
(0,2π)×R2

u(x, v) f(x, v) dx dv,

where x ∈ (0, 2π) and v = (v1, v2) ∈ R2. Our space of physical states, that we denote by H, is defined as the direct
sum of A and L2

0(0, 2π).
H := A⊕ L2

0(0, 2π). (3.3)

We find it convenient to write H as the space of the column vector-valued functions,

(
u
F

)
where u(x, v) ∈ A and

F (x) ∈ L2
0(0, 2π). The scalar product in H is given by,((

u
F

)
,

(
f
G

))
H

:= (u, f)A + (F,G)L2(0,2π).
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Note that by the identity (2.21) the norm ofH is constant in time for the solutions to the Vlasov-Ampère system.This is
the underlyning reason why we will be able in later sections to formulate the Vlasov-Ampère system as a Schrödinger
equation in H with a selfadjoint realization of the Vlasov-Ampère operator playing the role of the Hamiltonian.
Moreover, the square of the norm of H is the constant energy of the solutions to the Vlasov-Ampère system.

Let us denote by H(1)(0, 2π) the standard Sobolev space [2] of all functions in L2(0, 2π) such that its derivative in
the distribution sense is a function in L2(0, 2π), with the scalar product,

(F,G)H(1)(0,2π) := (F,G)L2(0,2π) + (∂xF, ∂xG)L2(0,2π).

We designate by H(1,0)(0, 2π) the closed subspace of H(1)(0, 2π) that consists of all functions in F ∈ H(1)(0, 2π) such
that F (0) = F (2π) and that have mean zero. Namely,

H(1,0)(0, 2π) :=

{
F ∈ H(1)(0, 2π) : F (0) = F (2π), and

∫ 2π

0

F (x) dx = 0

}
.

Note [2] that as the functions in H(1)(0, 2π) have a continuous extension to [0, 2π], the space H(1,0)(0, 2π) is well
defined.

We denote by L2(R+, rdr) the standard Hilbert space of functions defined on R+ with the scalar product,

(τ, η)L2(R+,rdr) :=

∫ ∞
0

τ(r) η(r) r dr.

4 The Vlasov equation without coupling

In this section we consider the case without electric field, i.e. the Vlasov equation. The results of this section will be
useful in the study of the full Vlasov-Ampère system, that we carry over in Sections 5.

The Vlasov equation can be written as the following Schrödinger equation in A,

i∂tu = i (−v1∂x + ωc(v2 ∂v1 − v1 ∂v2))u. (4.1)

In the following proposition we obtain a complete orthonormal system of eigenfunctions for the Vlasov equation (4.1).
To this end, we introduce the polar coordinates (r, ϕ) of the velocity v ∈ R2.

PROPOSITION 4.1. Let {τj}∞j=1 be an orthonormal basis of L2(R+, rdr). Let ϕ ∈ [0, 2π), r > 0, be polar coordinates

in R2, v1 = r cosϕ, v2 = r sinϕ. For (n,m, j) ∈ Z2 × N∗ we define,

un,m,j :=
ein(x−

v2
ωc

)

√
2π

eimϕ√
2π

τj(r). (4.2)

Then, the un,m,j , (n,m, j) ∈ Z2×N∗ are an orthonormal basis in A. Furthermore, each un,m,j is an eigenfunction for

the Vlasov equation (4.1) with eigenvalue λ
(0)
m = mωc,

i (−v1∂x + ωc(v2 ∂v1 − v1 ∂v2))un,m,j = λ(0)m un,m,j , (n,m, j) ∈ Z2 × N∗. (4.3)

Moreover, the eigenvalues λ
(0)
m ,m ∈ Z, have infinite multiplicity.

Proof We first prove that the un,m,j , (n,m, j) ∈ Z2 × N∗ are an orthonormal basis in A. Clearly, it is an orthonormal
system. To prove that it is a basis it is enough to prove that if a function in A is orthogonal to all the un,m,j , (n,m, j) ∈
Z2 × N∗, then, it is the zero function. Hence, assume that u ∈ A satisfies,

(u, un,m,j)A = 0, (n,m, j) ∈ Z2 × N∗. (4.4)

Denote gn(v) :=
∫ 2π

0
e−inx u(x, v) dx. By the Cauchy-Schwarz inequality, one has |gn(v)|2 ≤ 2π

∫ 2π

0
|u(x, v)|2 dx.

Further, since u ∈ A, it follows that gn ∈ L2(R2). By (4.4), for each fixed n ∈ Z,∫
(0,2π)×R+

gn(v) ein
v2
ωc e−imϕ τj(r) dϕ r dr = 0, (m, j) ∈ Z× N∗.
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As the functions 1√
2π
eimϕ τj(r),m ∈ Z, j ∈ N∗ are an orthonormal basis in L2(R2), one has that gn(v) ein

v2
ωc = 0 for

a.e. v ∈ R2. Moreover, as ein
v2
ωc is never zero, we obtain, gn(v) = 0, for a.e. v ∈ R2, i.e.,

∫ 2π

0
e−inx u(x, v) dx = 0, n ∈ Z.

As the functions 1√
2π
einx, n ∈ Z are an orthonormal basis in L2(0, 2π), it follows that u(x, v) = 0. This completes

the proof that the un,m,j , (n,m, j) ∈ Z2 × N∗, are an orthonormal basis of A. Equation (4.3) follows from a simple
calculation using that ∂v1 = v1

r ∂r −
v2
r2 ∂ϕ, ∂v2 = v2

r ∂r + v1
r2 ∂ϕ, and v2 ∂v1 − v1 ∂v2 = −∂ϕ. Note that the eigenvalues

λ
(0)
m have infinite multiplicity because all the un,m,j with m fixed and n ∈ Z, j ∈ N∗ are orthogonal eigenfunctions for

λ
(0)
m . .

Let us denote by h0 the formal Vlasov operator with periodic boundary conditions in x, that we define as follows,

h0u := i (−v1∂x + ωc(v2 ∂v1 − v1 ∂v2))u, (4.5)

with domain,
D[h0] := D, (4.6)

where by D we denote the following space of test functions,

D := {u ∈ C∞0 ([0, 2π]× R2) :
dj

dxj
u(0, v) =

dj

dxj
u(2π, v), j = 1, . . . }, (4.7)

where by C∞0 ([0, 2π]×R2) we designate the space of all infinitely differentiable functions, defined in [0, 2π]×R2, and
that have compact support in [0, 2π]× R2.

We will construct a selfadjoint extension of h0. For this purpose, we first introduce some definitions. Let us denote
by l2(Z2 × N∗) the standard Hilbert space of square summable sequences, s =

{
sn,m,j , (n,m, j) ∈ Z2 × N∗

}
with the

scalar product,

(s, d)l2(Z2×N∗) :=
∑

(n,m,j)∈Z2×N∗
sn,m,j dn,m,j .

Let U be the following unitary operator from A onto l2(Z2 × N∗),

Uu :=
{

(u, un,m,j)A, (n,m, j) ∈ Z2 × Z
}
. (4.8)

We denote by Ĥ0 the following operator in l2(Z2 × N∗),{
(Ĥ0 s)n,m,j , (n,m, j) ∈ Z2 × N∗

}
:=
{
λ(0)m sn,m,j , (n,m, j) ∈ Z2 × N∗

}
, (4.9)

with domain, D[Ĥ0], given by,

D[Ĥ0] :=
{{
sn,m,j , (n,m, j) ∈ Z2 × N∗

}
∈ l2(Z2 × N∗) :

{
λ(0)m sn,m,j , (n,m, j) ∈ Z2 × N∗

}
∈ l2(Z2 × N∗)

}
. (4.10)

The operator Ĥ0 is selfadjoint because it is the multiplication operator by the real eigenvalues λ
(0)
m defined on its

maximal domain.

PROPOSITION 4.2. Let us define

H0 = U† Ĥ0 U, D[H0] := {u ∈ A : Uu ∈ D[Ĥ0]}. (4.11)

Then, H0 is selfadjoint. Its spectrum is pure point, and it consists of the eigenvalues λ
(0)
m ,m ∈ Z. Moreover, each

eigenvalue λ
(0)
m ,m ∈ Z, has infinite multiplicity. Further, h0 ⊂ H0.

Proof: H0 is unitarily equivalent to the selfadjoint operator Ĥ0, and in consequence H0 is selfadjoint. Let us prove
that h0 ⊂ H0. Suppose that u ∈ D[h0]. Integrating by parts we obtain,

(h0u, un,m,j)A = (u, h0 un,m,j)A = λ(0)m (u, un,m,j)A , (n,m, j) ∈ Z2 × N∗.

Hence,

Uh0u :=
{

(h0u, un,m,j)A, (n,m, j) ∈ Z2 × N∗
}

=
{
λ(0)m (u, un,m,j)A, (n,m, j) ∈ Z2 × N∗

}
∈ l2

(
Z2 × N∗

)
, (4.12)

9



where we used that h0u ∈ A, Hence,
Uu ∈ D[Ĥ0].

Moreover,

H0u = U†Ĥ0Uu = U†
{
λ(0)m (u, un,m,j)A, (n,m, j) ∈ Z2 × N∗

}
= U†Uh0u = h0u.

This completes the proof that h0 ⊂ H0. As h0 ⊂ H0 and one has the completeness of the eigenfunctions of h0 by

Proposition 4.1, it follows that the spectrum of H0 is pure point, it consists of the eigenvalues λ
(0)
m ,m ∈ Z, and each

eigenvalue λ
(0)
m ,m ∈ Z, has infinite multiplicity.

We write the Vlasov equation (4.1) as a Schrödinger equation with a selfadjoint Hamiltonian as follows,

i∂tu = H0u.

We call H0 the Vlasov operator.
Actually, we can give more information on h0.

PROPOSITION 4.3. Let h0 be the formal Vlasov operator defined in (4.5) and (4.6), and let H0 be the Vlasov
operator defined in (4.11). We have that,

h†0 = H0,

and, furthermore, h0 is essentially selfadjoint, i.e., H0 is the only selfadjoint extension of h0.

Proof: suppose that f ∈ D[h†0]. Then

(h0u, f)A = (u, h†0f)A. (4.13)

Hence, by (4.12) and (4.13)

(h0u, f)A = (Uh0u,Uf)l2(Z2×N∗) =
∑

(n,m,j)∈Z2×N∗ λ
(0)
m (u, un,m,j)A (f, un,m,j)A =

∑
(n,m,j)∈Z2×N∗ (u, un,m,j)A (h†0 f, un,m,j)A.

(4.14)

Since (4.14) holds for all u in the dense set D[h0] we obtain,{
λ(0)m (f, un,m,j)A, (n,m, j) ∈ Z2 × N∗

}
=
{

(h†0f, un,m,j)A, (n,m, j) ∈ Z2 × N∗
}
∈ l2(Z2 × N∗). (4.15)

It follows that, {
λ(0)m (f, un,m,j)A, (n,m, j) ∈ Z2 × N∗

}
∈ l2(Z2 × N∗). (4.16)

This implies that f ∈ D[H0] and that h†0f = H0f . Then, h†0 ⊂ H0. We prove in a similar way that if f ∈ D[H0], then

f ∈ D[h†0] and that, H0f = h†0f. This implies that H0 ⊂ h†0. Hence the proof that h†0 = H0 is complete. Finally let A

be a selfadjoint operator such that h0 ⊂ A. Then, A† ⊂ h†0 = H0. But as A = A†, we obtain that A ⊂ H0, and then,

H†0 ⊂ A†, but as A = A†, H0 = H†0 , we have H0 ⊂ A, and finally A = H0. This proves that H0 is the only selfadjoint
extension of h0.

5 The full Vlasov-Ampère system with coupling

In this section we consider the full Vlasov-Ampère system. We write the Vlasov-Ampère system as a Schrödinger
equation in the Hilbert space H as follows

i∂t

(
u
F

)
= H

(
u
F

)
, (5.1)

where the Vlasov-Ampère operator H is the following operator in H,

H =

[
H0 −iv1 e

−v2

4

iI∗
∫
R2 v1 e

−v2

4 · dv 0

] (
where we use the notation e

−v2

4 = e−
|v|2
4 = e−

v2
1+v2

2
4

)
. (5.2)
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In a more detailed way, the right-hand side of (5.1) is defined as follows,

H

(
u
F

)
:=

(
H0u− iv1 e

−v2

4 F

iI∗
∫
R2 v1 e

−v2

4 u dv

)
. (5.3)

We recall that I∗ gives zero when applied to constant functions in L2(0, 2π). The domain of H is defined as follows,

D[H] := D(H0)⊕ L2
0(0, 2π). (5.4)

We write H in the following form,
H = H0 + V, (5.5)

where

H0 :=

[
H0 0
0 0

]
, (5.6)

and

V :=

[
0 −iv1 e

−v2

4

iI∗
∫
R2 v1 e

−v2

4 · dv 0

]
. (5.7)

Clearly, H0 is selfadjoint with D[H0] = D[H]. Moreover, V, with D[V] = H, is bounded in H. Observe that the
presence of I∗ in V assures us that V sendsH in toH. Further, it follows from a simple calculation that V is symmetric
in H. Then, by the Kato-Rellich theorem, see Theorem 4.3 in page 287 of [15], the operator H is selfadjoint. We
proceed to prove that H has pure point spectrum. Actually, we will explicitly compute the eigenvalues and a basis of
eigenfunctions. We do that in several steps.

REMARK 5.1. The Gauss law in strong sense for a function

(
u(x, v)
F (x)

)
∈ H reads,

∫
R2

u(x, v) e
−v2

4 dv + F ′(x) = 0. (5.8)

Later, in Remark 6.1, we write the Gauss law in weak sense, and we show that it can, equivalently, be expressed as
a orthogonality relation with a subset of the eigenfunctions in the kernel of the Vlasov-Ampère operator H.

5.1 The kernel of H

In this subsection we compute a basis for the kernel of the Vlasov-Ampère operator H. We have to solve the equation

H

(
u
F

)
= 0. (5.9)

Inserting (5.3) in (5.9) we obtain,
i (−v1∂x + ωc(v2 ∂v1 − v1 ∂v2))u− iv1 e

−v2

4 F = 0,

iI∗
∫
R2

v1 e
−v2

4 u dv = 0.
(5.10)

Denote,

ψ(x) :=

∫ 2π

x

F (y) dy − 1

2π

∫ 2π

0

yF (y)dy. (5.11)

Then, as F ∈ L2
0(0, 2π), we have that ψ ∈ H(1,0)(0, 2π). Further,

F (x) = −ψ′(x). (5.12)
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Let us designate γ(x, v) := u(x, v) − e
−v2

4 ψ(x). Hence, the first equation in (5.10) is equivalent to the following
equation

H0 γ = 0. (5.13)

Then, the general solution to the first equation in (5.10) can be written as

u(x, v) = e
−v2

4 ψ(x) + γ(x, v), (5.14)

with F = −ψ′, where ψ ∈ H(1,0)(0, 2π), and γ solves (5.13). Furthermore, by (5.14) the second equation is (5.10) is
equivalent to,

I∗
∫
R2

v1 e
−v2

4 γ dv = 0. (5.15)

Then, we have proven that the general solution to (5.10) can be written as,(
u
F

)
=

(
e
−v2

4 ψ(x) + γ(x, v)
−ψ′(x)

)
, (5.16)

where ψ ∈ H(1,0)(0, 2π), F = −ψ′, and γ solves (5.13). By Proposition 4.1 the general solution can be written as

γ =
∑

(n,j)∈Z×N∗
(γ, un,0,j)A un,0,j . (5.17)

Using (4.2) we prove by explicit calculation that un,0,j , n ∈ Z and j ∈ N∗, satisfies (5.15). So the general solution
(5.17) satisfies (5.13) and (5.15).

In the following lemma we construct a basis of Ker[H], using the results above.

LEMMA 5.2. Let H be the Vlasov-Ampère operator defined in (5.3) and, (5.4). Let un,0,j be the eigenfunctions
defined in (4.2). Then, the following set of eigenfunctions of H with eigenvalue zero,{

V(0)
n :=

1√
2π + n2

einx√
2π

(
e
−v2

4

−i n

)
, n ∈ Z∗

}
∪
{

M
(0)
n,j :=

(
un,0,j

0

)
, (n, j) ∈ Z× N∗

}
, (5.18)

is linearly independent and it is a basis of Ker[H].

Proof: Let us first prove the linear independence of the sets of functions (5.18). We have to prove that if a linear
combination of the eigenfunctions (5.18) is equal to zero then, each of the coefficients in the linear combination is equal
to zero. For this purpose we write the general linear combination of the eigenfunctions in (5.18) with a convenient
notation. Let M1 be any finite subset of Z∗ and let M2 be any finite subset of Z × N∗. Then, the general linear
combination of the eigenfunctions in (5.18) can be written as follows,

∑
n∈M1

αn
1√

2π + n2
einx√

2π

(
e
−v2

4

−i n

)
+

∑
(l,p)∈M2

β(l,p)

(
ul,0,p

0

)
,

for some complex numbers αn, n ∈M1, and β(l,p), (l, p) ∈M2. Suppose that,

∑
n∈M1

αn
1√

2π + n2
einx√

2π

(
e
−v2

4

−i n

)
+

∑
(l,p)∈M2

β(l,p)

(
ul,0,p

0

)
= 0.

Since the second component of the functions in the second sum is zero, we have
∑
n∈M1

αn
1√

2π+n2

einx
√
2π
n = 0. Further,

as the
einx√

2π
, n ∈ M1 are orthogonal to each other, we have that, αn = 0, n ∈ M1. Furthermore, as the αn, n ∈ M1

are equal to zero, we obtain
∑

(l.p)∈M2
β(l,p)ul,0,p = 0. Moreover, since the ul,0,p, (l, p) ∈ M2 are an orthonormal set,

β(l,p) = 0, (l, p) ∈M2. This proves the linear independence of the set (5.18). Moreover, by (5.16) with ψ(x) = einx
√
2π
, n ∈

Z∗, and f = 0, each of the functions

1√
2π + n2

einx√
2π

(
e
−v2

4

−i n

)
n ∈ Z∗,

12



is an eigenvector of H with eigenvalue zero. Similarly, by (5.16) with ψ(x) = 0, and f = un,0,j , one has that each of
the functions, (

un,0,j
0

)
, (n, j) ∈ Z× N∗,

is an eigenfunctions of H with eigenvalue zero. By the Fourier transform, the set of functions, einx
√
2π

, n ∈ Z, is a

complete orthonormal set in L2(0, 2π). Then, in particular, any ψ ∈ H(1,0)(0, 2π), can be represented as follows,

ψ(x) =
∑
n∈Z∗

(
ψ,

einx√
2π

)
L2(0,2π)

einx√
2π
, (5.19)

where the series converges in the norm of L2(0, 2π). Note that there is no term with n = 0 because the mean value of
ψ is zero. Then, by (5.19), (

e
−v2

4 ψ(x)
−ψ′(x)

)
=
∑
n∈N∗

(
ψ,

einx√
2π

)
L2(0,2π)

einx√
2π

(
e
−v2

4

−i n

)
. (5.20)

Finally, it follows from (5.16), (5.17) and (5.20) that the set (5.18) is a basis of the kernel of H.

5.2 The eigenvalues of H different from zero and their eigenfunctions

In this subsection we compute the non-zero eigenvalues of H and we give explicit formulae for the eigenfunctions that
correspond to each eigenvalue. By (5.3) we have to solve the system of equations

H0u− iv1 e
−v2

4 F = λu,

iI∗
∫
R2

v1 e
−v2

4 u dv = λF,
(5.21)

with λ ∈ R \ {0}, and

(
u
F

)
∈ D[H]. We first consider the case where the electric field, F , is zero, and then, when it

is different from zero.

5.2.1 The case with zero electric field

We have to compute solutions to (5.21) of the form,(
u
0

)
∈ D[H], (5.22)

with u ∈ D[H0]. Introducing (5.22) into the system (5.21) we obtain,
H0u = λu,

iI∗
∫
R2

v1 e
−v2

4 u dv = 0.
(5.23)

We seek for eigenfunctions of the form,

u(x, v) :=
1√
2π

ein(x−
v2
ωc

) 1√
2π

eimϕ τ(r), (n,m) ∈ Z2, (5.24)

where (r, ϕ) are the polar coordinates of v ∈ R2, and the function τ will be specified later. We first consider the case
when n = 0. In this case the second equation in (5.23) is satisfied because the operator I∗ gives zero when applied to
functions that are independent of x. Hence, we are left with the first equation only, that is the problem that we solved
in Section 4. Then, as we seek non zero eigenvalues we have to have m 6= 0 in (5.24). Using the results of Section 4
we obtain the following lemma.
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LEMMA 5.3. Let H be the Vlasov-Ampère operator defined in (5.3) and, (5.4). Let {τj}∞j=1 be an orthonormal basis

of L2(R+, rdr). Let ϕ ∈ [0, 2π), r > 0, be polar coordinates in R2, v1 = r cosϕ, v2 = r sinϕ. For (m, j) ∈ Z∗ × N∗ let
u0,m,j be the eigenfunction defined in (4.2). Then, the set

Vm,j :=

{(
u0,m,j

0

)
, (m, j) ∈ Z∗ × N∗

}
, (5.25)

is an orthonormal set in H. Furthermore, each function on this set is an eigenvector of H corresponding the eigenvalue

λ
(0)
m = mωc 6= 0,

HVm,j = λ(0)m Vm,j , (m, j) ∈ Z∗ × N∗. (5.26)

Moreover, each eigenvalue λ
(0)
m has infinite multiplicity.

Proof: The lemma follows from Proposition 4.1 and since the second equation in (5.23) is always satisfied for functions
that are independent of x.

Let us now study the second case, namely n 6= 0. We have to consider the second equation in the system (5.23).
We first prepare some results. For m ∈ Z let Jm(z), z ∈ C, be the Bessel function. We have that

Jm(−z) = (−1)m Jm(z), J−m(−z) = Jm(z). (5.27)

For the first equation see formula 10.4.1 in page 222 of [22] and for the second see formula 9.1.5 in page 358 of [1].
The Jacobi-Anger formula, given in equation 10.12.1, page 226 of [22], yields,

eiz sinϕ =
∑
m∈Z

eimϕ Jm(z). (5.28)

The Parseval identity for the Fourier series applied to (5.28) gives,∑
m∈Z

Jm(z)2 = 1, z ∈ R. (5.29)

Differentiating the Jacobi-Anger formula with respect to ϕ we obtain,

z cosϕeiz sinϕ =
∑
m∈Z

meimϕ Jm(z). (5.30)

Taking in (5.30) z = −nr/ωc, with n 6= 0, recalling that v1 = r cosϕ, v2 = r sinϕ, and using the first equation in (5.27)
we get,

v1 e
−inv2

ωc = −ωc

n

∑
m∈Z

meimϕ (−1)m Jm

(
nr

ωc

)
, n 6= 0. (5.31)

From (5.31) we obtain,∫ 2π

0

v1 e
−inv2

ωc eimϕ dϕ = 2π
mωc

n
(−1)m J−m

(
nr

ωc

)
= 2π

mωc

n
Jm

(
nr

ωc

)
, n 6= 0, (5.32)

where in the last equality we used both equations in (5.27). Using (5.31) and taking n,m 6= 0 we prove that the second
equation in (5.23) with u given by (5.24) is equivalent to,∫ ∞

0

e−
r2

4 Jm

(
nr

ωc

)
τ(r) r dr = 0. (5.33)

Taking m = 0 is possible, but it will be discarded below in Lemma 5.4. Let us denote by Vn,m the orthogonal

complement in L2(R+, rdr) to the function, e−
r2

4 Jm

(
nr
ωc

)
, that is to say,

Vn,m :=

{
f ∈ L2(R+, rdr) :

(
f, e−

r2

4 Jm

(
nr

ωc

))
L2(R+,rdr)

= 0

}
, n,m ∈ Z∗. (5.34)

Note that Vn,m is an infinite dimensional subspace of L2(R+, rdr) of codimension equal to one. We prove the following
lemma using the results above.
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LEMMA 5.4. Let H be the Vlasov-Ampère operator defined in (5.3) and (5.4). Let τn,m,j , n,m ∈ Z∗, j ∈ N∗ be an
orthonormal basis in Vn,m and define,

fn,m,j :=
1√
2π

ein(x−
v2
ωc

) 1√
2π

eimϕ τn,m,j(r), n,m ∈ Z∗, j ∈ N∗. (5.35)

Then, the set {
Wn,m,j :=

(
fn,m,j

0

)
, n,m ∈ Z∗, j ∈ N∗.

}
(5.36)

is an orthonormal set in H. Furthermore, each function on this set is an eigenvector of H corresponding the eigenvalue

λ
(0)
m = mωc 6= 0,

HWn,m,j = λ(0)m Wn,m,j n,m ∈ Z∗, j ∈ N∗. (5.37)

Moreover, each eigenvalue λ
(0)
m has infinite multiplicity.

Proof: The lemma follows from (5.23), (5.33), (5.34) and (5.35). Note that the case m = 0 does not appear because

we are looking for eigenfunctions with eigenvalue different from zero. Furthermore, the eigenvalues λ
(0)
m have infinite

multiplicity because all the eigenfunctions Wn,m,j with a fixed m and all n ∈ Z∗, j ∈ N∗, are orthogonal eigenfunctions

for the eigenvalue, λ
(0)
m .

5.2.2 The case with electric field different from zero

From the physical point of view this is the most interesting situation, since it describes the interaction of the electrons
with the electric field. Moreover, it is the most involved technically. We look for eigenfunctions of the form,

1√
2π

(
ein(x−

v2
ωc ) τ(v)

einxG

)
, (5.38)

where G is a constant. Since we wish that the electric field is nonzero we must have G 6= 0. Hence, to fulfill that∫ 2π

0
F (x) dx = 0, we must have n 6= 0. The eigenvalue system (5.21) recasts as,

(−iωc∂ϕ − λ)τ = iG v1 e
−v2

4 ein
v2
ωc ,

λG = i

∫
R2

v1 e
−v2

4 e−in
v2
ωc τ(v) dv.

(5.39)

Changing n into −n in (5.31) and using the first equation in (5.27) we obtain,

v1 e
i
nv2
ωc =

ωc

n

∑
m∈Z

meimϕ Jm

(
nr

ωc

)
, n 6= 0. (5.40)

Plugging (5.40) into the first equation in the system (5.39) we get,

(−iωc∂ϕ − λ)τ(r, ϕ) = iG e
−r2

4
ωc

n

∑
m∈Z∗

meimϕ Jm

(
nr

ωc

)
, n 6= 0. (5.41)

A solution to (5.41) is given by

τ(r, ϕ) = iG e
−r2

4
1

n

∑
m∈Z∗

mωc

mωc − λ
eimϕ Jm

(
nr

ωc

)
, n 6= 0, (5.42)

for λ 6= mωc,m ∈ Z∗. Introducing (5.42) into the second equation in the system (5.39), and simplifying by G 6= 0 we
get,

λ = − 1

n

∑
m∈Z∗

mωc

mωc − λ

∫
R2

e
−r2

2 eimϕ e−in
v2
ωc Jm

(
nr

ωc

)
v1 dv, n 6= 0, λ 6= mωc, m ∈ Z∗. (5.43)
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Plugging (5.32) into (5.43) and using that dv = rdrdϕ, we obtain,

λ = −2π

n2

∑
m∈Z∗

m2 ω2
c

mωc − λ
an,m, n 6= 0, λ 6= mωc, m ∈ Z∗. (5.44)

where we denote

an,m :=

∫ ∞
0

e
−r2

2 Jm

(
nr

ωc

)2

rdr > 0, m ∈ Z. (5.45)

Equation (5.44) is a secular equation that we will study to determine the possible values of λ. Remark that (5.44)
coincides with the secular equation obtained by [5] and [6]. First we write it in a more convenient form. Note
that thanks to the two equations in (5.27) we have J−m(z) = (−1)mJm(z) and then an,−m = an,m. Using also
mωc

mωc−λ = 1 + λ
mωc−λ , this allow to obtain that

∑
m∈Z∗

m2 ω2
c

mωc − λ
an,m =

∑
m∈Z∗

(
mωc +

mωcλ

mωc − λ

)
an,m = λ

∑
m∈Z∗

mωc

mωc − λ
an,m. (5.46)

Simplifying by λ 6= 0 and using (5.46) we write (5.44) as

1 = −2π

n2

∑
m∈Z∗

mωc

mωc − λ
an,m, n 6= 0, λ 6= mωc, m ∈ Z∗. (5.47)

By (5.29) we have
∑
m∈Z∗

an,m < +∞ and thus the series in (5.47) is absolutely convergent. Secondly we proceed to

write (5.47) in another form that we find convenient. Using again an,−m = an,m we have

∑
m∈Z∗

mωc

mωc − λ
an,m = 2

∞∑
m=1

m2 ω2
c

m2ω2
c − λ

an,m. (5.48)

Let us denote

g(λ) := 4π

∞∑
m=1

m2 ω2
c

m2ω2
c − λ2

an,m, λ 6= mωc, m ∈ Z∗. (5.49)

Then using (5.48), (5.47) is equivalent to

g(λ) = −n2, n ∈ Z∗, λ 6= mωc, m ∈ Z∗. (5.50)

Since the function g is even it is enough to study it for λ ≥ 0. It has simple poles as λ = mωc,m ∈ N∗. It is well
defined for λ ∈ ∪∞m=0Im, where,

I0 := [0, ωc), Im := (mωc, (m+ 1)ωc), m ∈ N∗. (5.51)

LEMMA 5.5. The function g is positive in I0. For m ≥ 1, g is monotone increasing in the interval Im and the
following limits hold,

limλ→ (mωc)
− = +∞, limλ→ (mωc)

+ = −∞. (5.52)

Proof: The fact that g is positive in I0 follows from the definition of g in (5.49). Furthermore, since an,m > 0,m ≥ 1,

and the functions λ 7→ m2 ω2
c

m2ω2
c−λ2 are monotone increasing away from the poles, we have that g is increasing in Im,m ≥ 1,

and that the limits in (5.52) hold.
In the following lemma we obtain the solutions to (5.50)

LEMMA 5.6. For n ∈ Z∗, the equation (5.50) has a countable number of real simple roots, λn,m in (mωc, (m +
1)ωc),m ≥ 1. By parity λn,m := −λn,−m, m ≤ −1 is also a root. There is no root in (−ωc, ωc). Furthermore,
λn1,m1

= λn2,m2
if and only if n1 = n2, and m1 = m2,
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Proof: The first two items follow from Lemma 5.5 and the parity of g. The third point is true because g is positive
in (−ωc, ωc). Finally, if λn1,m1

= λn2,m2
, we have, m1 = m2, because λn1,m1

∈ (m1ωc, (m1 + 1)ωc) and λn2,m2
∈

(m2ωc, (m2 + 1)ωc). Furthermore, if n1 6= n2, then, λn1,m 6= λn2,m, because, otherwise, −n21 = g(λn1,m) = g(λn2,m) =
−n22, and this is impossible.

Using (5.38) and (5.42) we define,

Yn,m :=
1√
2π

einx
(
e−in

v2
ωc ηn,m(v)
−n i

)
, n,m ∈ Z∗, (5.53)

where

ηn,m(v) := e
−r2

4

∑
q∈Z∗

q ωc

qωc − λn,m
eiqϕ Jq

(
nr

ωc

)
, n,m ∈ Z∗. (5.54)

For m ∈ Z∗, λn,m is the root given in Lemma 5.6. Note that we have simplified the factor i
n in (5.42) and we have

taken G = 1. Remark that, formally, Yn,m is an eigenfunction of H,

HYn,m = λn,m Yn,m. (5.55)

However, we have to verify that Yn,m ∈ H. We have

‖Yn,m‖H =
√
‖ηn,m‖2L2(R2) + n2,

and

‖ηn,m(v)‖2L2(R2) = 2π
∑
q∈Z∗

(
qωc

qωc − λn,m

)2

an,q, (5.56)

where we used the first equation in (5.27). We now prove that ‖ηn,m(v)‖2L2(R2) < +∞ and exhibit an asymptotic

expansion of this quantity which will be used later.

LEMMA 5.7. We have,

‖ηn,m(v)‖2L2(R2) =
n4

2π

1

an,m

(
1 +O

(
1

m2

))
+O

(
1

m2

)
, m→ ±∞. (5.57)

Proof: Recall that for m ≤ −1, λn,m = −λn,−m. Then,

‖ηn,m(v)‖2L2(R2) = ‖ηn,−m(v)‖2L2(R2) , m ≤ −1. (5.58)

Hence, it is enough to consider the case m ≥ 1. We decompose the sum in (5.56) as follows,

‖ηn,m(v)‖2L2(R2) :=

4∑
j=1

h(j)(λn,m), (5.59)

where,

h(1)(λn,m) := 2π
∑
q≤−1

(
qωc

qωc − λn,m

)2

an,q, (5.60)

h(2)(λn,m) := 2π
∑

1≤q≤m−1

(
qωc

qωc − λn,m

)2

an,q, (5.61)

h(3)(λn,m) := 2π

(
mωc

mωc − λn,m

)2

an,m, (5.62)

and

h(4)(λn,m) := 2π
∑

m+1≤q

(
qωc

qωc − λn,m

)2

an,q. (5.63)

17



Since
(

qωc

qωc−λn,m

)2
≤ q2

(m+1)2 , q ≤ −1, we have,

∣∣∣h(1)(λn,m)
∣∣∣ ≤ 2π

∑
q≤−1

q2

(m+ 1)2
an,−q ≤ C

1

(m+ 1)2
, (5.64)

where in the last inequality we used (9.2). Assuming that m is even, we decompose h(2)(λn,m) as follows,

h(2)(λn,m) := h(2,1)(λn,m) + h(2,2)(λn,m), (5.65)

where,

h(2,1)(λn,m) := 2π
∑

1≤q≤m/2

(
qωc

qωc − λn,m

)2

an,q, (5.66)

and

h(2,2)(λn,m) := 2π
∑

m/2<q≤m−1

(
qωc

qωc − λn,m

)2

an,q, (5.67)

Since
(

qωc

qωc−λn,m

)2
≤ 4 q2

m2 , 1 ≤ q ≤ m
2 , and, using (9.2) we obtain,

∣∣∣h(2,1)(λn,m)
∣∣∣ ≤ 2π

∑
1≤q≤m/2

4
q2

m2
an,q ≤ C

1

m2
. (5.68)

Furthermore, as,
(

qωc

qωc−λn,m

)2
≤ q2, m/2 < q ≤ m− 1, and by (9.2), we have∣∣∣h(2,2)(λn,m)

∣∣∣ ≤ 2π
∑

m/2<q≤m−1

q2 an,q ≤ Cp
1

mp
(5.69)

for all p > 0. When m is odd we decompose h(2)(λn,m) as in (5.65) with

h(2,1)(λn,m) := 2π
∑

1≤q≤(m−1)/2

(
qωc

qωc − λn,m

)2

an,q, (5.70)

and

h(2,2)(λn,m) := 2π
∑

(m−1)/2<q≤m−1

(
qωc

qωc − λn,m

)2

an,q, (5.71)

and we prove that (5.68) and (5.69) hold arguing as in the case where m is even. This proves that,∣∣∣h(2)(λn,m)
∣∣∣ ≤ C 1

m2
. (5.72)

The technical result (9.22) in the appendix is λn,m = mωc + 2πmωc
an,|m|
n2 + an,|m|O

(
1
|m|

)
. It yields

h(3)(λn,m) =
n4

2π

1

an,m

(
1 +O

(
1

m2

))
, m→∞. (5.73)

Moreover, by (9.2) and (9.22) there is an m0 such that(
qωc

qωc − λn,m

)2

≤ 2 q2, q ≥ m+ 1,m ≥ m0.

Then, using (9.2) we obtain for all p > 0,∣∣∣h(4)(λn,m)
∣∣∣ ≤ 4π

∑
m+1≤q

q2 an,q ≤ Cp
1

mp
, m ≥ m0. (5.74)
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Equation (5.57) follows from (5.58), (5.59), (5.64), (5.65), (5.72), (5.73), and, (5.74).
Since Yn,m ∈ H we can define the associated normalized eigenfunctions as follows. Let us denote,

bn,m :=
√
‖ηn,m‖2L2(R2) + n2 = ‖Yn,m‖H. (5.75)

The normalized eigenfunctions are given by,

Zn,m :=
1

bn,m
Yn,m, n,m ∈ Z∗. (5.76)

Then, we have,

LEMMA 5.8. Let H be the Vlasov-Ampère operator defined in (5.3) and, (5.4). Let λn,m, n,m ∈ Z∗, be the roots to
equation (5.50) obtained in Lemma 5.6. Then, each λn,m, n,m ∈ Z∗, is an eigenvalue of H with eigenfunction Zn,m.

Proof: The fact that the λn,m, n,m ∈ Z∗, are eigenvalues of H with eigenfunction Zn,m follows from (5.53), (5.55),
and (5.57).

In preparation for Lemma 5.9 below, we briefly study the asymptotic expansion for large |m| of the normalized
eigenfunction. By (5.54), (5.64), (5.72), and (5.74), we have,∥∥∥∥ηn,m − e−r2

4
mωc

mωc − λn,m
eimϕ Jm

(
nr

ωc

)∥∥∥∥
L2(R2)

= O

(
1

|m|

)
, m→ ±∞. (5.77)

Note that (5.64), (5.72), and (5.74) were only proven for m ≥ 1, and then, they only imply (5.77) for m→∞. However,
using both equations in (5.27) and as λn,−m = −λn,m we prove that (5.77) with m→∞ implies (5.77) with m→ −∞.
Then, by (5.57),∥∥∥∥ 1

bn,m
ηn,m −

1

bn,m
e
−r2

4
mωc

mωc − λn,m
eimϕ Jm

(
nr

ωc

)∥∥∥∥
L2(R2)

=
√
an,|m|O

(
1

m2

)
, m→ ±∞. (5.78)

Let us denote,

η(a)n,m := − 1√
2πan,|m|

e
−r2

4 eimϕ Jm

(
nr

ωc

)
, n,m ∈ Z∗. (5.79)

By (9.22) and (5.57),

1

bn,m

mωc

mωc − λn,m
= − 1√

2πan,|m|

(
1 +O

(
1

|m|

))
, m→ ±∞. (5.80)

Then, by (5.79) and, (5.80)∥∥∥∥ 1

bn,m
e
−r2

4
mωc

mωc − λn,m
eimϕ Jm

(
nr

ωc

)
− η(a)n,m

∥∥∥∥
L2(R2)

= O

(
1

|m|

)
, m→ ±∞. (5.81)

Let us now define the asymptotic function that is the dominant term for large m of the normalized eigenfunction Zn,m

Z(a)
n,m :=

1

bn,m

1√
2π

einx
(
e−in

v2
ωc η

(a)
n,m

−in

)
, n,m ∈ Z∗. (5.82)

In the next lemma we show that for large m the eigenfunction Zn,m is concentrated in Z
(a)
n,m.

LEMMA 5.9. Let an,m be the quantity defined in (5.45), let Zn,m be the eigenfunction defined in (5.76), and let

Z
(a)
n,m be the asymptotic function defined in (5.82). We have that,∥∥∥Zn,m − Z(a)

n,m

∥∥∥
H
≤ C 1

|m|
, m→ ±∞, n ∈ Z∗. (5.83)

Proof: The lemma follows from (9.2), (5.78), and (5.81)
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5.3 The completeness of the eigenfunctions of H

In this subsection we prove that the eigenfunctions of the Vlasov-Ampère operator H are a complete set in H. That
is to say, that the closure of the set of all finite linear combinations of eigenfunctions of H is equal to H, or in other
words, that H coincides with the span of the set of all the eigenfunctions of H. For this purpose we first introduce
some notation. By (5.19)

L2(0, 2π) = ⊕n∈ZSpan

[
einx√

2π

]
, (5.84)

and,

L2
0(0, 2π) = ⊕n∈Z∗Span

[
einx√

2π

]
. (5.85)

Furthermore, by (5.84) and (5.85),
H = ⊕n∈ZHn, (5.86)

where
H0 := L2(R2)⊕ {0}, (5.87)

and,

Hn := Span

[
einx√

2π

]
⊗
(
L2(R2)⊕ C

)
, n ∈ Z∗. (5.88)

Alternatively, H0 can be written as the Hilbert space of all vector valued functions of the form (u, 0)T , u ∈ L2(R2),
where the injection of L2(R2) onto the subspace of A consists of all the functions in A that are independent of x. In
other words, we identify f(v) ∈ L2(R2) with the same function f(v) ∈ A that is independent of x. Moreover, Hn can
be written as the Hilbert space of all vector valued functions of the form,

einx√
2π

(
u(v)
α

)
, u ∈ L2(R2), α ∈ C.

Furthermore, H can be written as the Hilbert space of all vector valued functions of the form(
u0(v)

0

)
+
∑
n∈Z∗

einx√
2π

(
un(v)
αn

)
,

where un ∈ L2(R2), αn ∈ C, n ∈ Z∗, and, further,
∑
n∈Z∗ ‖un‖2L2(R2) <∞, and

∑
n∈Z∗ |αn|2 <∞. The strategy of the

proof that the eigenfunctions of H are complete in H will be to prove that the eigenfunctions of a given n are complete
on the corresponding Hn. For this purpose we introduce the following convenient spaces. A first space is defined as
follows,

W0 := Span

[{
M

(0)
0,j

}
j∈N∗

]
⊕ Span

[
{Vm,j}m∈Z∗,j∈N∗

]
⊂ H0 (5.89)

where the eigenfunctions M
(0)
0,j , j ∈ N∗, are defined in (5.18) and the eigenfunctions Vm,j ,m ∈ Z∗, j ∈ N∗ are defined

in (5.25). Next we introduce the space,

W(1)
n := Span

[
{Wn,m,j}n,m∈Z?,j∈N∗

]
⊂ Hn, n 6= 0, (5.90)

where the eigenfunctions Wn,m,j , n,m ∈ Z?, j ∈ N∗ are defined in (5.36). We also need the following space,

W(2)
n := Span

[
{Zn,m}n,m∈Z∗

]
⊂ Hn, n 6= 0, (5.91)

where the eigenfunctions Zn,m, n,m ∈ Z∗ are defined in (5.76). Finally, we define the space,

W(3)
n := Span

[{
V(0)
n

}
n∈Z∗

∪
{

M
(0)
n,j

}
n∈Z∗,j∈N∗

]
⊂ Hn ∩Ker[H], n 6= 0, (5.92)

where the eigenfunctions V
(0)
n and M

(0)
n,j are defined in (5.18).
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THEOREM 5.10. Let H be the Vlasov-Ampère operator defined in (5.3) and (5.4). Then, the eigenfunctions of H
are a complete set in H. Namely,

H0 = W0, (5.93)

Hn = W(1)
n ⊕W(2)

n ⊕W(3)
n , n ∈ Z∗. (5.94)

Furthermore,

H = W0 ⊕n∈Z∗
(
W(1)

n ⊕W(2)
n ⊕W(3)

n

)
. (5.95)

Proof: Note that W0 is orthogonal to W
(1)
n ,W

(2)
n , and W

(3)
n because W0 is the span of eigenfunctions with n = 0 and

W
(1)
n ,W

(2)
n , and W

(3)
n are the span of eigenfunctions with n different from zero. Furthermore, the W

(1)
n ,W

(2)
n , and

W
(3)
n are orthogonal among themselves because they are the span of eigenfunctions with different eigenvalues. Further-

more the W
(1)
n ,W

(1)
q , with n 6= q, are orthogonal to each other because they are the span of eigenfunctions that contain

the factor, respectively, einx, eiqx. Similarly, W
(2)
n ,W

(2)
q , n 6= q are orthogonal to each other and W

(3)
n ,W

(3)
q , n 6= q

are also orthogonal to each other. Equation (5.93) is immediate because the span of u0,m,j ,m ∈ Z, j ∈ N∗ is equal to
L2(R2). We proceed to prove (5.94). We clearly have,

W(1)
n ⊕W(2)

n ⊕W(3)
n ⊂ Hn, n ∈ Z∗. (5.96)

Our goal is to prove the opposite embedding, i.e.,

Hn ⊂W(1)
n ⊕W(2)

n ⊕W(3)
n , n ∈ Z∗. (5.97)

Consider the decomposition,

Hn = W(1)
n ⊕

(
W(1)

n

)⊥
, (5.98)

where
(
W

(1)
n

)⊥
denotes the orthogonal complement of W

(1)
n in Hn. Recall that

W(2)
n ⊕W(3)

n ⊂
(
W(1)

n

)⊥
n ∈ Z∗. (5.99)

Our strategy to prove (5.97) will be to establish,(
W(1)

n

)⊥
⊂W(2)

n ⊕W(3)
n , n ∈ Z∗. (5.100)

It follows from the definition of W
(2)
n in (5.91) and of W

(3)
n in (5.92) that the following set of eigenfunctions is a basis

of W
(2)
n ⊕W

(3)
n , 

Zn,m, n,m ∈ Z∗,
M

(0)
n,j , n ∈ Z∗, j ∈ N∗,

V
(0)
n , n ∈ Z∗.

(5.101)

Furthermore, it is a consequence of the definition of W
(1)
n in (5.90) and of the definition of Z

(a)
n,m in (5.82) that the

following set of functions is an orthonormal basis of
(
W

(1)
n

)⊥


Z
(a)
n,m, n,m ∈ Z∗,

M
(0)
n,j , n ∈ Z∗, j ∈ N∗,

Q,

, (5.102)

where the asymptotic functions Z
(a)
n,m, n,m ∈ Z∗ are defined in (5.82), the eigenfunctions M

(0)
n,j , n ∈ Z∗, j ∈ N∗ are

defined in (5.18), and Q is given by,

Q :=

(
0
1

)
. (5.103)
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Any X ∈
(
W

(1)
n

)⊥
can be uniquely written as,

X =
∑
m∈Z∗

(
X,Z(a)

n,m

)
H

Z(a)
n,m +

∑
j∈N∗

(
X,M

(0)
n,j

)
H

M
(0)
n,j + (X,Q)HQ. (5.104)

We define the following operator from
(
W

(1)
n

)⊥
into

(
W

(1)
n

)⊥
,

ΛX :=
∑
m∈Z∗

(
X,Z(a)

n,m

)
H

Zn,m +
∑
j∈N∗

(
X,M

(0)
n,j

)
H

M
(0)
n,j + (X,Q)HV(0)

n . (5.105)

We will prove that (5.100) holds by showing that Λ is onto,
(
W

(1)
n

)⊥
. We write Λ as follows,

Λ = I + K, (5.106)

where K is the operator,

KX :=
∑
m∈Z∗

(
X,Z(a)

n,m

)
H

(
Zn,m − Z(a)

n,m

)
+ (X,Q)H

(
V(0)
n −Q

)
. (5.107)

We will prove that K is Hilbert-Schmidt. For information about Hilbert-Schmidt operators see Section 6 of Chapter VI
of [23]. For this purpose we have to prove that K∗K is trace class. Since the functions in (5.102) are an orthonormal

basis of
(
W

(1)
n

)⊥
, we can verify the trace class criterion under the form,

∑
m∈Z∗

(
KZ(a)

n,m,KZ(a)
n,m

)
H

+
∑
j∈N∗

(
KM

(0)
n,j ,KM

(0)
n,j

)
H

+ (KQ,KQ)H <∞. (5.108)

However, by (5.107)
∑
m∈Z∗

(
KZ

(a)
n,m,KZ

(a)
n,m

)
H

=
∑
m∈Z∗

∥∥∥(Zn,m − Z
(a)
n,m)

∣∣∣2
H
<∞, where we used, (5.83). Moreover,∑

j∈N∗

(
KM

(0)
n,j ,KM

(0)
n,j

)
H

= 0, and, clearly, (KQ,KQ)H <∞. Hence, K is Hilbert-Schmidt, and then, it is compact.

It follows from the Fredholm alternative, see the Corollary in page 203 of [23], that to prove that Λ is onto it is enough

to prove that it is invertible. Suppose that X ∈
(
W

(1)
n

)⊥
satisfies ΛX = 0. Then, by (5.105)

∑
m∈Z∗

(
X,Z(a)

n,m

)
H

Zn,m +
∑
j∈N∗

(
X,M

(0)
n,j

)
H

M
(0)
n,j + (X,Q)HV(0)

n = 0. (5.109)

However, as the eigenfunctions Zn,m are orthogonal to the M
(0)
n,jand to V

(0)
n , we have,∑

m∈Z∗

(
X,Z(a)

n,m

)
H

Zn,m = 0, (5.110)

and, ∑
j∈N∗

(
X,M

(0)
n,j

)
H

M
(0)
n,j + (X,Q)HV(0)

n = 0. (5.111)

Since the eigenfunctions Zn,m are mutually orthogonal, it follows from (5.110) that
(
X,Z

(a)
n,m

)
H

= 0, m ∈ Z∗.

Moreover, by Lemma 5.2 the eigenfunctions M
(0)
n,j , j ∈ N∗ and ,V

(0)
n are linearly independent, and, then (5.111)

implies
(
X,M

(0)
n,j

)
H

= 0, j ∈ N∗, and (X,Q)H = 0. Finally, as the set (5.102) is an orthonormal basis of(
W

(1)
n

)⊥
we have that X = 0. Then, Λ is onto

(
W

(1)
n

)⊥
and (5.100) holds. Since also (5.99) is satisfied we obtain

W
(2)
n ⊕W

(3)
n =

(
W

(1)
n

)⊥
, n ∈ Z∗. This completes the proof of the theorem
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THEOREM 5.11. Let H be the Vlasov-Ampère operator defined in (5.3) and, (5.4). Then, H is selfadjoint and it
has pure point spectrum. The eigenvalues of H are given by.

1. The infinite multiplicity eigenvalues, λ
(0)
m := mωc,m ∈ Z.

2. The simple eigenvalues λn,m, n,m ∈ Z∗, given by the roots to equation (5.50) obtained in Lemma 5.6.

Proof: We already proven that H is selfadjoint below (5.7). The spectrum of H is pure point because it has a complete

set of eigenfunctions, as we proven in Theorem 5.10. The fact that the eigenvalues of H are equal to the λ
(0)
m ,m ∈ Z,

and the λn,m, n,m ∈ Z∗ follows from Lemmata 5.2, 5.3, 5.4 and 5.8. The λ
(0)
m ,m ∈ Z have infinite multiplicity

because by Lemmata 5.2, 5.3, and 5.4 each λ
(0)
m has a countable set of orthogonal eigenfunctions. Let us prove that

the eigenvalues λn,m are simple. Suppose that for some n,m ∈ Z∗ the eigenvalue λn,m has multiplicity bigger than
one. Then, there is an eigenfunction, P, such that HP = λn,m P, and with P orthogonal to Zn,m. However since by
Lemma 5.6 λn1,m1

= λn2,m2
if and only if n1 = n2, and m1 = m2, it follows that P is orthogonal to the rigth hand

side of (5.95), but hence, P is orthogonal to H, and then P = 0. This completes the proof that the λn,m are simple
eigenvalues.

5.4 Orthonormal basis for the kernel of H

In Subsection 5.1 we constructed a linear independent basis for the kernel of the Vlasov-Ampère operator H. In
this subsection we prove that, for an appropriate choice of the orthonormal basis of L2(R+, rdr) that appears in the

definition of the eigenfunctions M
(0)
n,j in (5.18), we can construct an orthonormal basis for the kernel of H. The choice

of the orthonormal basis is n dependent. For n ∈ Z∗, let τ
(n)
j , j = 1, . . . be any orthonormal basis of L2(R+, rdr)

where the first basis function is

τ
(n)
1 (r) :=

1
√
an,0

e
−r2

4 J0

(
nr

ωc

)
, n ∈ Z∗, (5.112)

with an,0 defined in (5.45). Note that this implies that the τ
(n)
j , j = 2, . . . is an orthonormal basis of the subspace Vn,0

that we defined in (5.34). Moreover, in the definition of the un,0,j in (4.2) let us use this basis. In particular it yields

un,0,1 :=
ein(x−

v2
ωc

)

√
2π

1√
2π

1
√
an,0

e
−r2

4 J0

(
nr

ωc

)
, n ∈ Z∗. (5.113)

The eigenfunctions M
(0)
n,j =

(
un,0,j

0

)
, n ∈ Z∗, j ∈ N∗, of H precised with (5.112) are now a particular case of the ones

defined in (5.18). However, we keep the same notation for M
(0)
n,j for a sake of readability.

For the other eigenfunctions we can use different orthonormal basis of L2(R+, rdr), if we find it convenient. It

follows from simple calculations that the eigenfunctions V
(0)
n , n ∈ Z∗, defined in (5.18) are mutually orthogonal and that

the eigenfunctions M
(0)
n,j , (n, j) ∈ Z∗×N∗, are also mutually orthogonal. Moreover, since the functions einx, n ∈ Z∗ are

orthogonal in L2(0, 2π) to the function equal to one, the eigenfunctions V
(0)
n , n ∈ Z∗, and M

(0)
0,j , j ∈ N∗ are orthogonal.

Let us compute the scalar product of the V
(0)
n , n ∈ Z∗, and the M

(0)
n,j , n ∈ Z∗, j = 1, . . . .

(
V(0)
n ,M

(0)
m,j

)
H

= δn,m
1√

2π + n2

(
e
−v2

4 ,
e−in

v2
ωc

√
2π

τj(r)

)
A

, n ∈ Z∗,m ∈ Z∗, j ∈ N∗. (5.114)

Moreover, by the Jacobi-anger formula (5.28), with z = −nr
ωc

,(
e
−v2

4 ,
e−in

v2
ωc

√
2π

τj(r)

)
A

=

(
e
−v2

4 ,

(∑
m∈Z

eimϕ Jm

(
−nr
ωc

))
1√
2π

τj(r)

)
A

, n ∈ Z∗, j ∈ N∗.

Hence, by (5.112) and the second equation in (5.27)(
e
−v2

4 ,
e−in

v2
ωc

√
2π

τj(r)

)
A

= δj,1
√

2π
√
an,0, n ∈ Z∗. (5.115)
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By (5.114) and (5.115),

(
V(0)
n ,M

(0)
m,j

)
H

= δn,m δj,1

√
2πan,0√

2π + n2
, n ∈ Z∗,m ∈ Z∗, j ∈ N∗. (5.116)

This proves that the V
(0)
n , n ∈ Z∗, and the M

(0)
n,j , n ∈ Z∗, j = 2, . . . , are orthogonal to each other, and also that

V
(0)
n , and M

(0)
n,1, n ∈ Z∗, are not orthogonal. We apply the Gramm-Schmidt orthonormalization process to V

(0)
n , and

M
(0)
n,1, n ∈ Z∗, and we define the eigenfunctions,

E(0)
n := M

(0)
n,1 −

(
M

(0)
n,1,V

(0)
n

)
H

V(0)
n , n ∈ Z∗, (5.117)

and the normalized eigenfunctions,

F(0)
n :=

E
(0)
n

‖E(0)
n ‖H

, n ∈ Z∗. (5.118)

By (5.116), (5.117), and (5.118),

F(0)
n =

2π(1− an,0) + n2

2π + n2

(
M

(0)
n,1 −

√
2πan,0√

2π + n2
V(0)
n

)
, n ∈ Z∗. (5.119)

Note that by (5.29) and (5.45) an,0 < 1, and then 1− an,0 > 0.
Using the results above we prove the following theorem.

THEOREM 5.12. Let H be the Vlasov-Ampère operator defined in (5.3) and (5.4). Then, the following set of
eigenfunctions of H with eigenvalue zero,{

V(0)
n , n ∈ Z∗

}
∪
{

M
(0)
0,j , j ∈ N∗

}
∪
{

M
(0)
n,j , n ∈ Z∗, j = 2, . . .

}
∪
{

F(0)
n , n ∈ Z∗

}
, (5.120)

is a orthonormal basis of Ker[H]. The eigenfunctions V
(0)
n , and M

(0)
0,j , are defined in (5.18), and the eigenfunctions,

M
(0)
n,j , and F

(0)
n , are defined, respectively, in (5.18) with (5.113), and (5.118).

Proof: The lemma follows from Lemma 5.2

5.5 Orthonormal basis with eigenfunctions of H

In this subsection we show how to assemble a orthonormal basis forH with eigenfunctions of H, using the eigenfunctions
that we have already computed. We first obtain a orthonormal basis for Ker[H]⊥, with the eigenfunctions of H with
eigenvalue different from zero.

THEOREM 5.13. Let H be the Vlasov-Ampère operator defined in (5.3) and, (5.4). Then, the following set of
eigenfunctions of H with eigenvalue different from zero,

{Vm,j ,m ∈ Z∗, j ∈ N∗} ∪ {Wn,m,j , n,m ∈ Z∗, j ∈ N∗} ∪ {Zn,m, n,m ∈ Z∗} , (5.121)

is a orthonormal basis of Ker[H]⊥. Moreover, the eigenfunctions Vm,j ,Wn,m,j , and Zn,m are defined, respectively in
(5.25), (5.36), and (5.76).

Proof: Equation (5.95) can be written as follows,

H =

[
Span

[{
M

(0)
0,j

}
j∈N∗

]
⊕n∈Z∗ W(3)

n

]
⊕
[
Span

[
{Vm,j}m∈Z∗,j∈N∗

]
⊕W(1)

n ⊕W(2)
n

]
. (5.122)

Moreover, by Lemma 5.2

Ker[H] = Span

[{
M

(0)
0,j

}
j∈N∗

]
⊕n∈Z∗ W(3)

n . (5.123)
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Further, as H = Ker[H]⊕Ker[H]⊥, it follows from (5.122), (5.123)

Ker[H]⊥ = Span
[
{Vm,j}m∈Z∗,j∈N∗

]
⊕W(1)

n ⊕W(2)
n . (5.124)

Finally, using the definitions of W
(1)
n in (5.90) and of W

(2)
n in (5.91) we obtain that the set (5.121) is an orthonormal

basis of Ker[H]⊥.
In the following theorem we present a orthonormal basis for H with eigenfunctions of H.

THEOREM 5.14. Let H be the Vlasov-Ampère operator defined in (5.3), and (5.4). Then, the following set of
eigenfunctions of H,{

V
(0)
n , n ∈ Z∗

}
∪
{

M
(0)
0,j , j ∈ N∗

}
∪
{

M
(0)
n,j , n ∈ Z∗, j = 2, . . .

}
∪
{

F(0)
n , n ∈ Z∗

}
∪

{Vm,j ,m ∈ Z∗, j ∈ N∗} ∪ {Wn,m,j , n,m ∈ Z∗, j ∈ N∗} ∪ {Zn,m, n,m ∈ Z∗} ,
(5.125)

is a orthonormal basis of H. The eigenfunctions,V
(0)
n , and M

(0)
0,j are defined in (5.18). The eigenfunctions, M

(0)
n , and

F
(0)
n are defined, respectively in (5.18) with (5.113), and (5.118). Moreover, the eigenfunctions Vm,j ,Wn,m,j , and

Zn,m are defined, respectively in (5.25), (5.36), and (5.76).

Proof: The result follows from Theorems 5.12, and 5.13.

6 The general solution to the Vlasov-Ampère system, and the Bernstein-
Landau paradox

In this section we give an explicit formula for the general solution of the Vlasov-Ampère system with the help of the
orthonormal basis of H with eigenfunctions of H. Let us take a general initial state,

G0 =

(
u
F

)
∈ H.

Then, by Theorem 5.14, the general solution to the Vlasov-Ampère system with initial value at t = 0 equal to G0 is
given by,

G(t) := e−itH G0, (6.1)

and, furthermore,
G(t) = G1 + G2(t), (6.2)

where the static parts G1 is time independent, and the dynamical part G2(t) is oscillatory in time. They are given
by,

G1 =
∑
n∈Z∗

(
G0,V

(0)
n

)
H

V(0)
n +

∑
j∈N∗

(
G0,M

(0)
0,j

)
H

M
(0)
0,j +

∑
n∈Z∗,j≥2

(
G0,M

(0)
n,j

)
H

M
(0)
n,j

+
∑
n∈Z∗

(
G0,F

(0)
n

)
H

F(0)
n ,

(6.3)

and
G2(t) =

∑
m∈Z∗,j∈N∗

e−itλ
(0)
m (G0,Vm,j , )H Vm,j +

∑
n,m∈Z∗,j∈N∗

e−itλ
(0)
m (G0,Wn,m,j)H Wn,m,j

+
∑

n,m∈Z∗
e−itλn,m (G0,Zn,m)H Zn,m.

(6.4)

We still have to impose the Gauss law (2.13), (2.14), or equivalently (5.8), to our general solution to the Vlasov-Ampère

system (2.17). For the eigenfunction M
(0)
n,j , n ∈ Z∗, j ≥ 2, the Gauss law (5.8) is equivalent to(

M
(0)
n,j ,V

(0)
n

)
H

= 0,
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that is valid by the orthogonality of the M
(0)
n,j and the V

(0)
n . We prove in the same way that the Gauss law (5.8) holds

for the eigenfunctions F
(0)
n ,Vm,j ,Wn,m,j , and Zn,m. It remains to consider the eigenfunctions M

(0)
0,j , j ∈ N∗, defined

in (5.18). For the M
(0)
0,j , the Gauss law (5.8) reads,∫ ∞

0

e
−v2

4 τj dv = 0, j ∈ N∗. (6.5)

We can make sure that (6.5) holds for all but one j by choosing the orthonormal basis in L2(R+, rdr) that we use in

the definition of the M
(0)
0,j , j ∈ N∗, as follows. As we proceed in (5.112)-(5.113) for n ∈ Z∗, we specify the choice of the

orthonormal basis (τj)j∈N∗ in (4.2) and (5.18) for n = 0. We take a orthonormal basis, τ
(0)
j , j ∈ N∗, in L2(R+, rdr),

such that,

τ
(0)
1 (r) := e

−v2

4 . (6.6)

With this choice of the τ
(0)
j , j ∈ N∗, the Gauss law (5.8) holds for M

(0)
0,j , j = 2, . . . . Hence, with this choice, the general

solution of the Vlasov-Ampère system given in (6.1) and that satisfies the Gauss law (5.8) can be written as in (6.2)
with the dynamical part G2(t) as in (6.4), but with the static part G1 given by

G1 =
∑
j≥2

(
G0,M

(0)
0,j

)
M

(0)
0,j +

∑
n∈Z∗,j≥2

(
G0,M

(0)
n,j

)
M

(0)
n,j +

∑
n∈Z∗

(
G0,F

(0)
n

)
F(0)
n . (6.7)

This exhibits the Landau-Bernstein paradox. Namely, the general solution contains a time independent part and a
part that is oscillatory time. There is no part of the solution that tends to zero as t→ ±∞, that is to say, there is no
Landau damping in the presence of the magnetic field.

REMARK 6.1. This remark concerns the space HG for the Gauss law and its orthogonal complement.
Let us denote,

HG := Span
[{

V(0)
n , n ∈ Z∗

}
∪M

(0)
0,1

]
,

where the eigenfunctions V
(0)
n are defined in (5.18) and the eigenfunction M

(0)
0,1 is defined in (5.18), (6.6). Note that

it follows from the results above that the condition that each one of the eigenfunctions that appear in (6.4), and (6.7)
satisfies the Gauss law is equivalent to ask that the eigenfunction is orthogonal to HG. Then, it follows from (6.2),
(6.4), and (6.7) that general solution to the Vlasov-Ampère system given in (6.1) satisfies the Gauss law (5.8) if and
only if G0 ∈ H⊥G.

The Hilbert space HG is a closed subspace of the kernel of H. So, the Gauss law is equivalent to have the initial
state in the orthogonal complement to a closed subspace of the kernel of H. Actually, it is usually the case that when
the Maxwell equations are formulated as a selfadjoint Schrödinger equation in the Hilbert space of electromagnetic
fields with finite energy, the Gauss law is equivalent to have the initial data in the orthogonal complement of the kernel
of the Maxwell operator. See for example [34]. Let us further elaborate in the condition G0 ∈ H⊥G. We introduce the

space of test functions DT := {ϕ ∈ C∞[0, 2π] : dl

dxlϕ(0) = dl

dxlϕ(2π), l = 0, . . . }. Let us expand ϕ ∈ DT in Fourier series

ϕ(x) =
∑
n∈Z

1√
2π

einxϕn, where ϕn :=
1√
2π

∫ 2π

0

ϕ(x) e−inx dx, n ∈ Z. (6.8)

Integrating by parts we prove that

|ϕn| ≤
Cl
|n|l

, l ∈ N, n ∈ Z∗. (6.9)

By a simple calculation, and using (6.8) and (6.9) we prove that,(
ϕ(x) e

−v2

4

− d
dxϕ(x)

)
=
∑
n∈Z∗

ϕn
√

2π + n2 V (0)
n +

√
2π ϕ0 M

(0)
0,1 ∈ HG. (6.10)

Suppose that (
u(x, v)
F (x)

)
∈ H⊥G. (6.11)
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Then, by (6.10)((
u(x, v)
F (x)

)
,

(
ϕ(x) e

−v2

4

− d
dxϕ(x)

))
H

=

∫ 2π

0

ρ(x)ϕ(x) dx−
∫ 2π

0

F (x)
d

dx
ϕ(x) dx = 0, ϕ ∈ DT, (6.12)

where ρ(x) is defined in (2.14). By (6.12) we see (u, F )T satisfies the Gauss law (2.13), (2.14), or equivalently (5.8), in
weak sense, where the weak derivatives are defined with respect to the test space DT. Conversely, if (u, F )T satisfies
(6.12) for all ϕ ∈ DT, we prove in a similar way that (6.11) holds taking ϕ(x) = einx, n ∈ Z.

REMARK 6.2. Observe that the general solution of the Vlasov-Ampère system, G(t) = (u(t, x, v)), F (t, x))T given
in (6.1) and that satisfies the Gauss law (5.8) fulfills the condition that the total charge oscillation is equal to zero,∫

[0,2π]×R2

u(t, x, v)e
−v2

4 dx dv = 0. (6.13)

This true because each one of the the eigenfunctions that appear in the expansion (6.2), with G2(t) as in (6.4) and
G1(t) as in (6.7) satisfy this condition.

Let us now consider the expansion of the charge density fluctuation of the perturbation to the Maxwellian equilib-
rium state, ρ(t, x), that we defined in (2.14). Note that for a function in (u, 0)T ∈ H with electric field zero the Gauss
law (2.13), (2.14) implies that the charge density fluctuation of the function is zero. In particular the charge density

fluctuation of the eigenfunctions M
(0)
0,j , j ≥ 2,M

(0)
n,j , n ∈ Z∗, j ≥ 2,F

(0)
n , n ∈ Z∗,Vm,j ,m ∈ Z∗, j ∈ N∗,Wn,m,j , n,m ∈

Z∗, j ∈ N∗ is equal to zero. Then, if we apply the expansion (6.2), with G1(t) given in (6.7) and G2(t) given in (6.4)
to the charge density fluctuation of the general solution to the Vlasov-Ampère system (6.1) that satisfies the Gauss
law, only the terms with Zn,m, n,m ∈ Z∗ survive and we obtain,

ρ(t, x) =
∑

n,m∈Z∗
e−itλn,m (G0,Zn,m)H ρn,m(x), (6.14)

where, ρn,m(x) is the charge density fluctuation of the eigenfunction Zn,m that is given by

ρn,m(x) =
1

bn,m
√

2π
einx

∫
R2

e
−r2

4 e−in
v2
ωc ηn,m(v) dv, n,m ∈ Z∗. (6.15)

where we used (5.76). Equation (6.14) is the Bernstein expansion [6, 5] for the charge density fluctuation, that we
prove for initial data in H, as we show in the following Theorem

THEOREM 6.3. Let ρ(t, x) be the charge density fluctuation defined in (2.14). Then for any initial state, G0 ∈ H,
the expansion, (6.14), (6.15) converges strongly in the norm of L2(0, 2π).

Proof: Let us justify (6.14) and (6.15). We denote by u(t, x, v) the first component of (6.2). Then, since u(t, x, v) ∈ A,
it follows from Fubini’s theorem that for a.e. x ∈ (0, 2π), u(t, x, ·) ∈ L2(R2), and as also e

−v2

4 ∈ L2(R2), the
charge density fluctuation ρ(t, x) defined in (2.14) is well defined, and furthermore, by the Cauchy-Schwarz inequality
ρ(t, x) ∈ L2(0, 2π). We denote,

ρN (t, x) :=
∑

n,m∈Z∗,|n|+|m|≤N

e−itλn,m (G0,Zn,m)H ρn,m(t, x), (6.16)

We will prove that ρN (t, x) converges to ρ(t, x) in norm in L2(R2), i.e. that the series in (6.14) converges strongly in

L2(R2). We denote by M
(0,1)
0,j ,M

(0,1)
n,j ,F

(0,1)
n ,V

(1)
m,j ,W

(1)
n,m,j ,Z

(1)
n,m, respectively the first component of the eigenfunctions,

M
(0)
0,j ,M

(0)
n,j ,F

(0)
n ,Vm,jWn,m,j ,Zn,m. We designate,

G1,N :=
∑

N≥j≥2

(
G0,M

(0)
0,j

)
M

(0,1)
0,j +

∑
n∈Z∗,|n|≤N,N≥j≥2

(
G0,M

(0,1)
n,j

)
M

(0,1)
n,j

+
∑

n∈Z∗,|n|≤N

(
G0,F

(0)
n

)
F(0,1)
n ,

(6.17)
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G2,N (t, x, v) :=
∑

m∈Z∗,|m|≤N,j∈N∗,j≤N

e−itλ
(0)
m (G0,Vm,j)H V

(1)
m,j

+
∑

n,m∈Z∗,|n|+|m|≤N,j∈N∗,j≤N

e−itλ
(0)
m (G0,Wn,m,j)H W

(1)
n,m,j

+
∑

n,m∈Z∗,|n|+|m|≤N

e−itλn,m (G0,Zn,m)H Z(1)
n,m,

(6.18)

and
GN (t, x, v) := G1,N (t) +G2,N (t). (6.19)

We have that
lim
N→∞

‖u−GN‖A = 0. (6.20)

Furthermore, ∫
R2

GN (t, x, v) e
−v2

4 dv = ρN (t, x). (6.21)

Hence,

ρ(t, x)− ρN (t, x) =

∫
R2

(u(t, x, v)−GN (t, x, v)) dv. (6.22)

Finally, by (6.20), (6.22), and the Cauchy- Schwarz inequality,∫ 2π

0

|ρ(t, x)− ρN (t, x)|2 dx =

∫ 2π

0

|
∫
R2

(u(t, x, v)−GN (t, x, v))e
−v2

4 dv|2 dx

≤
∫ 2π

0

∫
R2

|(u(t, x, v)−GN (t, x, v)|2 dx dv = ‖u−GN‖2A → 0, as N →∞.
(6.23)

This completes the proof that the expansion (6.14) and (6.15) converges strongly in the norm of A.

REMARK 6.4. The eigenfunctions M
(0)
0,j , j ≥ 2,M

(0)
n,j , n ∈ Z∗, j ≥ 2,F

(0)
n , n ∈ Z∗,Vm,j ,m ∈ Z∗, j ∈ N∗,Wn,m,j , n,m ∈

Z∗, j ∈ N∗, do not appear in the expansion (6.14) of the charge density fluctuation. Still, as we mentioned in the
introduction, these eigenfunctions are physically interesting because they show that there are plasma oscillations such
that at each point the charge density fluctuation is zero and the electric field is also zero. Some of then are time
independent. Note that since our eigenfunctions are orthonormal, these special plasma oscillation actually exits on
their own, without the excitation of the other modes. It appears that this fact has not been observed previously in
the literature.

7 Operator theoretical proof of the Bernstein-Landau paradox

We first study the operator H0 that appears in the formula for H that we gave in (5.5,5.6, 5.7). Let us recall the
representation of H as the direct sum of the Hn given in (5.86). Using Proposition 4.1 we see that the functions
(un, αn)T in Hn can be written as

(
un(x, v)
αn

)
=

 ∑
m∈Z,j∈N∗

un,m,j(x, v) (un, un,m,j)A

αn

 , (7.1)

where for n = 0, αn = 0. Then, by Proposition 4.1

H0

(
un(x, v)
αn

)
= H0,n

(
un(x, v)
αn

)
, (7.2)

where by H0,n we denote the operator in Hn given by,

H0,n

(
un(x, v)
αn

)
:=

∑
m∈Z,j∈N∗

(
λ
(0)
m un,m,j(x, v) (un, un,m,j)A

0

)
,
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with domain D[H0,n] := {(un, αn)T :
∑
m∈Z,j∈N (λ

(0)
m )2|(un, un,m,j)A|2 < ∞. Observe that H0,n is the restriction of

H0 to H0, and that,
H0 = ⊕n∈Z H0,n. (7.3)

Further, the spectrum of H0,n is pure point and it consists of the infinite multiplicity eigenvalue λ
(0)
m ,m ∈ Z. Then,

also the spectrum of H0 is pure point and it consists of the infinite multiplicity eigenvalues λ
(0)
m ,m ∈ Z. Recall that

the discrete spectrum of a selfadjoint operator consists of the isolated eigenvalues of finite multiplicity, and that the
essential spectrum is the complement in the spectrum of the discrete spectrum. So, we have reached the conclusion
that the spectrum of H0 coincides with the essential spectrum and it is given by the infinite multiplicity eigenvalues

λ
(0)
m ,m ∈ Z. Let us now consider the operator V that appears in (5.7). For einx (τ(v), αn)T ∈ Hn,

Veinx
(
τ(v)
αn

)
= einx

(
−iv1e

−v2

4 αn

iT ∗
∫
R2 v1 e

−v2

4 τ(v) dv

)
.

Then, V sends Hn into Hn, and that it acts in the same way in all the Hn. Let us denote by Vn the restriction of V
to Hn. Then, we have,

V = ⊕n∈Z Vn. (7.4)

furthermore, by (5.5), (7.3), and (7.4),
H = ⊕Hn, (7.5)

where Hn = H0,n+Vn. Further, it follows from (7.4) that Vn is a rank two operator, hence, it is compact. Then, it is
a consequence of the Weyl theorem for the invariance of the essential spectrum, see Theorem 3, in page 207 of [7], that

the essential spectrum of Hn, n ∈ Z is given by the infinite multiplicity eigenvalues λ
(0)
m ,m ∈ Z. Hence, by (7.5) the

essential spectrum of H is given by the infinite multiplicity eigenvalues λ
(0)
m ,m ∈ Z. However, since the complement

of the essential spectrum is discrete, we have that the spectrum of H consists of the infinite multiplicity eigenvalues

λ
(0)
m ,m ∈ Z, and of a set of isolated eigenvalues of finite multiplicity that can only accumulate at the essential spectrum

and at ±∞. We know from the results of Section 5 that these eigenvalues are the λn,m, n,m ∈ Z∗, and that they
are of multiplicity one. However, the operator theoretical argument does not tell us that. However, it tells us that
the spectrum of H is pure point and that H has a complete orthonormal set of eigenfunctions. This implies that
the Bernstein -Landau paradox exists. Let us elaborate on this point. As we mentioned in the introduction, it was
shown by [11], [12] that the Landau damping can be characterized as the fact that when the magnetic field is zero
e−itH goes weakly to zero as t → ±∞. Let us prove that when the magnetic field is non zero this is not true. We
prove this fact using only the operator theoretical results of this section, i.e. without using the detailed calculations
of Section 5. Let us denote by γj , j = 1, . . . , the eigenvalues of H, repeated according to their multiplicity, and let
Xj , j = 1, . . . be a complete set of orthonormal eigenfunctions, where the eigenfunction Xj , is associated with the
eigenvalue, γj , j = 1, . . . . We know explicitly from Section 5 the eigenvalues and a orthonormal basis of eigenvectors,
but we do not need this information here. Suppose that e−itH goes weakly to zero as t→ ±∞. Then, for any X,Y ∈ H,

lim
t→±∞

(
e−itHX,Y

)
H = 0. (7.6)

Let us prove that there is no non trivial X ∈ H such that (7.6) holds for all Y ∈ H. We have that,

(
e−itHX,Y

)
H =

∞∑
l=1

e−itγl(X,Xl)H (Xl,Y)H.

However, let us take Y = Xj , j = 1, . . . . Then, lim
t→±∞

(
e−itHX,Yj

)
H = lim

t→±∞
e−itγj (X,Xj)H, j = 1, . . . , is a non-zero

constant if γj = 0, and it is oscillatory if γj 6= 0, unless (X,Xj)H = 0, j = 1, . . . . However, if (X,Xj)H = 0, j = 1, . . . ,
then, X = 0. It follows that (7.6) only holds for X = 0.

8 Numerical results

The objective of this section is to illustrate the numerical behaviour of the eigenfunctions constructed previously.
More precisely, we will construct a numerical scheme that approximates the solution of the Vlasov-Ampère system
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initialized with an eigenfunction and compare this numerical solution with the theoretical dynamics of the system. The
numerical results below show that the difference between the theoretical and numerical solutions is small, confirming
the theoretical analysis. Furthermore, we will use the eigenfunctions to initialize a code solving the non-linear Vlasov-
Poisson system showing how we can approximate the solution of the non-linear system with our linear theory. Finally,
using the same non-linear code, we will illustrate the Bernstein-Landau paradox, as in the spirit of [13, 33], by
initializing with a standard test function traditionally used to highlight Landau damping and show how the damping
is lost when we add a constant magnetic field.

8.1 Computing the eigenvalues

As in (5.53), we consider an eigenfunction (
wn,m
Fn

)
, (8.1)

of the operator H associated to the Fourier mode n 6= 0 and the eigenvalue λn,−m = −λn,m where wn,m and Fn are
given by

wn,m = ein(x−
v2
ωc

)e−
r2

4

∑
p∈Z∗

pωc
pωc + λn,m

eipϕJp

(
nr

ωc

)
andFn = −ineinx. (8.2)

Furthermore, λn,m is one of the roots of a secular equation (5.47), which could be written as

α(λ) = 0,

where the secular function α(λ) is given by

α(λ) = −1− 2π

n2

∑
m∈Z∗

mωc
mωc + λ

an,m. (8.3)

In (8.3) an,m is defined by (5.45). The secular function α(λ) is a convergent series with poles at the multiples of the
cyclotron frequency ωc. Note that the function α in (8.3) and the function g in (5.50) are linked by the relation

α(λ) = −1− 1

n2
g(λ). (8.4)
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Figure 1: Secular function for ωc = 0.5 and n = 1

The plot in Figure 1 illustrates the properties of α (deduced from Lemma 5.5 and relation (8.4)), most notably
that there is unique root (hence an eigenvalue for H) in (mωc, (m+1)ωc) for m ≥ 1, and ((m−1)ωc,mωc) for m ≤ −1.
With a standard numerical method (dichotomy or Newton), we can determine the roots of α. For example, with
(n,m) = (1, 2), we find λ1,2 ≈ 1.19928. This eigenvalue λ1,2 will be used in all the following numerical tests.

8.2 Solving the linear Vlasov-Ampère system with a Semi-Lagrangian scheme with
splitting

To approximate the linear system (2.17) or (5.1-5.2), we use a semi-Lagrangian scheme [9, 29], which is a classical
method to approximate transport equations of the form ∂tf + E(x, t)∂xf = 0, coupled with a splitting procedure. A
splitting procedure corresponds to approximating the solution of ∂tf + (A+ B)f = 0 by solving ∂tf + Af = 0 and
∂tf + Bf = 0 one after the other.

Hence, the Vlasov-Ampère system is split so as to only solve transport equations with constant advection terms.

∂t

(
u
F

)
+ (A+ B + C +D)

(
u
F

)
= 0,

with

A =

(
v1∂x

0

)
, B =

 Fv1e
− v2

1+v2
2

4

1∗
∫
ue−

v2
1+v2

2
4 v1dv1dv2

 , C =

(
−ωcv2∂v1

0

)
, D =

(
ωcv1∂v2

0

)
.

The algorithm used to solve the linearized Vlasov-Ampère system can thus be summarized as follows

1. Initialization Uini =

(
wn,m
Fn

)
given in (8.1).

2. Going from tn to tn+1

Assume we know Un, the approximation of U =

(
u
F

)
at time tn.
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• We compute U∗ by solving ∂tU + AU = 0 with a semi-Lagrangian scheme during one time step ∆t with
initial condition Un.

• We compute Û by solving ∂tU+BU = 0 with a Runge-Kutta 2 scheme during one time step ∆t with initial
condition U∗.

• We compute U∗∗ by solving ∂tU + CU = 0 with a semi-Lagrangian scheme during one time step ∆t with
initial condition Û.

• We compute Un+1 by solving ∂t U+DU = 0 with a semi-Lagrangian scheme during one time step ∆t with
initial condition U∗∗.

8.3 Results for the Vlasov-Ampère system

The solution of the Vlasov-Ampère system initialized with an eigenfunctions Uini =

(
wn,m
Fn

)
as in (8.1) is simply

given by
U(t) = eiλn,mt Uini. (8.5)

Recall that (8.1) is an eigenfunction of H with eigenvalue λn,−m = −λn,m. In the following results, we have taken
(n,m) = (1, 2), ωc = 0.5, Nx = 33 (number of points of discretization in position), Nv1 = Nv2 = 63 (number of points
of discretization in both velocity variables), Lv1 = Lv2 = 10 (numerical truncation in both velocity variables) and,
most importantly, Tf = π

λ1,2
. This means that U(Tf) = exp

(
iπ2
)
Uini = iUini, and then, the solution of the system at

t = Tf corresponds to the initial condition where the real and imaginary parts have been exchanged (up to a sign).

Figure 2: Real and imaginary parts of the first component of U(t) given by (8.5) in v1 − v2 plane for x = 0.
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Figure 3: Modulus of the first component of U(t) given by (8.5) in v1 − v2 plane for x = 0, and real and imaginary
parts of F .

The figures show that the solution of the system behaves according to the theory.

8.4 Results for the non-linear Vlasov-Poisson system

We now look at how the solution of the non-linear Vlasov-Poisson system (2.4) behaves when initialized with an
eigenfunction of the Hamiltonian H of the Vlasov-ampère system. The idea is that for a certain time, the solution
for the non-linear Vlasov-Poisson system follows the same dynamics as the solution for the linearized Vlasov-Poisson
system. We consider the Vlasov-Poisson system because it is more convenient for numerical purposes. Recall that the
linearized Vlasov-Poisson and the Vlasov-Ampère systems are equivalent. Furthermore, the articles [6, 13, 32, 33] have
studied the Bernstein-Landau paradox using the Vlasov-Poisson system. We use almost the same numerical scheme
as in the previous subsection to approximate the solution of the system.

The Vlasov equation, namely the first equation in (2.4), in the non-linear Vlasov-Poisson system is split so as to
only solve transport equations with constant advection terms,

∂tu+ (A+ B + C)u = 0,

with A = v1∂x, B = − (E + ωcv2) ∂v1 and C = ωcv1∂v2 . To update the electric field, the strategy adopted is the same
as in [9] where the Poisson equation is solved at each time step. On this numerical computation we consider real
valued solutions f,E.

Let us denote by u the perturbation of the charge density function, f, and by F be the perturbation of the electric
field, E. The functions u, F solve the linearized Vlasov-Poisson system (2.11). Recall that we proven in Section 5 that
the linearized Vlason-Poisson and Vlasov-Ampère systems are equivalent. Then, we can use the real part of 8.5 to
write the expression of u, F when initializing with, uini, Fini, with uini = Re(wn,m), Fini = Re(Fn). Recall that wn,m,
and Fn are defined in (8.2). Then, we have,(

u(t)
F (t)

)
= Re(U(t)) =

(
cos(λmt) Re(wn,m)− sin(λmt) Im(wn,m)

cos(λmt) Re(Fn)− sin(λmt) Im(Fn)

)
(8.6)

where U(t) is given by (8.5). The objective of this subsection is to show that we can approximate the solution of the
non-linear system using (8.6), which means that the solutions of both linear and non-linear systems are close to each
other for a certain time.
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The algorithm used to solve the non-linear Vlasov-Poisson system can be summarized as follows:

1. Initialization fini = f0 + ε
√
f0 Re(wn,m) and Eini = εRe(Fn) are given, where ε is a scalar which controls the

amplitude of the perturbation. We take ε = 0.1.

2. Going from tn to tn+1

Assume we know fn and En, the approximations of f and E at time tn.

• We compute f∗ by solving ∂tf + v1∂xf = 0 with a semi-Lagrangian scheme during one time step ∆t with
initial condition fn.

• We compute En+1 by solving the Poisson equation with f∗.

• We compute f̂ by solving ∂tf − (En+1 + ωcv2)∂v1f = 0 with a semi-Lagrangian scheme during one time
step ∆t with initial condition f∗.

• We compute fn+1 by solving ∂tf + ωcv1∂v2f = 0 with a semi-Lagrangian scheme during one time step ∆t

with initial condition f̂ .

As in Subsection 8.3 we take (n,m) = (1, 2), ωc = 0.5, Nx = 33 (number of points of discretization in position),
Nv1 = Nv2 = 63 (number of points of discretization in both velocity variables), Lv1 = Lv2 = 10 (numerical truncation
in both velocity variables) and, Tf = π

λ1,2
. In the following figures, we are comparing respectively the theoretical

perturbations, u, F, that are given by (8.6), and the numerical perturbations,

un =
fn − f0
ε
√
f0

, andFn =
En

ε
,

where fn and En are given by the above algorithm.

Figure 4: u in v1 − v2 plane for x = 0 and electric field F .

The figures show that we can approximate the solution of the non-linear Vlasov-Poisson system using solutions
of the linear Vlasov-Poisson system, initialized with the eigenfunctions of the Hamiltonian, H of the Vlasov-Ampère
system.
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8.5 The Bernstein-Landau paradox

In this subsection we numerically illustrate the Bernstein-Landau paradox, and we compare it with the Landau
damping, using the above algorithm (similarly to [13]). In order to compare the numerical solutions to the non-linear
Vlasov-Poisson system with the approximate analytical solution found in [28] in the case ωc = 0, we take in this
subsection the charge of the ions equal to one. With this convention the non-linear Vlasov-Poisson system is written
as, 

∂tf + v1∂xf − E∂v1f + ωc (−v2∂v1 + v1∂v2) f = 0.

∂xE(t, x) = 1−
∫
R2

fdv.
(8.7)

Furthermore, also with the purpose of comparing with the approximate analytical solution of [28], we initialize with
the density function fLD given by,

fLD(x, v1, v2) =
1

2π
(1 + ε cos kx) e

−v2

2 , ε = 0.001, k = 0.4. (8.8)

In this simulation the position interval is [0, 2πk ], since we keep periodic solutions. To introduce the approximate
analytical solution of [28] let us consider the Vlasov-Poisson system (8.7) with ωc = 0,

∂tf + v1∂xf − E∂v1f = 0,

∂xE(t, x) = 1−
∫
R2

fdv,
(8.9)

and initialized with (8.8).
Let us look for a solution of the form,

f(t, x, v) = f1(t, x, v1)
1√
2π

e
−v2

2
2 . (8.10)

Then, f(t, x, v) satisfies the (8.9) and it is initialized with (8.8) if and only if f1(t, x, v1) is a solution of the following
Vlasov-Poisson system in one dimension in space and velocity,

∂tf1 + v1∂xf1 − E1∂v1f1 = 0,

∂xE1(t, x) = 1−
∫
R
f1dv1,

(8.11)

initialized with,

f1(0, x, v1) =
1√
2π

(1 + ε cos kx) e
−v2

1
2 , ε = 0.001, k = 0.4. (8.12)

Furthermore, note that
E(t, x) = E1(t, x). (8.13)

Then, we can compute an approximate E(t, x) using the approximate solution to (8.11), (8.12) given in page 58 of
[28]. Namely,

E(x, t) ≈ 4ε× 0, 424666 exp(−0, 0661t) sin(0, 4x) cos(1, 2850t− 0, 3357725). (8.14)

We have taken the values given in the second line of the table in page 58 of [28]. This approximate solution is a good
approximation to the exact solution for large times. Further, (8.14) is a classical test function to highlight Landau
damping, more precisely the damping of the electric energy. In the figures below we report (8.14) in the red curves.
Moreover, the figure below illustrates how when ωc 6= 0, the damping is replaced by a recurrence phenomenon of
period Tc = 2π

ωc
, which follows the behaviour observed in [4, 32]. We take ωc = 0.1, and as in Subsection 8.3, we use,

Nx = 33 (number of points of discretization in position), Nv1 = Nv2 = 63 (number of points of discretization in both
velocity variables), Lv1 = Lv2 = 10 (numerical truncation in both velocity variables).
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Figure 5: Damped and undamped electric field

The recurrence visible on the right-hand side figure is a fully ”physical” phenomenon originating from the non-zero
magnetic field and is to be distinguished from the recurrence in semi-Lagrangian schemes studied in [20], which deals
with a purely numerical phenomenon.

9 Appendix

In this appendix we further study the properties of the secular equation (5.49, 5.45, 5.50). For later use we prepare
the following result.

PROPOSITION 9.1. Let an,m, n ∈ Z∗,m = 1, . . . , be the quantity defined in (5.45). Then, there is a constant, C,
that depends on n, such that,

an,m ≤ C
1√
m

[
en2

2ω2
cm

]m
, m = 1, . . . , (9.1)

where e is Euler’s number. In particular, for any p > 0 there is a constant C, that depends on n and p, such that,

an,m ≤ C
1

mp
. (9.2)

Proof: By equation (10.22.67) in page 245 of [22]

an,m = e
−n2

ω2
c Im

(
n2

ω2
c

)
, (9.3)

with In(z) a modified Bessel function. Furthermore, by equation (10.41.1) in page 256 of [22],

Im

(
n2

ω2
c

)
=

1√
2πm

(
en2

2ω2
cm

)m
(1 + o(1)), m→∞. (9.4)

Equation (9.1) follows from (9.3) and (9.4). Finally, (9.2) follows from (9.1).
We continue the analysis of the secular equation Let λn,m,m ≥ 2 be the root given in Lemma 5.6. Recall that

λn,m ∈ (mωc, (m + 1)ωc). Then, to isolate terms that can be large as λn,m is close to mωc or to (m + 1)ωc, we
decompose g(λn,m) as follows,

g(λn,m) = g(1)(λn,m) + g(2)(λn,m) + g(3)(λn,m) + g(4)(λn,m), (9.5)

where,

g(1)(λn,m) := 4π
∑

1≤q≤m−1

q2 ω2
c

q2ω2
c − λ2n,m

an,q, (9.6)

g(2)(λn,m) := 4π
m2 ω2

c

m2ω2
c − λ2n,m

an,m, (9.7)
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g(3)(λn,m) := 4π
(m+ 1)2 ω2

c

(m+ 1)2ω2
c − λ2n,m

an,m+1, (9.8)

g(4)(λn,m) := 4π
∑

q≥m+2

q2 ω2
c

q2ω2
c − λn,m

an,q. (9.9)

LEMMA 9.2. Let g(1)(λn,m) be the quantity defined in (9.6). Then, there is a constant Cn such that,∣∣∣g(1)(λn,m)
∣∣∣ ≤ Cn 1

m2
, m ≥ 2. (9.10)

Proof: First suppose that m is even. Then, m/2 is an integer, and we can decompose g(1)(λn,m) as follows,

g(1)(λn,m) = g(1,1)(λn,m) + g(1,2)(λn,m), (9.11)

where,

g(1,1)(λn,m) := 4π
∑

1≤q≤m/2

q2 ω2
c

q2ω2
c − λ2n,m

an,q, (9.12)

and

g(1,2)(λn,m) := 4π
∑

m/2<q≤m−1

q2 ω2
c

q2ω2
c − λ2n,m

an,q. (9.13)

Note that, ∣∣∣∣ 1

q2ω2
c − λ2n,m

∣∣∣∣ ≤ 2

m2ω2
c

, q = 1, . . . ,
m

2
. (9.14)

Then, by (9.2), (9.12) and, (9.14)

∣∣∣g(1,1)(λn,m)
∣∣∣ ≤ 4π

2

m2ω2
c

m/2∑
1

q2 ω2
c an,q ≤ C

1

m2
. (9.15)

Furthermore, we have ∣∣∣∣ 1

q2ω2
c − λ2n,m

∣∣∣∣ ≤ 1

ωc

1

mωc
, q =

m

2
, . . . ,m− 1. (9.16)

Then, by (9.2), (9.13) and, (9.16),∣∣∣g(1,2)(λn,m)
∣∣∣ ≤ 4π

1

ωc

1

mωc

∑
m/2<q≤m−1

q2 ω2
can,q ≤ Cp

1

mp
, p = 1, . . . . (9.17)

Equation (9.10) follows from (9.11), (9.15) and, (9.17). In the case where m is odd, (m − 1)/2 is an integer, and we
decompose g(1)(λn,m) as in (9.11) with,

g(1,1)(λn,m) := 4π
∑

1≤q≤(m−1)/2

q2 ω2
c

q2ω2
c − λn,m

an,q, (9.18)

and

g(1,2)(λn,m) := 4π
∑

(m−1)/2<q≤m−1

q2 ω2
c

q2ω2
c − λ2n,m

an,q, (9.19)

and we proceed as in the case of m even.
In the following lemma we estimate g(4)(λn,m).

LEMMA 9.3. Let g(4)(λn,m) be the quantity defined in (9.9). Then, for every p > 0 there is a constant Cp such that,∣∣∣g(4)(λn,m)
∣∣∣ ≤ Cp 1

mp
, m ≥ 2. (9.20)
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Proof: Note that, ∣∣∣∣ 1

q2ω2
c − λ2n,m

∣∣∣∣ ≤ 1

ωc

1

(m+ 3)ωc
, q ≥ m+ 2. (9.21)

Equation (9.20) follows from (9.2), (9.9) and, (9.21).
In the following lemma we estimate how λn,m approaches mωc as m→ ±∞.

LEMMA 9.4. We have,

λn,m = mωc + 2πmωc

an,|m|

n2
+ an,|m|O

(
1

|m|

)
, m→ ±∞. (9.22)

Proof: Note that since λn,−m = −λn,m it is enough to prove equation (9.22) when m→∞.
Using (9.10) and (9.20) we write (5.50) as follows

4π
m2 ω2

c

λ2n,m −m2ω2
c

an,m = n2 + g(3)(λn,m) +O

(
1

m2

)
, m→∞. (9.23)

Moreover, as g(3)(λn,m) ≥ 0, we get,

4π
m2 ω2

c

λ2n,m −m2ω2
c

an,m ≥ n2 +O

(
1

m2

)
, m→∞.

Then, there is an m0 such that 4π
m2 ω2

c

λ2
n,m−m2ω2

c
an,m ≥ π

4 , m ≥ m0, and then, λ2n,m ≤ m2ω2
c + 16m2 ω2

c an,m, m ≥ m0,

and taking the square root we obtain

mωc ≤ λn,m ≤ mωc

√
1 + 16 an,m, m ≥ m0. (9.24)

This already shows that λn,m is asymptotic to ωc for large m. However, we can improve this estimate to obtain (9.22).
By (9.2) and (9.24) for every p > 0,

((m+ 1)ωc − λn,m)
−1

=
1

ωc

(
1 +O

(
1

mp

))
, m→∞. (9.25)

Further, introducing (9.8) and (9.25) into (9.23), and using (9.2) we obtain,

4π
m2 ω2

c

λ2n,m −m2ω2
c

an,m = n2 +O

(
1

m2

)
, m→∞. (9.26)

We rearrange (9.26) as follows,

λn,m −mωc =
4π

n2
m2 ω2

c

λn,m +mωc
an,m +

1

n2
(λn,m −mωc)O

(
1

m2

)
, m→∞. (9.27)

By (9.24)
λn,m −mωc ≤ mωcO (an,m) , m→∞. (9.28)

Further,

(λn,m +mωc)
−1

= (2mωc + λn,m −mωc)
−1

=
1

2mωc
(1 +O (an,m)), m→∞. (9.29)

Expansion (9.22) follows from (9.28) and, (9.29).
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