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ARTICLE

Electron Bernstein waves driven by electron
crescents near the electron diffusion region
W.Y. Li 1,2,3*, D.B. Graham2*, Yu.V. Khotyaintsev 2, A. Vaivads 4, M. André2, K. Min 5, K. Liu6,

B.B. Tang 1, C. Wang1, K. Fujimoto7, C. Norgren8, S. Toledo-Redondo9,10, P.-A. Lindqvist 4, R.E. Ergun11,

R.B. Torbert 12, A.C. Rager13,14, J.C. Dorelli14, D.J. Gershman14,15, B.L. Giles14, B. Lavraud9, F. Plaschke 16,

W. Magnes16, O. Le Contel 17, C.T. Russell18 & J.L. Burch 19

The Magnetospheric Multiscale (MMS) spacecraft encounter an electron diffusion region

(EDR) of asymmetric magnetic reconnection at Earth’s magnetopause. The EDR is char-

acterized by agyrotropic electron velocity distributions on both sides of the neutral line.

Various types of plasma waves are produced by the magnetic reconnection in and near the

EDR. Here we report large-amplitude electron Bernstein waves (EBWs) at the electron-scale

boundary of the Hall current reversal. The finite gyroradius effect of the outflow electrons

generates the crescent-shaped agyrotropic electron distributions, which drive the EBWs. The

EBWs propagate toward the central EDR. The amplitude of the EBWs is sufficiently large to

thermalize and diffuse electrons around the EDR. The EBWs contribute to the cross-field

diffusion of the electron-scale boundary of the Hall current reversal near the EDR.
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Magnetic reconnection is a fundamental and universal
process, which transfers energy stored in the magnetic
field to kinetic energy of charged particles1,2. Magnetic

reconnection powers eruptive processes in space and laboratory
plasmas. Earth’s magnetosphere provides a unique environment
to study magnetic reconnection by analyzing in situ spacecraft
measurements. NASA’s MMS mission was designed to resolve the
particles and fields at electron scales. The goal of MMS is to
investigate the EDR, which is the core region of reconnection
where the magnetic field lines break and reconnect1,3. Recon-
nection at the dayside magnetopause is asymmetric due to the
large plasma and magnetic field differences between the magne-
tosheath and the magnetosphere4,5. Numerical simulations and
MMS observations of asymmetric reconnection show that the
crescent-shaped agyrotropic electrons can be found on both
magnetospheric and magnetosheath sides of the neutral line3,6–9.

Waves are suggested to generate anomalous resistivity and
plasma diffusion, potentially enabling magnetic fields to break and
reconnect10. Various types of waves produced by reconnection

have been reported outside of EDRs10–16. In and near EDRs, MMS
has observed upper-hybrid (UH)9,17,18 and whistler19 waves and
low-frequency turbulent fluctuations20. Among these waves, the
high-frequency electrostatic UH waves are driven by the agyro-
tropic electron beams near an EDR encounter. The amplitudes of
the upper-hybrid waves are sufficiently large to interact with
electrons and contribute to electron diffusion and scattering near
the EDR9. Here we report an MMS observation of large-amplitude
EBWs driven by electron crescents near an EDR. The EBWs have
sufficient large amplitude to thermalize and diffuse electrons
around the EDR. The EBWs contribute to the cross-field diffusion
of the electron-scale boundary.

Results
Electron diffusion region encounter by MMS. The EDR event
was encountered near Earth’s subsolar magnetopause on
December 24, 2016. MMS were located at [9.4, 3.7, 1.6] RE (Earth
radii) in geocentric solar ecliptic (GSE) coordinates. We use
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Fig. 1 Magnetopause crossing observed by MMS1. a B. b Number density N. c Vi. d Ion differential energy flux (color scale, in unit of keV s�1 cm�2 sr�1

keV�1). e Ve. f Electron Tjj and T?. g Electron differential energy flux. h Electron pitch-angle distribution between 20 eV and 1 keV. i Agyrotropy measureffiffiffiffi
Q

p
27 with a background of 0.012 (black dashed line). j E with frequencies f < 50 Hz. The vectors are all presented in LMN coordinate system. The red and

blue vertical lines represent the neutral line and the magnetospheric separatrix, respectively. The agyrotropy measure
ffiffiffiffi
Q

p
with N< 5 cm�3 is neglected. A

detailed overview of the yellow-shaded region is presented in Fig. 3.
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magnetic field B data from the fluxgate magnetometer21 and the
search-coil magnetometer22. The electric field E data are from
the electric field double probes23,24. The particle data are from
the fast plasma investigation (FPI)25. All data presented are in
high-resolution burst mode. The burst-mode electron data are
sampled at 30 ms resolution. The vectors are shown in boundary-
normal (LMN) coordinates based on minimum variance analysis
(MVA)26 of B over the magnetopause crossing, unless otherwise
stated. Here, L= [0.09, 0.08, 0.99] is along the reconnecting
magnetic field direction, M= [0.23, −0.97, 0.06] is the out-of-
plane direction, and N= [0.97, 0.22, −0.10] is the normal
direction in GSE coordinates.

Figure 1 presents an overview of the magnetopause crossing
observed by MMS1, which is sketched in Fig. 2. The crossing
from the reconnection outflow to the magnetosphere is
characterized by a BL reversal (see Fig. 1a), a decrease in plasma
density (see Fig. 1b), and an ion outflow (ViL > 0) (see Fig. 1c).
The magnetic shear angle between the magnetosheath and
magnetosphere is about 162°, and so the guide field (~12 nT) in
this event is relatively weak. In Fig. 1, the neutral line is located at
the time indicated by the red vertical line, determined by the BL
zero-crossing point. On the magnetosheath side of the neutral
line, MMS1 observes a strong increase in BM, which corresponds
to the Hall magnetic field5,28,29. The magnetospheric separatrix is
located at the time indicated by the blue vertical line, and is
characterized by a fast electron flow along M direction (see
Fig. 1e), an increase in Te;jj (see Fig. 1f), a rapid increase of BL

(see Fig. 1a), and an EN (see Fig. 1j). After the separatrix crossing,

the enhanced electron fluxes along the directions parallel and
antiparallel to B (see Fig. 1h) are trapped electrons in the
magnetospheric inflow region30,31. The parameter

ffiffiffiffi
Q

p
provides a

measure of agyrotropy based on the magnitude of the off-
diagonal terms of the electron pressure tensor in field-aligned
coordinates27. Typical values are about 0.1 around the electron
diffusion region at the magnetopause8,9,14. As shown in Fig. 1i,
electron velocity distributions with enhanced agyrotropies are
observed over the magnetopause crossing, including the magne-
tosheath and magnetospheric sides of the neutral line. All these
features indicate that MMS are in or near an electron diffusion
region of the magnetopause reconnection3,5–7,9,20,31–36.

Figure 3a–d presents a detailed overview of the yellow-shaded
region in Fig. 1. Figure 3b shows the electric current J
perpendicular to B calculated from the particle moments37,38.
The strong Hall magnetic field BM (see Fig. 3a) is located at the J?
reversal from L to −L, which is mainly carried by an electron flow
reversal from −L to L (see Fig. 1e). Here, the electron thermal
gyroradius is ρe � 1.7 km, similar to the electron inertial length
(�1.4 km). The normal speed VN � 50 km s�1 of the magneto-
pause motion is estimated from multispacecraft timing analysis39

of BL around the neutral line. The peak-to-peak time duration of
the Hall-current region is about 0.12 s, which corresponds to a
normal scale of 3.5 ρe.

We observe electron distributions with enhanced agyrotropies
on both sides of the Hall current reversal (see Fig. 1i). Figure 3e, h
shows the electron distributions at times indicated by the two
yellow bars in Fig. 3a, c, respectively, which are the Hall current
peaks. MMS1 observes dense crescents in the plane perpendicular
to B and close to the E × B directions (more details in the section
“Electron velocity distribution functions”). The electron crescents
point close to the −L and L directions (shown by black lines in
Fig. 3e, g) on the magnetosheath and the magnetospheric edges of
the Hall B, respectively. The electron beams parallel to B (see
Fig. 3f, h), seen as the enhanced energy fluxes parallel to B in
Fig. 3d, are the magnetosheath inflow electrons moving towards
the central diffusion region. Here, B is dominated by the Hall
magnetic field, BM.

Large-amplitude EBWs. Large-amplitude high-frequency waves
are observed at the electron-scale boundary of the Hall current
reversal. Figure 4b shows the waveform of the high-frequency E?
and Ejj (with respect to B) around the point where V? = E × B/B2

changes sign (curves in Fig. 4c). In the yellow-shaded region, we
can see that E? � Ejj. E?;L is much larger than the other per-
pendicular component E?2, making the E?;L direction about 19�

away from the L direction. We see distinct spectral peaks sepa-
rated in frequency by approximately the electron cyclotron fre-
quency f ce (see Fig. 4d, e). The power spectrum of E? within the
yellow-shaded region is presented in Fig. 4f. The largest wave
powers are observed in a range between 4.5 and 8.5 kHz, i.e.,
between the fifth and the ninth harmonics of f ce (�860 Hz).

Figure 4g, h presents the hodograms of Emax versus Eint and
Emax versus Emin, respectively. Here, Emax, Eint, and Emin are the
electric fields in the maximum ([−0.97, −0.16, 0.19], in LMN),
intermediate ([0.21, −0.11, 0.98]), and minimum ([−0.13, 0.98,
0.14]) variance directions based on MVA of the E waveform high-
pass filtered above 50 Hz, so all electron Bernstein modes are
included. The high-frequency waves have a well-defined max-
imum variance direction, which is 166� away from the
reconnecting magnetic field direction L and approximately 84�
away from B. In addition, the wave fluctuations exhibit
approximately linear polarization. We also observe extremely
weak (�0.02 nT) B fluctuations (see Fig. 4e) due to a small angle
between the wave propagation direction and E fluctuation
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Fig. 2 Sketch of asymmetric reconnection with JL. The black dashed curve
shows the neutral line (defined where BL = 0), and the blue arrowed line
denotes the MMS trajectory near the electron diffusion region. The large-
amplitude electron Bernstein waves are observed on the magnetosheath
side of the neutral line.
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direction. All these observed properties of the high-frequency
quasi-electrostatic waves are consistent with the characteristics of
electron Bernstein waves41 expected in an over-dense plasma.
Therefore, Emax direction provides a good estimation of the wave
vector direction k̂. In space plasma environments, the EBWs can
also be observed around the bow shock42 and inside the
magnetosphere43,44. In fusion devices, the EBWs are widely used
to heat plasmas45.

The EBWs are observed for about 17 ms, corresponding to a
spatial scale of 0.5 ρe normal to the magnetopause. We adopt the
7.5 ms electron distribution function data46 for detailed analysis
of the generation of EBWs. In this case, the 7.5 ms electron data

do not change substantially around the EBWs interval, which
means that the 7.5 ms data provide nonaliased electron distribu-
tion functions before and during the large-amplitude EBWs. The
electron distributions at times indicated by the three green lines
in Fig. 5b are presented in Fig. 6a–c. Figure 6a shows the electron
distribution just before the large-amplitude EBWs. The crescent-
shaped electron distributions are oriented close to the E × B
direction (see Fig. 7). The crescents have a clear positive gradient
in the direction with the largest phase-space density (black curve
in Fig. 6d), which is 7.3� away from the Emax direction (blue line
in Fig. 6a) of the EBWs. The typical speed of the electrons
constituting the crescents is 104 km s�1, and the number density
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of the crescents is �54% of the total number density. The
crescent energy density is about four orders of magnitudes larger
than the maximum wave energy density. It is likely that the
crescent-shaped electrons are the driving source of the large-
amplitude EBWs. The electron speed with the positive gradient,
8 × 103 km s�1, provides a good estimation of the phase velocity
Vph of the EBWs. The frequency of peak wave power (5.7 kHz,
between 6 f ce and 7 f ce, see Fig. 4f) corresponds to a wavelength
of 1.4 km, which is comparable to ρe. The direction with the
largest crescent phase-space density (black line in Fig. 6a), [−0.97,
−0.14, 0.15] (in LMN), is closely aligned with k̂, suggesting the
electron crescent is the source of the EBWs.

Electron crescents drive the EBWs. Since BM > 0, the source of
the crescents with large phase-space densities at the time of

Fig. 6a should be from the high-density (magnetosheath) side (see
Fig. 5a) of the neutral line. The black curves with arrows in
Fig. 5b show the Liouville mapping47 trajectories of 93–631 eV
electrons in the plane perpendicular to B (more details in the
section “Liouville mapping of the electron crescents” and
Table 1). Liouville mapping of the measured distribution along k̂
at the time of Fig. 6a (black curve in Fig. 5d) gives the red curve in
Fig. 5d. Figure 5e–i presents the detailed comparison of the
mapping phase-space densities with the observed ones at different
locations (highlighted by the colored bars on the top of Fig. 5c)
for 93–631 eV electrons. The good consistency demonstrates that
the electron crescents with a positive gradient along k̂ of EBWs
are generated by the electron finite gyroradius effect at the
electron-scale boundary with a density gradient and a normal
electric field.
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We use a fully kinetic dispersion solver48,49 to verify the
generation mechanism of the EBWs. The electron distribution
function at the time of Fig. 6a is modeled by a combination of a
ring-type distribution49 for the electron crescents, a parallel-
moving Maxwellian, and Maxwellian cores, as shown in Fig. 6g
(more details in the section “Electron model distribution function
for dispersion relation”). The perpendicular profile (green curve
in Fig. 6d) of the model distribution is in good agreement with
the observations (black curve in Fig. 6d). Solving the dispersion
relation for the model distribution using a kinetic dispersion
solver, we find several unstable electron Bernstein modes (see
Fig. 6h), The maximum growth rate (�0.05 ωce) is found to be
along k? direction, pointing towards the perpendicular ring,
which models the perpendicular crescent observed by MMS. The
phase speed estimated from the maximum growth rates in each of
the electron Bernstein branches is 8070 km s�1, which is
consistent with Vph predicted from the location of the maximum
slope in the distribution function (see Fig. 6d). We find similar
results by solving a dispersion relation of coupling between
electron Bernstein mode and drifting electron beam mode50,51.
One can note a difference between the MMS observations and the
linear theory that the observed EBWs powers peak between the
gyro-harmonics, while the peak growth rates locate close to the
gyro-harmonics. This difference can possibly be due to the
nonlinear effects of the large-amplitude EBWs51 and using a ring-
type distribution instead of a crescent to model the instability.

We estimate the wave electric potential to be Φ � 13V, and
the EBWs can trap electrons with perpendicular speed between

Vph ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qeΦ=me

p ¼ ð8 ± 2:1Þ ´ 103 km s�1. The electron dis-
tributions presented in Fig. 6b, c were observed at the times of the
large-amplitude EBWs, and their 1D electron distribution profiles
along k̂ and �k̂ are shown in Fig. 6e, f, respectively. The potential
of EBWs is sufficiently large to trap nearly half of the electron
crescents and to form the observed plateau in the distributions.

We present an MMS observation of large-amplitude quasi-
electrostatic waves at the electron-scale boundary of the Hall
current reversal near an EDR encounter. All the properties prove
that the quasi-electrostatic waves are EBWs in an over-dense
plasma environment. We conclude that the EBWs are driven by
the crescent-shaped electron distributions perpendicular to B.
Here, the local B is dominated by the Hall magnetic field
embedded in a Hall current reversal. The electron crescents are
generated by finite gyroradius effect of the outflow electrons from
the magnetosheath side of the neutral line. The EBWs propagate
toward the central EDR. The EBWs electric potentials are large
enough to thermalize and diffuse the electron crescents near
the EDR.

Discussion
Agyrotropic electron distributions are widely observed in and
near EDRs from MMS observations52. The agyrotropic electrons
may have sufficient free energy to generate different types of
intense electrostatic waves. The EBWs reported here and the UH
waves in ref. 9 are both driven by the agyrotropic electrons in the
plane perpendicular to B via wave-mode coupling between beam-
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type mode and fundamental wave modes. The two cases are both
observed on the magnetosheath side of the reconnection neutral
line. The types of the electrostatic waves are probably determined
by the specific distribution functions of the agyrotropic electrons
and the others. The electron populations in the EBWs case are
thermalized (188 eV) electron outflows. The source of the agyr-
otropic electrons is from the magnetosheath (+N) side, and the
crescents have a significant density proportion (�54%) of the
total density. The dominant electron populations in the case of
the UH waves9 are magnetosheath (46 eV) electron inflows. The
agyrotropic electrons (�5% of the total electrons) gyrate from the
−N direction, and may undergo the meandering orbits across the
neutral line8,36. The EBWs here and the UH waves in ref. 9 are
mainly due to the different density proportions of the agyrotropic
electrons and the different properties of the background electrons.

The electron agyrotropic distribution functions, that drive the
EBWs, are found in the electron outflow near the electron dif-
fusion region. MMS observed unstable distributions just before
the EBWs, and diffused distribution while the EBWs were
observed. This suggests that the large-amplitude EBWs can
change the electron pressure tensor and modify the balance of the
reconnection electric field. MMS trajectories of the two events in
refs. 8,53 crossed EDRs in a similar way as shown in Fig. 2. We
find electrostatic waves with frequencies above the electron
cyclotron frequencies at similar electron-scale boundaries of the
Hall current reversals. The agyrotropic electron distributions
observed at these boundaries are likely to be the source of these

electrostatic waves. The EBWs reported here and the high-
frequency electrostatic waves in refs. 8,53 are highly structured at
the electron-scale boundaries of the Hall current reversals near
EDRs. The cross-field diffusion coefficient of the EBWs is esti-
mated to be 3.6 × 105 m2 s�1, using Eqs. (4) and (9) in ref. 54, and
the observed wave amplitude of 60 mVm�1 and local plasma
conditions. The diffusion time is 1.6 s for the electron-scale
(0.75 km) boundary shown in Figs. 4 and 5. The high-frequency
electrostatic waves reported here and in refs. 8,53 may contribute
significantly to the cross-field diffusion of the Hall current
reversal boundaries near the electron diffusion regions. The
observed magnetic reconnection events are already the results of
mixture of all the possible effects. It is difficult to reveal the
diffusion effects of the high-frequency waves separately from the
data. Further numerical simulations using particle-in-cell models
are needed to quantify the systematic effects of the large-
amplitude high-frequency waves from linear to nonlinear stages.

Methods
Electron velocity distribution functions. FPI25 onboard the MMS spacecraft
measures the electrons and ions with high time resolution to resolve kinetic-scale
plasma dynamic. The burst-mode FPI data provide three-dimensional (3D) elec-
tron distribution functions with temporal resolutions of 30 and 7.5 ms46. The 32
energy bands of FPI cover electron energies from 10 eV to 30 keV. The angular
resolution is 11.25� along both the azimuthal and polar directions. Figure 7a shows
the 3D electron distribution functions with Ve = 8.6 × 103 km s�1 of the unstable
electron crescents. As shown in Fig. 7b as an example, all the 2D slices used in this
study are from the average phase-space densities within ± 22:5� from a particular
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plane, while unit vectors are projected when they are within ± 22:5� respect to
the plane.

Liouville mapping of the electron crescents. The crescents generating the large-
amplitude electron Bernstein waves gyrate from the magnetosheath (+N) side of
the neutral line. We get the mapped electron phase-space density by using the
Liouville’s theorem47 that the electron phase-space density are conserved along the
particle trajectories throughout the gyro-motion at the electron-scale boundary (see
Fig. 5). We assume one-dimensional variation of the magnetic field B and the
electric field E around the EBWs observations. Here, B is dominated by BM. The
electric potential of the electron increases when tracing towards the high-density
region55 (see Fig. 5a, b, d). The electron trajectories (see Fig. 5b) in the plane
perpendicular to B are obtained by solving the electron motion equation based on
observed electric and magnetic fields. Table 1 shows the details of the electron
distribution function tracing in velocity space, while the curves in Fig. 5e–i also
consider the energy resolution and errors of the phase-space densities.

Electron model distribution function for dispersion relation. We use a gyro-
tropic ring-type distribution function to model the observed crescents, while the
rest of the observed electron populations is modeled by one drifting (along the field
line) Maxwellian and two nondrifting Maxwellian cores. The background magnetic
field is 30 nT, and the electron total number density is 14.1 cm�3. The gyrotropic
ring is from superposition of multiple ring-type distribution functions49:

f rðVk;V?Þ ¼
Nr

π3=2δv2?δvkΓ
exp � ðV? � v?rÞ2

δv2?

� �
exp �ðVk � vkrÞ2

δv2k

" #
; ð1Þ

Γ ¼ exp � v2?r

δv2?

� �
þ

ffiffiffi
π

p
v?r

δv?
erfc � v?r

δv?

� �
; ð2Þ

where erfc is the complementary error function. The parameters, number
density (Nr , in cm�3), parallel and perpendicular thermal speeds (δvk and δv? ,

in km s�1), the parallel speed (vk;r, in km s�1), and the perpendicular ring speed
(v?;r, in km s�1), are listed in Supplementary Data 1. The Maxwellian cores contain
65 eV electrons with a number density of 1.35 cm�3 and 320 eV electrons with a
number density of 2.02 cm�3. The parallel-moving Maxwellian electrons have a
number density of 3.38 cm�3, a parallel speed of 8000 km s�1, perpendicular tem-
perature of 20 eV and parallel temperature of 10 eV. All the parameters are adjusted
to have a best fitting of the crescents and a relatively good fitting of the rest.

Data availability
MMS L2 data are available from the MMS Science Data Center (https://lasp.colorado.
edu/mms/sdc/public).

Code availability
All of the data plots in this study are generated with the IRFU-Matlab software applied to
the publicly available MMS database. The IRFU-Matlab software is available by
downloading from https://github.com/irfu/irfu-matlab.
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