

Influence of the player on the dynamics of the electric guitar

Jean-Loic Le Carrou, Arthur Paté, Baptiste Chomette

▶ To cite this version:

Jean-Loic Le Carrou, Arthur Paté, Baptiste Chomette. Influence of the player on the dynamics of the electric guitar. Journal of the Acoustical Society of America, 2019, 146 (5), pp.3123-3130. 10.1121/1.5130894. hal-02495624

HAL Id: hal-02495624 https://hal.sorbonne-universite.fr/hal-02495624

Submitted on 2 Mar 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Influence of the player on the dynamics of the electric guitar

Jean-Loic Le Carrou, 1, a) Arthur Paté, 2 and Baptiste Chomette 1

¹Sorbonne Université, CNRS, Institut Jean Le Rond d'Alembert, Paris,

France

² Univ Lille, CNRS, École Centrale, ISEN, Univ Valenciennes, IEMN, UMR 8520,

Lille , France

The sound of the electric guitar is strongly dependent on the string vibration. Where a mode of the structure coincides with a mode of the fretted string, coupling between the string and structure occurs at that "deadspot." The coupling significantly lowers decay time, leading to the name (Paté et al., 2014). But how the guitarist affects the dynamic behavior of the structure by grasping the neck, holding the instrument with the strap, or laying the instrument on his/her thigh remains to be investigated. This is the aim of the paper. Two methods are proposed to identify the modal parameters of the electric guitar structure, either by a classical modal analysis in simulated playing configuration, or by an operational modal analysis (OMA) in real playing configuration. For this latter method, modal parameters are identified from dynamic measurements performed when each string is plucked. Both methods are compared and allow us to quantify the modal frequency modification and the added modal damping, that depend on the player's body-part in contact with the structure and on the modal shape considered. Consequences of these modal parameters on the modeled sound show that the player can increase the decay time close to a deadspot.

10

11

12

13

14

15

a) jean-loic.le_carrou@sorbonne-universite.fr

16 I. INTRODUCTION

The sound of the electric guitar comes from the conversion of the mechanical vibration of the string into an electric signal. Consequently, the sound does not seem to depend 18 on the mechanical properties of the guitar body. However, in the general case of stringed 19 musical instruments, the modal parameters of the instrument body may affect the vibration of the string. While there are few studies on the electric guitar, much research on violin 21 and acoustic guitar dealt with coupling phenomena in the case of the violin or the guitar. For example, Gough (Gough, 1980, 1981) studied the coupling between the string and the body using an analytical model in the case of the wolf-note phenomenon that appears in the violin. Woodhouse (Woodhouse, 2004ab) proposed several sound synthesis methods and underlined the connection between the modal parameters of the acoustic guitar body and the sound of the instrument. More recently, Benacchio et al. (Benacchio et al., 2016) experimentally demonstrated the importance of the modal parameters of the guitar body in the sound of the instrument using active modal control. In the case of the electric guitar, body-coupling may also, in some cases, affect the string vibration, mostly when there is a frequency coincidence between string and body modes. Paté et al. (Paté et al., 2014) 31 showed that the decay time of solid body electric guitar tones is due to the combined action of string's intrinsic damping and coupling-induced damping. It was notably shown that for the electric guitar, this coupling mainly occurs at the neck (Fleischer and Zwicker, 1999; Paté et al., 2014). However, in the classic way of playing the electric guitar, ergonomic studies (Marmaras and Zarboutis, 1997) showed that the left-hand palm holds the neck and

the left-hand finger presses the string against the fingerboard. Thus, the left hand may have consequences on the neck vibration. Similarly, the player's body (e.g. stomach, thigh) is in contact with the body of the instrument and may also modify the instrument's vibration. In order to measure these effects, previous studies used simulated playing configuration while 40 the instrument was excited by a classical system. For the electric guitar, the experimenter held the neck, on which the shaker is fixed, puts the instrument on his knees, and the left hand grasped the neck (Fleischer, 2005; Fleischer and Zwicker, 1998, 1999). For the violin, excited by an impact hammer, the experimenter held the instrument between his chin and his shoulder in a "usual manner" (Marshall, 1986). Results of these first studies clearly show that the player increases the damping of the structure depending on the mode. But this experimental methodology is quite far from a real playing posture. However, musical instruments contain their own excitation system that can be used to identify their modal basis with Operational Modal Analysis method (OMA), as performed recently on a concert harp (Chomette and Le Carrou, 2015).

The aim of this paper is to identify the modal basis of the electric guitar when it is played in order to quantify the influence of the player on the dynamic behavior of the electric guitar structure. The operational modal analysis is presented in Section II. The experimental method is proposed in Section III. Results are shown in Section IV and a discussion highlighting the influence of the player both on the electric guitar vibration and on the sound of the instrument is given in Section V.

57 II. OPERATIONAL MODAL ANALYSIS IN TIME DOMAIN

The aim of the Operational Modal Analysis (OMA) is to identify modal parameters using only measured data without knowing the excitation. In the case of an unknown impulse response, OMA methods can use the Linear Square Complex Exponential (LSCE) algorithm introduced by Brown et al. (Brown et al., 1979). In this method, the time response of a structure $h_{ij}(k\Delta t)$ at the kth time sample Δt located at point i due to an impulse located at point j can be expressed as the summation of N decaying sinusoids whose frequency and damping ratio are associated to the rth structural mode

$$h_{ij}(k\Delta t) = \sum_{r=1}^{N} \frac{\phi_{ri} A_{rj}}{m_r \omega_r^d} e^{-\xi_r \omega_r^n k \Delta t} sin(\omega_r^d k \Delta t + \theta_r), \tag{1}$$

where ω_r^n and $\omega_r^d = \omega_r^n \sqrt{1 - \xi_r^2}$ are the non-damped and damped frequency respectively. ξ_r is the damping ratio. ϕ_{ri} is the *ith* component of the *rth* mode. A_{rj} , m_r^d and θ_r are a constant associated to the *jth* response signal, the *rth* modal mass and the phase angle of the *rth* modal response respectively. The impulse response can also be written numbering all complex modes and poles including conjugates from r = 1 to r = 2N

$$h_{ij}(k\Delta t) = \sum_{r=1}^{2N} C_{rij} e^{s_r k\Delta t}, \qquad (2)$$

where C_{rij} is the complex amplitude of the rth mode for the ith input and the jth output.

The poles $s_r = \omega_r^n \xi_r \pm j \omega_r^d$ associated to the modes of the structure appear in complex conjugate form. Consequently the complex exponentials $V_r = e^{s_r \Delta t}$ are the roots of the polynomial Prony's equation of order 2N

$$\beta_0 + \beta_1 V_r^1 + \dots + \beta_{2N-1} V_r^{2N-1} + V_r^{2N} = 0, \tag{3}$$

with $\beta_{2N} = 1$. By multiplying equation 2 by β_k and sum over $k = 0 \cdots 2N$, equation 3 gives

75

$$\sum_{k=0}^{2N} \beta_k h_{ij}(k\Delta t) = 0. \tag{4}$$

By writting 2N times equation 4 starting at successive sample times, the coefficients β_k are the roots of a linear system. In practice, the system is overdetermined to increase the robustness of the method and is thus solved using the least square method. The poles are finally obtained using

$$s_r = \frac{1}{\Delta t} \Big(|V_r| \pm j \arg(V_r) \Big), \tag{5}$$

where arg denotes the argument of the complex poles. In practice, the stable poles are automatically extracted using a stabilization chart (Chomette and Mamou-Mani, 2018). This diagram is based on several runs of the pole identification process by using models of increasing order N. Physical poles always appear around the same frequency whereas mathematical poles tend to span the whole frequency range. The typical stabilization criteria are chosen as equal to 1% for the frequency and 5% for the damping. Poles are considered to be stable if their identified frequency and damping do not exceed theses values between two successive runs at order n and n + 1.

In the case of a white noise excitation, OMA methods can be based on the Natural Excitation Technique (NExT) introduced by James et al (James et al., 1995). If damping is small, the main assumption of the NExT method is that the correlation function between two sensors located at points i and j can be written as the impulse response function located at point i due to an impulse at point j. Using the correlation function, the method is then similar to the LSCE method. In the case of string instruments, Chomette and Le Carrou

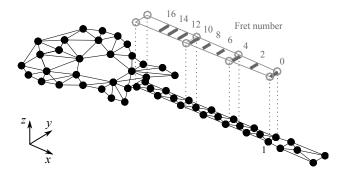


FIG. 1. Two meshes used in the study: 54-point on the whole electric guitar (black) on which point label 1 is shown and 8-point on the neck (gray) on which Frets 0 to 16 are shown.

(Chomette and Le Carrou, 2015) have shown that the NExT-LSCE method can be applied successfully for a plucked string instrument: the concert harp. Indeed, the excitation induced by a string on the instrument can be considered as a sum of damped harmonic components.

If the harmonic frequencies of the string are well separated from the eigenfrequencies of the structure, modal parameters can be easily identified. If the harmonic frequencies of the string are close to the structural mode frequencies, modified methods must be used (Marshall, 1986; Mohanty and Rixen, 2004).

1 III. EXPERIMENTAL METHOD

In order to identify the modal parameters of the electric guitar, two methods are performed: a classical modal analysis and an operational modal analysis (OMA). For the former,
one or a few accelerometers are glued on the guitar while an impact hammer successively
hits different points of the experimental mesh. The classical analysis is performed on the
54-point and the 8-point meshes shown in Figure 1, whereas for the OMA only the 8-point

FIG. 2. Experimental configurations for classical modal analysis when the electric guitar is free to vibrate with damped strings (a) and for operational modal analysis in free-free configuration (b) and when the player is standing (c) or sitting (d).

mesh is used. For the classical modal identification, the Least Square Complex Frequency (LCSF) algorithm (Guillaume et al., 2003) (implemented in Modan software) is used. For 108 the OMA, the 8-point mesh is composed of eight accelerometers (PCB M352C65) glued on 109 the neck and another one (PCB 352B10) is moved on the symmetrical axis close to the 110 played fret as shown in Figure 2-(a). This latter accelerometer provides the reference signal 111 for the OMA identification. Note that the location and the size of the eight accelerometers 112 do not allow the first and the sixth string to be mounted on the guitar. Throughout this 113 study, 1d-accelerometers were used, so that only out-of-plane (vertical, i.e. perpendicular to 114 the fingerboard plane) accelerations are measured and shown in this direction only in the 115 following. 116

In order to quantify the dynamical modification of the instrument when playing, three configurations are tested: with sitting or standing player (i.e. two usual playing configu-

rations) and with nobody touching the instrument. For the first two configurations, the 119 right-handed player holds the electric guitar with the strap or lays it on his right thigh. For 120 both configurations, the left hand holds the neck and a finger presses the string on the fret to set the vibrating length of the string, as shown in Figures 2-(c) and 2-(d). The last con-122 figuration is used as a reference by laying the electric guitar on elastic straps supported by 123 a frame as to simulate free-free boundary conditions (Paté, 2014), as shown in Figure 2-(b). For the OMA, the player is asked to play several notes along 4 strings (A₂, D₃, G₃ and B₃-125 string). The left-hand middle finger presses the string against the fingerboard successively 126 at frets 2 to 16 every two frets. At the nut (denoted F0), the left hand does not hold the 127 neck. The other strings are blocked with the other fingers of the left-hand (this is a common 128 practice for guitar players). All fundamental frequencies of each note played are gathered 129 in Table I. 130

131 IV. RESULTS

132

133

A. Classical modal analysis

1. Free-free configuration

A classical modal analysis of the complete electric guitar was performed by using an LSCF method as previously explained. Until 500 Hz, 6 modes are identified. Their modal shapes are displayed in Figure 3. First, two kinds of mode are present: global (1) and local modes (2 to 6) with only neck displacement. Second, among these modes, two are perfect bending

Fret	String 5	String 4	String 3	String 2
0	110.00 (A ₂)	146.82 (D ₃)	196.00 (G ₃)	246.94 (B ₃)
2	$123.47~(B_2)$	$164.81 \; (\mathrm{E}_3)$	$220.00 (A_3)$	277.18 (C# $_4$)
4	$138.59 (C#_3)$	184.99 (F# ₃)	$246.94~(B_3)$	$311.12 (D\#_4)$
6	$155.56 \text{ (D}\#_3)$	$207.65 (G\#_3)$	277.19 (C# $_4$)	$349.23~({\rm F}_4)$
8	$174.61 (F_3)$	$233.08 \text{ (A}\#_3)$	311.13 (D# ₄)	$391.99 (G_4)$
10	$196.00 (G_3)$	$261.62 (C_4)$	$349.23~(F_4)$	$440.00 (A_4)$
12	$220.00 (A_3)$	$293.66 (D_4)$	$392.00 \; (G_4)$	$493.88 (B_4)$
14	$246.94~(B_3)$	$329.22~(E_4)$	$440.01 (A_4)$	$554.36 \text{ (C}\#_5)$
16	277.18 (C# ₄)	$369.99 (F\#_4)$	$493.89 (B_4)$	$622.25 \; (D\#_5)$

TABLE I. Fundamental frequency in Hz and name of played note for each string and each fret.

modes (1 and 6), two are perfect torsional modes (2 and 5) and two are a combination of bending and torsion which are modes 3 and 4.

2. Simulated playing configuration

140

A first approach to quantify the player's impact on modal parameters of the electric guitar is to carry out a classical modal analysis on an electric guitar. The guitarist then mimics a playing situation on an instrumented guitar with accelerometers glued on the fingerboard whereas an impact is provided by the hammer close to the nut (on point 1, see Figure 1).

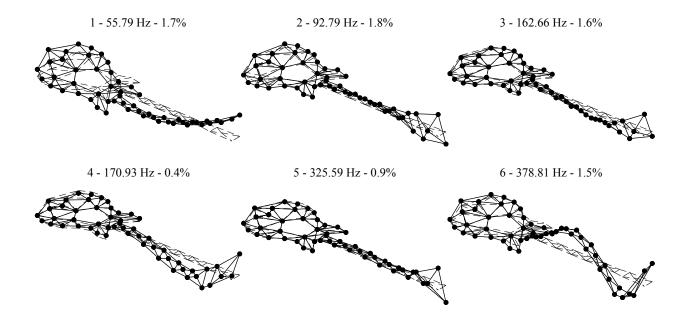


FIG. 3. Modal frequencies, modal damping and modal shapes of the electric guitar in free-free configuration. Dashed lines represent the mesh at rest position, black dots connected by solid lines represent the deformation corresponding to the modal shape.

Results are synthesized in Figure 4 showing each co-localized FRF measured for each lefthand position. In addition, the FRF in free-free condition is also plotted highlighting modes 4 and 6 to be particularly present in the instrument's response. Modal parameters for modes 4 and 6 are gathered in Figure 7.

Results clearly show that holding the electric guitar or letting it lie globally affects the damping of the electric guitar in a similar way for the two player positions. In details, this modification depends on the left-hand position along the neck. Mode 4 is more affected when the guitarist's hand is close to the neck head than mode 6, for instance. The closer the left-hand to the anti-node of the mode, the higher is the damping. Between the two configurations, subtle differences can be seen in terms of damping, especially for mode 4.

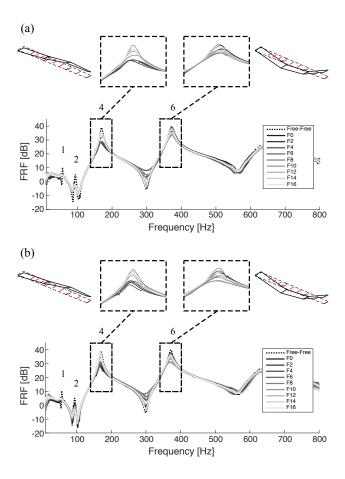


FIG. 4. Co-localized FRF measured at point 1 of the mesh (see Fig. 1) for sitting (a) and standing configurations (b). Numbers refer to mode numbers in Figure 3. FRFs are magnified around the frequency of modes 4 and 6 (corresponding modal shapes are also plotted).

Modes 1 and 2, whose displacement amplitude at point 1 is already low, are also affected
by the left hand position along the neck, adding some damping and lowering the FRF
amplitudes even more. Note that modes 3 and 5 are not visible in the co-localized FRF,
as for these modes the displacement amplitude at point 1 is much lower than for the other
modes, as shown in Figure 3.

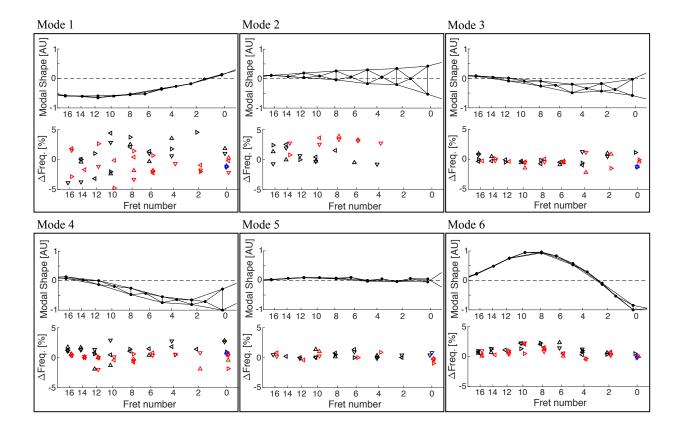


FIG. 5. [Color online] Frequency deviation identified by the OMA. For each mode, Δ Freq. is the frequency deviation, in percentage, from the modal frequency identified by the classical method (see Table 3). The results for standing player are plotted in black and for sitting player in red whereas the free-free configuration is plotted in blue. Different markers are used for the identification results on each plucked string: A2-string with \triangleleft , D3-string with \triangleright , G3-string with \triangle , B3-string \triangleright . Dashed lines represent the mesh at rest position, black dots connected by solid lines represent the deformation corresponding to the modal shape on the xz-plane.

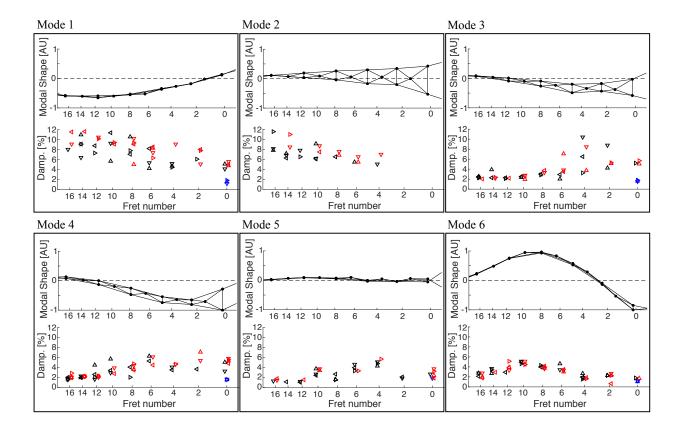


FIG. 6. [Color online] modal damping identified by the OMA. The results for standing player are plotted in black and for sitting player in red whereas the free-free configuration is plotted in blue. Different markers are used for the identification results on each plucked string: A2-string with \triangleleft , D3-string with \triangledown , G3-string with \triangle , B3-string \triangleright . Dashed lines represent the mesh at rest position, black dots connected by solid lines represent the deformation corresponding to the modal shape on the xz-plane.

B. Operational Modal Analysis

1. Free-free configuration

160

161

The OMA is applied on response signals measured on the electric guitar neck for four strings. In order to test the method, the OMA is first performed on an electric guitar on

free-free conditions. For each of the four strings plucked, most of the modes are identified. Figure 5 and Figure 6 show modal frequency deviation and modal damping, with a marker 165 for each string, and in blue for the free-free measurement at the nut (fret 0). Blue markers are generally superimposed, showing that OMA for structural modes of the instrument do 167 not depend strongly on which string is used for the excitation and, therefore, a perfect 168 reproducibility of the method. Moreover, modal frequency and damping are found to be very close to those of the classical modal analysis in comparison to previous results obtained 170 for a concert harp (Chomette and Le Carrou, 2015). Note that for torsional modes, no 171 physical poles are found for mode 2 and only one with D3-string for mode 5 by the OMA 172 algorithm. These modes seem to be not well excited by the strings contrary to bending 173 modes. 174

2. Playing configuration

175

The OMA is then applied on accelerometer measurements when the electric guitar is 176 played by a person standing or sitting. Modal frequency deviation and damping for all 177 left-hand positions along the neck and for all player configurations are gathered in Figures 5 178 and 6 for the first six modes. On these figures, the color of the maker defines the players 179 configuration, "standing" in black and "sitting" in red, and the markers' shape indicates 180 which string was played for the OMA identification. In order to facilitate the interpretation 181 of the modal frequency deviation and damping, the modal shape of each mode is also shown 182 according to the neck cross-section on xz-plane (see Figure 1) between the 16th fret and the 183 nut.

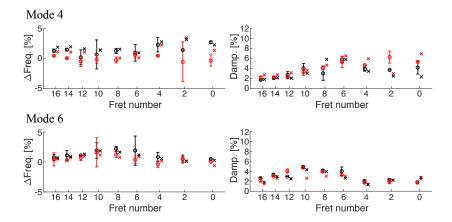


FIG. 7. [Color online] Comparison between modal frequency deviation (Δ Freq.) and modal damping identified by the OMA (circles) and by the classical modal analysis (crosses) for standing (black) and sitting (red) player. For OMA, the circles are the mean value of 4 measurements (on 4 strings) and the error bars show the expanded uncertainty with 95% confidence.

All modes are well identified by OMA with each of the four strings as an excitation. 185 Some modes are however better identified than others, and this is due to a) the string/neck 186 coupling point location with respect to the modal shape, b) the fact that torsional modes 187 are generally excited less than bending modes. Modal frequencies are then found close to 188 modal frequency in free-free condition by OMA or classical modal analysis with a variation 189 less than 5% for modes 1 and 2 and less than 2.5% for modes 3 to 6. This small impact of 190 the player on the modal frequencies has already been noted for local modes on an electric 191 bass (Fleischer, 2005). The variation range across frets in modal frequency and damping i) 192 depends on the mode, and ii) is much higher than for free-free conditions. 193

194 V. DISCUSSION

But more generally, the variation of modal damping with the note played (pressed fret) 195 seems to exhibit a systematic behavior. This evolution is found to be directly linked to the modal shape: the wider the mode shape displacement is at fingering location, the higher the 197 damping is. When the player's left hand is close to a node of the mode shape, the modal 198 damping is little affected as shown for mode 3, frets 10 to 16, or for mode 4, fret 14 or mode 199 6 frets 2 and 4. Neck modal dampings are modified by the hand grasping the neck and the finger pressing the fingerboard, only if the modal displacement is large enough at the 201 fretting point. For mode 1, the guitar's body has a significant displacement. Therefore, for 202 this mode, the stomach touching the body acts as an additional dashpot. That might be 203 why, for mode 1, the modal damping in playing configuration is found to always be higher 204 than the modal damping without player (classical modal analysis) at about 5% for fret 0 205 (close to the modal node). Note that for a sitting configuration, the thigh also touches the guitar's body and increases the damping for this mode. Given the increased number 207 of player/instrument contact points, this player configuration does not generally imply a 208 higher damping than when the player is standing, as these contact points (see Figure 2-(d)) are close to a nodal line of mode 2 (see Figure 3). 210

Concerning the additional stiffness brought by the left-hand and the strap, a detailed analysis of the modal frequencies identified by OMA can provide answers. Indeed, at fret 0, the player does not press the string on the fingerboard. Therefore, the increase in modal frequency is only due to the constraint applied by the strap on the guitar body. For the

other frets, when the fingers act on the neck close to a node, modal frequency is found to be higher than for the sitting player (see, for instance, Fret 2 of Mode 1 or Fret 14 216 and 16 for mode 4), confirming that the strap brings an additional stiffness at the body in 217 playing configuration. When the finger presses on the fretboard close to an anti-node, no 218 systematic and significant modal frequency evolution is found with respect to the free-free 219 configuration for modes 1, 3, 4, and 6. Torsional mode 2 shows a noteworthy separation 220 between modal frequencies for each playing configuration. Modal frequencies are higher 221 when the player is sitting than when standing. This could be due to changes in grip force 222 between these two configurations. Grip force is presumably higher when the strap does not 223 hold the guitar (sitting configuration, compared to standing configuration with strap). We previously encountered the same modal frequency evolution for torsional modes of more or 225 less strongly held tennis rackets (Chadefaux et al., 2017). This interpretation is consistent 226 with what the player felt during the experiment. For this particular mode, the left-hand 227 seems to bring some additional stiffness at the neck. 228

In this paper, two methods are used to identify the modal parameters of the electric guitar
when playing: in real and in mimic situations when the player is sitting or standing. In order
to compare them, modal parameters for modes 4 and 6 are plotted in Figure 7. OMA results
are gathered, for each fret, as the mean value of the frequency and of the damping computed
from those identified from the 4 strings plucked, as shown in Figures 5 and 6. In Figure 7,
error bars indicate the dispersion of the results and show, to some extent, that the dynamic
behavior of the instrument also exhibits a variability that depends on all the contact points
between the instrument and the player (hand-instrument neck, stomach-instrument body,

thigh-instrument body). On the whole, the results obtained by the two methods are found to be very close. In order to have a global estimation of the influence of the player on the modal parameters of the instrument, the mimic situation with a classical modal analysis can be a good approximation.

Getting back to sound, we recall that if the electric guitar is heard through a loudspeaker, the sound originates in the mechanical vibration of the string (sensed by the 242 magnetic pickup). The string is attached to the instrument at both ends. In other words 243 string and structure are coupled and the string's modal parameters are modified by the presence of the structure (Fleischer and Zwicker, 1998, 1999; Paté et al., 2014). Former 245 studies showed that the string's modal dampings (much more than the frequencies) depend 246 on the conductance (real part of the admittance) measured at the string/structure contact point on the neck (much more than on the bridge). When some string and structure frequen-248 cies come close to one another, the corresponding string partial gets abnormally damped 249 (Paté et al., 2014). This results in timbre changes (if string partials are damped) or decay 250 times strong reduction (if fundamental frequency is damped). The latter phenomenon is 251 also called "dead spot", and should be avoided (by e.g. detuning the string or modifying 252 the structure in order to push the frequencies further apart). (Fleischer and Zwicker, 1998) 253 1999) characterized dead spots with the "T30" (time needed by the signal to decrease by 254 30dB from its maximum level). In order to predict dead spot occurrences, (Paté et al., 255 2014) proposed a sound synthesis model for the computation of the T30 that we reuse here. 256

The synthetic string signal is computed for G3 string from fret 0 (nut) to fret 16 every
two frets (in order to correspond to the points of vibratory measurement) as a sum of
quasi-harmonic damped sinusoids:

$$s(t) = \sum \frac{\sin(2\pi f_n t)}{n} e^{-2\pi f_n \xi_n t},\tag{6}$$

where (see Equation 22 in (Paté et al., 2014)):

273

274

275

276

- the amplitude of the fundamental component is set to 1 and the amplitude of rank-npartial is $\frac{1}{n}$;
- string modal dampings ξ_n are the sum of isolated string dampings $\xi_{0,n}$ (measured in (Paté et al., 2014), e.g. Figure 5) and additional damping due to the structure $\xi_{struct,n} = Re[Y] \frac{c^2 \rho_L}{2\pi L f_n}$, where Y is the driving-point admittance (defined below), where c is the wave velocity in the string, L is the vibrating length (changing for each fret), ρ_L the string's mass per unit length (see Equation 20 in (Paté et al., 2014));
- the frequency of rank-n partial f_n equals $\frac{nc}{2L} \left[1 + \frac{n^2\pi^2EI}{2L^2T} + \frac{\sqrt{\rho_LT}}{n\pi} Im[Y] \right]$, that is a stiff string model connected to a mechanical admittance, E is the Young's modulus of the string's material, I the string's second moment of area, T the string tension (see Equation 19 (Paté et al., 2014));
 - Y is the driving-point admittance at string/structure contact point, where both velocity and force are measured at the same point. In practice here, this quantity is synthesized based on a modal fit of measurements done in free-free condition on the electric guitar structure in which modal dampings are replaced by the modal dampings measured in Subsection IV B 2 for sitting and standing musician;

• the upper limit of the summation is 800 Hz, which is close to the upper limit of the magnetic pickup (for the present pickup 1000 Hz, see (Paté et al., 2014)), and which roughly corresponds to where modal overlap starts to hinder correct identification of modal parameters.

For each of these 9 synthetic signals (frets 0 to 16 by steps of 2), the energy decay curve 282 (EDC) is computed using the backwards integration method (Schroeder, 1965), then the 283 T30s are computed from a linear regression on the EDCs. T30 values are shown in Figure 8. 284 T30 ranges from 3s to 8s for free-free configuration, which is in agreement with results 285 obtained for a similar guitar in (Paté et al., 2014). A deadspot appears at fret 12 (lower 286 T30 value), which is due to a coupling between structural mode 6 at around 373.81 Hz and 287 fundamental frequency of note G4 at 392.00 Hz (see Table I). In general, T30 for sitting and standing musician is higher than for free-free configuration. This shows that the sound of 289 the electric guitar may depend on the presence of a musician. However, differences between 290 musicians' standing and sitting positions are very small, suggesting that the position of 291 the musician has very little influence on the sound. When the electric guitar is held by a 292 musician, the structure is damped and the conductance magnitude is lowered, reducing the 293 influence of the coupling: different positions might well reduce the coupling by the same amount. 295

296 VI. CONCLUSION

278

270

280

281

In this article, we presented an original work studying the influence of the guitarist on the dynamic behavior of the electric guitar structure and, by extension, on the sound of

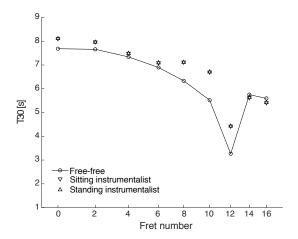


FIG. 8. T30 for each measured fret along string G3. Circles, downwards and upwards pointing triangles indicate T30 values computed from the synthesized signal for the electric guitar in free-free condition, held by a sitting musician, held by a standing musician respectively.

the instrument. Modal parameters, frequency and damping, were derived from accelerometer measurements of the structure when the player plays or simulates to play in different
configurations.

As expected, the player damps the structure. But, in details, with his or her left hand, 302 this additional damping evolves differently along the neck (i.e. at different positions on 303 the modal shape). When the player is standing, the strap, holding the electric guitar, 304 applies a constraint that brings an additional stiffness, effective for particular modes, to 305 the structure. These electric guitar dynamic modifications may have some consequences for the sound of the instrument. By using a previously developed model, the decay time of 307 the sound, which is a relevant sound indicator for the electric guitar, is higher in playing 308 configuration than in free-free configuration, but independent of the guitarist's position. All 309 these results were obtained by using a specific modal analysis method that is accurate and

usable in playing configuration. Although less accurate, a classical modal analysis could
be used with a player simulating a playing configuration, in order to estimate with a quite
great precision the player's influence on the dynamic behavior of the musical instrument.
The OMA approach, for its part, brings subtle variations associated with player-structure
interaction, for particular mode and fret combinations.

The influence of the player can now be integrated in physically-based sound synthesis algorithms or directly in instruments using active modal control by modifying modal damping or/and modal stiffness. The method developed here can be generalized to other musical instruments, like e.g. the classical guitar or instruments of the string quartet, or other kinds of structures handled by humans such as sport equipments where it is essential to have a knowledge of the dynamic behavior of the object (tennis racket, baseball bat, etc.) when it is held thus modified by the user, so as to quantify the vibration to which the user is exposed.

324 ACKNOWLEDGMENTS

The authors kindly thank the luthier Florent Guesdon who made and lent the guitar for the present study, as well as his instructors Yann-David Esmans and Fred Pons at Itemm.

327 REFERENCES

- 1 Note that computation of all f_n 's of these synthetic signals in the frequency range of the study showed that
- ratios between coupled string frequencies and corresponding isolated string frequencies were consistently
- less than 1.2 cent, which can not be perceived.

331

- Benacchio, S., Mamou-Mani, A., Chomette, B., and Finel, V. (2016). "Active control and
- sound synthesis two different ways to investigate the influence of the modal parameters
- of a guitar on its sound," Journal of the Acoustical Society of America 139(3), 1411–1419.
- Brown, D., Allemang, R., Zimmerman, R., and Mergeay, M. (1979). "Parameter estimation
- techniques for modal analysis," SAE Technical Paper **790221**, 1–19.
- ³³⁷ Chadefaux, D., Rao, G., Carrou, J.-L. L., Berton, E., and Vigouroux, L. (2017). "The effects
- of player grip on the dynamic behaviour of a tennis racket," Journal of Sports Sciences
- **35**(12), 1155–1164.
- Chomette, B., and Le Carrou, J.-L. (2015). "Operational modal analysis applied to the
- concert harp," Mechanical Systems and Signal Processing **56-57**, 81 91.
- Chomette, B., and Mamou-Mani, A. (2018). "Modal control based on direct modal param-
- eters estimation," Journal of Vibration and Control **24(12)**, 2389–2399.
- Fleischer, H. (2005). "Vibration of an electric bass guitar," Acta Acustica United With
- Acustica **91**(2), 247–260.
- Fleischer, H., and Zwicker, T. (1998). "Mechanical vibrations of electric guitars," Acustica
- **84**(4), 758–765.

- Fleischer, H., and Zwicker, T. (1999). "Investigating dead spots of electric guitars," Acustica
- **85**(1), 128–135.
- Gough, C. (1980). "Resonant response of a violin g-string and the excitation of the wolf-
- note," Acustica **44**(2), 113–123.
- Gough, C. (1981). "The theory of string resonances on musical-instruments," Acustica
- **49**(2), 124–141.
- Guillaume, P., Verboven, P., Vanlanduit, S., Van der Auweraer, H., and Peeters, B. (2003).
- "A poly-reference implementation of the least-squares complex frequency-domain estima-
- tor," in International Conference and Exposition on Structural Dynamics (IMAC), Society
- for Experimental Mechanics, Vol. 21, 183–192.
- James, G., Carne, T., and Lauffer, J. (1995). "The Natural Excitation Technique (NExT)
- For Modal Parameter Extraction From Operating Structures," Modal Analysis-The Inter-
- national Journal Of Analytical And Experimental Modal Analysis 10(4), 260–277.
- Marmaras, N., and Zarboutis, N. (1997). "Ergonomic redesign of the electric guitar," Ap-
- plied Ergonomics 28(1), 59–67.
- Marshall, H. (1986). "Operational modal analysis in the presence of harmonic excitation,"
- Journal of the Catgut acoustical society 45, 28–33.
- Mohanty, P., and Rixen, D. (2004). "Operational modal analysis in the presence of harmonic
- excitation," Journal of Sound and Vibration **270**(1-2), 93–109.
- Paté, A. (2014). "Lutherie de la guitare électrique solid body: aspects mécaniques et
- perceptifs [lutherie of the solid body electric guitar: mechanical and perceptual aspects],"
- Ph.D. thesis, univerisité Pierre et Marie Curie, Paris, France.

- Paté, A., Le Carrou, J.-L., and Fabre, B. (2014). "Predicting the decay time of solid body
- electric guitar tones," Journal Of The Acoustical Society Of America 135(5), 3045–3055.
- Schroeder, M. R. (1965). "New method of measuring reverberation time," The Journal of
- the Acoustical Society of America **37**(3), 409–412.
- Woodhouse, J. (2004a). "On the synthesis of guitar plucks," Acta Acustica United With
- 375 Acustica **90**(5), 928–944.
- Woodhouse, J. (2004b). "Plucked guitar transients: Comparison of measurements and syn-
- thesis," Acta Acustica United With Acustica **90**(5), 945–965.