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On uniform observability of gradient flows in the vanishing

viscosity limit

Camille Laurent∗and Matthieu Léautaud†

Abstract

We consider a transport equation by a gradient vector field with a small viscous perturbation
−ε∆g. We study uniform observability (resp. controllability) properties in the (singular) vanishing
viscosity limit ε → 0

+, that is, the possibility of having a uniformly bounded observation constant
(resp. control cost). We prove with a series of examples that in general, the minimal time for uniform
observability may be much larger than the minimal time needed for the observability of the limit
equation ε = 0. We also prove that the two minimal times coincide for positive solutions. The proofs
rely on a semiclassical reformulation of the problem together with (a) Agmon estimates concerning the
decay of eigenfunctions in the classically forbidden region [HS84] (b) fine estimates of the kernel of the
semiclassical heat equation [LY86].
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1 Introduction and main results

1.1 Introduction

Given a smooth connected compact manifold M without boundary (the case of a bounded domain of Rn is
also discussed in Section 1.3 below), a smooth real valued vector field X on M and a real valued potential
q(x), we consider the question of observability/detectability for the autonomous transport equation

{
(∂t −X − q)u = 0, in R×M,

u|t=0 = u0, on M,
(1.1)

from an observation (open) set ω ⊂ M through the time interval (0, T ). More precisely, the question is
whether there exists a constant C0 = C0(T, ω) > 0 such that

C2
0

∫ T

0

∫

ω

|u(t, x)|2ds(x)dt ≥ ‖u(T )‖2L2(M),

for all u0 ∈ L2(M) and u solution of (1.1). (1.2)

Here, ds(x) denotes any positive density measure1 on M, and the L2 norm is defined accordingly. The
observability question (1.2) is naturally solved by introducing an appropriate Geometric Control Condition
(recall ∂M = ∅): we say that (M, X, ω, T ) satisfies (GCC) if for all x ∈ M, there is t ∈ (0, T ) such that
φ−t(x) ∈ ω, where (φt)t∈R denotes the flow of X (see Section 2.3 for precise statements and proofs). We
also say that (M, X, ω) satisfies (GCC) if (M, X, ω, T ) does for some T > 0; and if so, we denote by
TGCC(M, X, ω) the infimum of times for which (M, X, ω, T ) satisfies (GCC).

On the other hand, endowing M with a Riemannian metric g, one may want to investigate the observ-
ability question for the viscously damped transport equation:

{
(∂t −X − q − ε∆g)u = 0, in R

+
∗ ×M,

u|t=0 = u0, on M,
(1.3)

1See e.g. [Lee13, Chapter 16 p427]: given a local chart (Uκ, κ) of M, we have
∫
Uκ

u ds =
∫
κ(Uκ)

u ◦κ−1(y)ϕκ(y)dy for an

appropriate smooth positive function ϕκ, and for any u ∈ C0
c (Uκ).
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from the same observation set (0, T ) × ω. The question is whether there exists a constant C0(T, ε) > 0
such that

C0(T, ε)
2

∫ T

0

∫

ω

|u(t, x)|2ds(x)dt ≥ ‖u(T )‖2L2(M),

for all u0 ∈ L2(M) and u solution of (1.3), (1.4)

(and one may then choose the Riemannian volume density ds(x) = dVolg(x) without changing the prob-
lem). For fixed ε > 0, Equation (1.3) is of parabolic type and the observability inequality (1.4) is known to
hold for any open set ω 6= ∅ and T > 0, see [FI96] (see also [LR95] and its variant in [Léa10]). Of course,
in such results, the observability constant C0(T, ε) in (1.4) depends a priori on ε. For many different
reasons (some of them described in Section 1.2 below), it is interesting to investigate the behavior of the
observability constant C0(T, ε) in the vanishing viscosity limit ε → 0+. This problem was first studied
in the one dimensional setting by Coron and Guerrero in [CG05], and later extended to any dimension
by Guerrero and Lebeau [GL07]. Their main result in this direction can be formulated (in the present
geometric context, see the remark preceding Proposition 5.7) as follows.

Theorem 1.1 (Guerrero-Lebeau [GL07]). Given an open set ω ⊂ M, the following two results hold.

• [GL07, Theorem 1] Assume (M, X, ω, T ) does not satisfy (GCC). Then there is C, ε0 > 0 such that
any constant C0(T, ε) in (1.4) satisfies C0(T, ε) ≥ exp(C/ε) for ε ∈ (0, ε0).

• [GL07, Theorem 3] Assume (M, X, ω) satisfies (GCC). Then there is Tunif (ω) ≥ TGCC(M, X, ω)
and K0 > 0 such that for all T ≥ Tunif (ω), (1.4) holds with C0(T, ε) ≤ K0 for all ε ≤ 1.

Note that the results in [GL07] are even more general since time-dependent vector fields are allowed
and the boundary-value problem is also considered (with Dirichlet boundary conditions). We also refer to
our Proposition 1.12 below for a more precise lower bound of the constant C when (GCC) is not satisfied.

Note that if (1.4) holds for some T0 and constant C0(T0, ε), then it also holds for all times T ≥ T0 with
the same constant C0(T0, ε). In [GL07], the question of the minimal time Tunif (ω), more precisely defined
by

Tunif (ω) = inf {T > 0 for which there exist K0, ε0 > 0

such that (1.4) holds with C0(T, ε) ≤ K0 for all ε ∈ (0, ε0)} ,

and its link with the minimal observation time TGCC(M, X, ω) associated to the limit problem (1.1) is
left open. In particular, the formulation of the results in [GL07] (see e.g. Theorem 2 and the discussion
thereafter in that reference) suggests the possible existence of a universal constant K ≥ 1 such that

Tunif (ω) ≤ K TGCC(M, X, ω). (1.5)

The present article investigates this question in a very particular case, namely assuming the vector
field X is a gradient vector field, i.e. X = ∇gf for a function f ∈ W 2,∞(M;R) (note that the gradient is
taken with respect to the Riemannian metric g). Hence, Equation (1.3) becomes

{
(∂t −∇gf · ∇g − q − ε∆g)u = 0, in R

+
∗ ×M,

u|t=0 = u0, on M,
(1.6)

Here, given two vector fields Y1 and Y2, we have denoted Y1 · Y2 = g(Y1, Y2) or (Y1 · Y2)(x) = Y1(x) ·
Y2(x) = gx(Y1(x), Y2(x)) for all x ∈ M. We denote similarly |Y |g =

√
Y · Y the associated Riemannian

norm of a vector (or a vector field). Note that the vector field ∇gf is canonically identified with the
derivation ∇gf · ∇g.

In this context, the first consequence of our main results can be (loosely) stated as follows.

Theorem 1.2. 1. There are geometries (M, g) such that for all Λ > 0, one can find f ∈ C∞(M) and
ω open such that (M,∇gf, ω) satisfies (GCC) and Tunif (ω) ≥ Λ TGCC(M,∇gf, ω).
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2. There are (M, f, X, ω) such that for all Λ > 0, one can find a metric gΛ on M such that

• X = ∇gΛ f,

• (M, X, ω) satisfies (GCC),

• Tunif (ω) ≥ Λ TGCC(M, X, ω).

In particular, Theorem 1.2 states that there is no K such that (1.5) holds for all (M, X, ω).
The second item in Theorem 1.2 stresses the importance of the viscosity one chooses. Namely, with

the same vector field X , changing the metric g, that is the viscous perturbation, may change the minimal
uniform observability time. We also obtain related results for domains of Rn (see Section 1.3.1).

Our second main result in this setting concerns the uniform observability of positive solutions to (1.6).
Recall that nonnegative data u0 ≥ 0 give rise to positive solutions to (1.6). We define C+

0 (T, ε) the
observability constant for positive solutions, that is for which (1.2) holds for all u0 ≥ 0, and accordingly
set

T+
unif (ω) = inf {T > 0 for which there exist K0, ε0 > 0 such that (1.4) holds

for all u0 ≥ 0, with C+
0 (T, ε) ≤ K0 for all ε ∈ (0, ε0)

}
. (1.7)

Theorem 1.3 (Positive solutions). For all f ∈ C3(M;R), and ω ⊂ M such that (M,∇gf, ω) satisfies
(GCC), we have T+

unif (ω) = TGCC(M,∇gf, ω).

As usual, these uniform observability/non-observability results can be reformulated in terms of uniform
controllability/non-controllability statements for an adjoint controlled equation, see Section 2.1.1 below.

1.2 Background and motivation

Uniform controllability problems for singular perturbations of partial differential equations already ap-
peared in the reference book of Lions [Lio88, Chapter 3]. In the context of transport/heat equation in
vanishing viscosity limit, this study was initiated by Coron and Guerrero on the 1D problem with con-
stant speed in [CG05], where the authors make a conjecture on the minimal time needed to achieve
uniform controllability. Then, the estimates on this minimal time have been improved successively
in [Gla10, Lis12, Lis14, Lis15]. We also refer to the articles [Mün18, AM19b, AM19a] proposing nu-
merical experiments to find the optimal minimal time. Such uniform control properties in singular limits
are also addressed for vanishing dispersion in [GG08] and for vanishing dispersion and viscosity in [GG09].

Whereas the one dimensional problem with a constant vector field has received a lot of attention in
the past fifteen years, there are very few results in higher dimension or for non-constant vector fields.
Besides [GL07] we are only aware of the results of [BP20b] and [BP20a] for the flat Laplace operator and
the vector field ∂x1 , with several boundary conditions.

Note that controllability problems for nonlinear conservation laws in vanishing viscosity have also been
studied in [GG07], [Léa12], and [Mar14].

There are several motivations for studying the vanishing viscosity limit. A first motivation comes from
the theory of conservation laws, for which the vanishing viscosity criterium is a selection principle for the
physical (called entropy) solution, see [Kru70] or [Daf00, Chapter 6]. It is therefore very natural, when
considering control problems for conservation laws, to study the cost of the viscosity, that is, to determine
if known controllability properties for the hyperbolic equation are still valid for the model with small
viscosity, and how the size of the control evolves as the viscosity approaches 0. So far the only known
results in this directions seem to be [GG07] and [Léa12].

Another important motivation for studying singular limits in control problems is the seek of control-
lability properties for the perturbated system itself. This is well-illustrated by the papers [Cor96, CF96,
Cha09, CMS19], where the authors investigate the Navier-Stokes system with Navier slip or slip-with-
friction boundary conditions. They use a global controllability result for the inviscid equation (in this
case, the Euler equation) to deduce global approximate controllability of the Navier-Stokes system.
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On the other hand, the study of gradient fields naturally arises as the simplest dynamical situation
among all vector fields. The importance of gradient vector fields with a vanishing viscosity coefficient
also appears in theoretical physics and differential topology, through the Witten-Helffer-Sjöstrand the-
ory [Wit82, HS85]. See e.g. the monographs [Hel88, CFKS87]. In that theory, the operator −∇gf·∇g−ε∆g

(and its analogues acting on forms) is conjugated to a particular semiclassical Schrödinger operator, namely

Pε = −ε2∆g +
|∇gf|2g

4
+
ε

2
∆gf, (1.8)

sometimes called the Witten Laplacian. Topological properties of the couple (M, f) (e.g. the Morse
inequalities, linking the number of critical points of the Morse function f with the Betti numbers of M) are
deduced from spectral properties of the Witten Laplacian. We also refer to [DR20] for the understanding
of other links between the spectral theories of the Witten Laplacian and the vector field ∇gf · ∇g (in
appropriate spaces linked to the dynamics of the gradient flow), in the semiclassical limit ε→ 0+.

Viscous perturbations of gradient dynamics also arise naturally in molecular dynamics. Indeed, in Rn,
the operator −∇f · ∇ − ε∆ is the infinitesimal generator of the so-called overdamped Langevin process

dXt = ∇f(Xt)dt+
√
2εdBt,

where Xt ∈ Rn and (Bt)t≥0 is a standard Brownian motion of dimension n. This stochastic process is a
classical model in statistical physics. It is used in particular for the simulation of molecular dynamics at
low temperature (proportional to ε), see [Cha43, SM79]. The possible convergence to equilibrium, as well
as the so-called metastability phenomenon are closely related to the low-lying eigenvalues (and associated
eigenfunctions) of −∇f·∇−ε∆, or equivalently of the Witten Laplacian (1.8). For a very precise asymptotic
study of the exponentially small eigenvalues of this operator, we refer e.g. to [HKN04, Mic19] in the case
of a compact manifold and [HN06, LP10, DLLN19] in the case with boundary (see also the references
therein).

We finally remark that the above-mentioned works concerning the Witten Laplacian mostly study the
behavior of the bottom of the spectrum Pε (thus linked to critical points of f). In the present work, we
rely on a similar conjugation.

1.3 Main results

As already seen in the end of Section 1.1, the results of this article go in two different directions.
In a first part (Section 3), we prove some general lower bounds on the time Tunif (ω) for a general

class of domains and vector fields. This implies in particular that the quite natural idea that Tunif (ω)
is TGCC(M, X, ω) or even KTGCC(M, X, ω) for a universal constant K is false in general. This might be
interpreted by the fact that in the vanishing viscosity limit, some strong oscillations can be responsible
for concentration phenomena. The latter are not only described by the flow of X , but other parameters
where an Agmon distance plays a crucial role. We also study (in Section 4) the particular case of surfaces
of revolutions where we obtain refined lower bounds. This analysis also shows that the global geometry of
the Riemannian manifold we consider has an effect on the vanishing viscosity limit. In particular, with a
fixed vector field, we show that the choice of the Laplacian ∆g can change drastically the time Tunif (ω) of
uniform controllability. This shows definitely that the flow of the vector field is not the unique parameter
defining Tunif (ω).

In a second part (Section 5), our results go exactly in the opposite direction, but for a specific class
of solutions, namely positive solutions. As announced in Theorem 1.3, we prove that Tunif (ω)

+ =
TGCC(M,∇gf, ω) for positive solutions. This shows that the dynamics of positive solutions are actually
well represented by the sole flow of ∇gf.

In both cases, using the change of unknown v = e
f
2ε u, see Section 2.2, the problem is reduced (modulo

lower order terms, and in weighted spaces) to observability of solutions of a semiclassical heat equation

ε∂tv − ε2∆gv + V v = 0,

where V =
|∇gf|2g

4 . Note that most of the results we obtain are of interest for this particular question as
well.
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1.3.1 A general lower bound

The first family of results in this paper concern the general setting of a compact connected Rieman-
nian manifold (M, g), with or without boundary ∂M, and the associated internal/boundary observability
question. Namely, we consider the parabolic–transport problem with small viscosity ε > 0 and Dirichlet
boundary conditions: 





(∂t −X − q − ε∆g)u = 0, in (0, T )× Int(M),

u = 0 on (0, T )× ∂M,

u|t=0 = u0, in M.

(1.9)

Moreover, we assume that the vector field X is a gradient vector field for the metric g, that is: there is
f ∈W 2,∞(M) (at least) such that

X = ∇gf · ∇g.

For the Dirichlet problem (1.9) as well as for the case ∂M = ∅ discussed in Section 1.1, one may discuss
the behavior of the observability constant (and in particular its possible uniform boundedness in the limit
ε → 0+) in the internal observability inequality (1.4). Also, a boundary observability problem for (1.9)
can be formulated as follows (see [GL07] and Section 2.1.2 below). Given θ ∈ C∞(∂M), there exist a
constant C0(T, ε) > 0 such that

C0(T, ε)
2

∫ T

0

‖θε∂νu|∂M(t)‖2H1/2(∂M) dt ≥ ‖u(T )‖2H1
0(M),

for all u0 ∈ H1
0 (M) and u solution of (1.9). (1.10)

Here ∂ν denotes a unit normal (for the metric g) vector field to ∂M. Then, the uniform observability
question is whether C0(T, ε) remains uniformly bounded in the limit ε→ 0+, and the associated minimal
uniform observation time is defined again by

Tunif (θ) = inf {T > 0 for which there exist K0, ε0 > 0 such that (1.10) holds

for all u0 ∈ H1
0 (M), with C0(T, ε) ≤ K0 for all ε ∈ (0, ε0)

}
.

Before going further, let us first give the definition of an analogue of the condition (GCC) in case of
a manifold with boundary ∂M 6= ∅ (called here Flushing Condition), as used in the Guerrero-Lebeau
result [GL07]. For this, we need to extend (M, g) in a slightly bigger Riemannian manifold (M̃, g̃), i.e.
such that M ⊂ Int(M̃) and g̃ any Riemannian metric on M̃ such that g̃|M = g. In the case of a bounded
domain of Rn, one may choose M̃ = Rn. We also extend f ∈W 2,∞(M) as a compactly supported function
f̃ ∈W 2,∞(M̃) such that f̃|M = f.

Definition 1.4. For x ∈ M, denote by γx the maximal solution to

γ̇x(t) = −∇g̃ f̃(γx(t)), γx(0) = x.

Note that this solution is defined globally in time since f̃ is compactly supported.
We say that (M,∇gf, T ) (resp. (M,∇gf, ω, T )) satisfies the Flushing Condition (FC) if for all x ∈ M

there is t ∈ (0, T ) such that γx(t) /∈ M (resp. γx(t) /∈ M or γx(t) ∈ ω). We also say that (M,∇gf) (resp.
(M,∇gf, ω)) satisfies (FC) if there is T > 0 such that (M,∇gf, T ) (resp. (M,∇gf, ω, T )) does. We then
define accordingly the time TFC(M,∇gf) (resp. TFC(M, ω,∇gf)) as the infimum of T > 0 for which this
property holds.

Remark finally that these definitions do not depend on the extensions (M̃, g̃) and f̃.

Guerrero-Lebeau [GL07] prove an analogue of Theorem 1.1 in the present setting (and for general vector
fields), namely: if (M,∇gf) (resp. (M,∇gf, ω)) satisfies the Flushing Condition, given θ any nontrivial
observation function, then there is Tu > 0 and K0 > 0 such that for all T ≥ Tu, (1.10) holds (resp. (1.4)
holds for all solutions to (1.9)), with C0(T, ε) ≤ K0 for all ε ≤ 1.

Two important geometric quantities in our results are the potential associated to the function f, defined
by

V (x) :=
|∇gf(x)|2g

4
, (1.11)
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and the Agmon distance (see e.g. [Hel88, Chapter 3]) to the minimum of this potential, namely, with
E0 = minM V ,

dA(x, y) = inf

{∫ 1

0

√
(V (γ(t)) − E0)+|γ̇(t)|gdt, γ ∈ U1(x, y)

}
,

U1(x, y) =
{
γ ∈ W 1,∞([0, 1];M), γ(0) = x, γ(1) = y

}
,

dA(x) = dA(x, V
−1(E0)) = inf

y∈V −1(E0)
dA(x, y). (1.12)

Here V −1(E0) is the classically allowed region at the potential minimum,

(V (x)− E0)+ = max (V (x) − E0, 0) ,

and dA(x) is the Agmon distance of x to the set V −1(E0) for the (pseudo-)metric (V − E0)+g. Remark
that the index (·)+ is not needed at the bottom energy E0 = minM V ; however, we keep it here since the
definition (1.12) will also be useful for a general energy level.

Our main result in this general setting formulates as follows.

Theorem 1.5. We assume that f ∈ W 2,∞(M) (hence V ∈ W 1,∞(M)) and q ∈ L∞(M). We let E0 =
minM V , set

WE0(x) =
f(x)

2
+ dA(x),

and fix ω ⊂ M (resp. θ ∈ C∞(∂M)), and in the case of boundary estimates, we further assume f, q ∈
C∞(M). For any δ > 0, there is ε0 > 0 such that for all ε ∈ (0, ε0) the observability inequality (1.4)
(resp. (1.10)) with constant C0(T, ε) implies

C0(T, ε) ≥ exp
1

ε

(
min
ω
WE0 − max

V −1(E0)

f

2
− E0T − δ

)
,

resp. C0(T, ε) ≥ exp
1

ε

(
min
supp θ

WE0 − max
V −1(E0)

f

2
− E0T − δ

)
.

In particular, we have

E0Tunif (ω) ≥ min
ω
WE0 − max

V −1(E0)

f

2
, (1.13)

(resp. E0Tunif (θ) ≥ min
supp θ

WE0 − max
V −1(E0)

f

2
). (1.14)

Note that the quantity in the right hand-side of (1.13)-(1.14) as well as E0 are invariant under the
change f → f+C for C constant on M. This is consistent with the fact that the equations remain unchanged
by such a modification of f. Note also that if E0 = 0 and V −1(E0)∩ω = ∅ (resp. V −1(E0)∩ supp(θ) = ∅),
a precised version of this result (see Theorem 3.1 below) actually shows that C0(T, ε) ≥ ec/ε for one c > 0
and all time T > 0 (in particular, uniform observability never holds). This is consistent with (and a
particular case of) the Guerrero-Lebeau [GL07] result (first part of Theorem 1.1 above) for in this case,
(M,∇gf, ω) does not satisfy (GCC). Indeed, a point x0 ∈ V −1(E0) satisfies ∇gf(x0) = 0 and is thus a
stationary point of the gradient dynamics.

We refer to Remark 3.5 concerning the additional smoothness assumption for the boundary estimate.

Theorem 1.6. Assume M = Ω where Ω ⊂ Rn is any smooth bounded connected open set endowed with
g = Eucl the Euclidean metric and q ∈ L∞(M). There exist ω ⊂ Ω and constants cω, δ > 0 such that for
any λ > 0, there is a function fλ ∈ C∞(Ω) such that:

• (Ω,∇fλ, ω) satisfies (FC) and TFC(Ω,∇fλ, ω) ≤ diam(Ω);

• Tunif (ω) ≥ cωλ,

• λ2δ ≤ ‖∇fλ‖2L∞(Ω) ≤ λ2 diam(Ω)2 + n.
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In particular, for all Λ > 0, there is f ∈ C∞(Ω) such that

Tunif (ω) ≥ ΛTFC(Ω,∇f, ω).

The result of Theorem 1.6 is already of interest in dimension one. In this case Ω = (−L,L), the vector
field we consider is f′(x)∂x with f′ ≥ 1 on [−L,L] and f′(0) = 1 and the observation set ω is a neighborhood
of the boundary point L (note that this would correspond to the caseM < 0 in the Coron-Guerrero problem
with the notation of [CG05]). Note that the function fλ in this result satisfies max fλ −min fλ ≃ λ. As a
consequence, one cannot even hope to have existence of a constant K > 0 depending only on minx∈[0,L] f

′(x)
(a uniform flushing time) such that Tunif (ω) ≤ K TFC(Ω,∇fλ, ω). However, at this point, it does not seem
hopeless that such a constant K depends only on ‖∇fλ‖L∞(Ω), at least for a fixed metric.

Remark 1.7. In the case ∂M = ∅, Theorem 1.5 does not seem to suffice to construct functions f, ω

having Tunif (ω)
TGCC(M,∇gf,ω) arbitrarily large. In a domain of Rn, Theorem 1.5 is however enough to provide

counterexamples.
Another drawback of Theorem 1.5 is that it does not produce any useful lower bound in case ω is a

whole neighborhood of ∂M (or in the boundary observation case from the whole boundary ∂M).
We remedy these issues in the next section on surfaces of revolution.

1.3.2 Lower bounds on surfaces of revolution

In Theorems 1.5 and 1.6 above, the lower bound of the minimal uniform observability time is essentially

due to the contribution of the potential V (x) =
|∇gf(x)|2g

4 (and the difference between its maximal and
minimal values on M). In this section, we consider a family of geometric settings, namely surfaces of
revolution, for which the contribution of the geometry of (M, g) plays an important role. This leads in
particular to explicit versions of Theorem 1.2.

The precise description of the geometry of the surfaces we consider is given in Section 4.1 and we only
describe here features required to state the result. We may consider either:

1. M = S ⊂ R3 a smooth compact surface diffeomorphic to the sphere S2;

2. M = S ⊂ R3 a smooth compact surface diffeomorphic to the disk D;

3. M = S ⊂ R
3 a smooth compact surface diffeomorphic to the cylinder [0, 1]× S

1;

4. M = S a smooth compact surface diffeomorphic to the torus T2 = S1 × S1.

We assume moreover that it has revolution invariance around an axis. In particular, the axis may intersect
S in two points (sphere), one point (disk) or no point (cylinder or torus). Except near these points, S
has a global coordinate chart (s, θ) ∈ (0, L) × S1 for some L > 0. In the first three cases, the surface is
endowed with the metric g inherited from the Euclidean metric on R3 which writes

g = ds2 +R(s)2dθ2, (1.15)

on account to the rotation invariance. Here the function R : (0, L) → (0,∞) describes the shape of S
(distance to the revolution axis). In the torus case, we simply endow T2 with the metric (1.15).

We further assume that the function f and q are themselves rotationally invariant, that is f = f(s) and
q = q(s) in these coordinates. In this setting (and as opposed to results presented in above Section 1.3.1),
the relevant quantities for our analysis are the following.

We define for any c > 0 (that can be chosen) the (θ-invariant) effective potential

Vc(s) :=
c2

R(s)2
+

|f′(s)|2
4

. (1.16)

Note that, as opposed to the potential appearing in (1.11), this potential Vc is different from
|∇gf|2g

4 = |f′(s)|2
4 .

Moreover, it depends explicitly on the geometry (namely, on R). We shall make the simplifying assumption
that

V −1
c (min Vc) = {smin} consists in a single point smin. (1.17)
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Note that in case S has a boundary, one may have smin at the boundary (see Section 4 for more precise
statements). As in the previous section, we introduce the associated Agmon distance, which simply writes
in the first three cases:

dcA(s) =

∣∣∣∣
∫ s

smin

√
Vc(y)− Vc(smin)dy

∣∣∣∣ . (1.18)

In the fourth case S = S1L × S1, an analog of (1.12) still makes sense on S1L when Vc is defined on S1L. We
may choose a representation of S1L = R/LZ in which smin = 0 + LZ, a definition of the Agmon distance
then reads

dcA(s) = min
smin∈LZ

[∣∣∣∣
∫ s

smin

√
Vc(y)− Vc(smin)dy

∣∣∣∣
]
. (1.19)

We also set

W c(s) = dcA(s) +
f(s)

2
, for s ∈ (0, L). (1.20)

Then, our main result in this geometric context can be (loosely) stated as follows.

Theorem 1.8. Let c > 0, assume that Vc satisfies (1.17) and that, in the coordinates (s, θ) ∈ (0, L)× S
1,

we have ω = (0, δ)× S1 ∪ (L − δ, L)× S1 (this can be rewritten in an intrinsic way on S). Assuming the
observability inequality (1.4) (resp. (1.10)) with constant C0(T, ε, ω) (resp. C0(T, ε, {L} × S1)), there is a
sequence εk → 0+ such that for any δ > 0, there is k0(δ) > 0 such that

C0(T, εk, ω) ≥ e
1
εk

(
W c

ω−W c
m−Vc(smin)T−δ

)
for all k ≥ k0(δ), W c

ω = min
ω̄
W c,

resp. C0(T, εk, {L} × S
1) ≥ e

1
εk

(
W c(L)−W c

m−Vc(smin)T−δ
)

for all k ≥ k0(δ),

where W c
m = inf(0,L)W

c. In particular, we have

Vc(smin)Tunif (ω) ≥W c
ω −W c

m, (1.21)

Vc(smin)Tunif ({L} × S
1) ≥W c(L)−W c

m. (1.22)

Theorem 1.8 differs from Theorem 1.5 in several respects. First notice that the potential appearing in

Theorem 1.5 is |f′(s)|2
4 , that is V0(s) with the definition of Vc in (1.16). In particular, it does not depend

on R: neither does its minimal value, nor the associated Agmon distance and function W 0. Therefore, in
this very particular geometric context, the results of Theorem 1.5 do not depend on the geometry of R,
and hence only formulate as a one dimensional result in the s variable. As such, they do not care about
the “transverse dynamics” in the θ-variable. Theorem 1.8 overcomes this lack and shows that both have
to be taken into account.

Another difference with the estimates of Theorem 1.5 is that −maxV −1(E0)
f
2 = −maxV −1(E0)W is

here replaced by − inf(0,L)W
c. This improvement is due to the “one dimensional” underlying framework

(in which localization properties of eigenfunctions are better understood).
Again, we remark that the initial problem is invariant by changing f by a constant f + C0. In Esti-

mate (1.21), both the potential Vc and the quantity W c
ω −W c

m are as well invariant by this change of the
function f.

We now state three particular examples of application of Theorem 1.8. The latter imply Theorem 1.2.

Corollary 1.9. Assume S is a surface of revolution in R3 diffeomorphic to S2 (resp. D) and such that
R−1(maxR) is a single point (R has a unique maximum). Denote by N,S (resp. N only) the north/south
poles of S, which are the only two (resp. the unique) invariant points under the revolution symmetry.
Then, for any δ > 0, there exists fδ ∈ C∞(S) invariant by rotation such that with ωδ = Bg(N, δ)∪Bg(S, δ)
(resp. ωδ = Bg(N, δ)) we have

1. (S,∇gfδ, ωδ) satisfies (GCC) (resp. satisfies (FC)) and TGCC(S,∇gfδ, ωδ) = L−2δ ≤ L = distg(N,S)
(resp. TFC(S,∇gfδ, ωδ) = L− δ ≤ L = distg(N, ∂S));
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2. For all c > 0, there is δ0, C > 0 such that for all δ ∈ (0, δ0)

Tunif (ωδ) ≥
(

c2

R(smin)2
+

1

4

)−1(
c log(

1

δ
)− C

)
.

This result proves the first item in Theorem 1.2. In particular, the limit δ → 0+ prevents from
the existence of a universal constant K ≥ 1 such that Tunif (ω) ≤ K TGCC(M, X, ω). Note that in
this construction, the vector fields ∇gfδ · ∇g are rotationally invariant and independent of the metric g.
Moreover, for δ < δ′, the two functions fδ and fδ′ coincide on M\ ωδ′ .

In our second result, the geometry is close to that of Corollary 1.9. However, we consider fixed ω and
f (and even a fixed vector field), but let the metrics g vary. We denote S1L = R/LZ and S1 = S12π .

Corollary 1.10. Assume S = S1L × S1 with coordinates (s, θ) and let f ∈ C∞(S1L). Let ω = Iω × S1 with
Iω a nonempty interval such that Iω 6= S1L.

Then, there is a constant C > 0 such that for any δ ∈ (0, 1), there exists a function Rδ ∈ C∞(S1L;R
+
∗ )

such that

1. the vector field ∇gδ f ·∇gδ = f′(s)∂s (defined by (1.15) associated to Rδ) does not depend on the metric
gδ, the triple (S,∇gδ f, ω) satisfies (GCC) if and only if f′ 6= 0 on S1L \ Iω, and, in this case, we have

TGCC(S,∇gδ f, Iω × S
1) =

∣∣∣∣∣

∫

S1L\Iω

ds

f′(s)

∣∣∣∣∣ < +∞,

2. for the transport equation (1.6) with viscosity given by the metric gδ under the form (1.15) associated
to Rδ, we have

Tunif (Iω × S
1) ≥ Cδ−1/2,

3. δ1/2(1− Cδ) ≤ minS1 Rδ ≤ δ1/2 for all δ ∈ (0, 1).

This result implies the second item in Theorem 1.2.
Another application is given by the following result, which is an analogue of Corollary 1.10 for the

boundary observability problem in the cylindrical geometry.

Corollary 1.11. Assume S = [0, L]× S1 (whence ∂S = ({0} ∪ {L})× S1), and let f ∈ C∞([0, L]). Then,
for any γ > 2, δ0 > 0 there is a constant C > 0 such that for all δ ∈ (0, δ0], there exists a function
Rδ : [0, L] → R

+
∗ such that

1. the vector field X = ∇gδ f · ∇gδ = f′(s)∂s does not depend on the metric gδ (defined by (1.15) with
Rδ);

2. (S,∇gδ f) satisfies (FC) (in the sense of Definition 1.4) if and only if f′ 6= 0 on [0, L] and in this case,

TFC(M,∇gδ f) =

∣∣∣∣∣

∫ L

0

ds

f′(s)

∣∣∣∣∣ < +∞;

3. for the transport equation with viscosity and Dirichlet boundary conditions (1.6), and with metric gδ
under the form (1.15) associated to Rδ, we have

Tunif (∂S) ≥
(
max
[0,L]

|f′|2
4

)−1(
1

δγ/2−1

1

γ/2− 1
− C

)
.

4. (s + δ)
γ
2 (1 − C(s + δ)) ≤ Rδ(s) ≤ (s + δ)

γ
2 for s ∈ [0, L/4] and (L − s + δ)

γ
2 (1 − C(L − s + δ)) ≤

Rδ(s) ≤ (L− s+ δ)
γ
2 for s ∈ [3L/4, L];

Note the link between the asymptotic singularity of the metric Rδ(s) ∼ (s + δ)
γ
2 (i.e. S becomes

close to a “conical geometry” for small δ) and the blowup of the minimal time Tunif & 1
δγ/2−1 . Note also

that the limit case γ = 2, all calculations can be done as well and lead to Rδ(s) ∼ s + δ together with
Tunif & − log δ. This corresponds to the case where the geometry of the cylinder degenerates towards that
of the disk, leading to the same blowup estimate as in Corollary 1.9.
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1.3.3 Observability for positive solutions

As already mentioned, our last result concerns the uniform observability question for positive solutions
of (1.6), and is restricted to the case ∂M = ∅. We also assume f ∈ C3. Note that if u0 ∈ L2(M;R+),
then the associated solution u to (1.6) satisfies u(t, x) ≥ 0 for a.e. (t, x) ∈ R

+ ×M (see e.g. Theorem 9
in Section 7.1 p369 together with Problem 7 in Section 7.5 in [Eva98], or Chapter III, Theorem 7.1, p181
in [LSU68]).

We consider the observability inequality for nonnegative solutions:

C+
0 (T, ε)2

∫ T

0

∫

ω

|u(t, x)|2ds(x)dt ≥ ‖u(T )‖2L2(M),

for all u0 ∈ L2(M;R+) and u solution of (1.6). (1.23)

and the associated minimal time T+
unif (ω) of uniform observability for positive solution, already defined

in (1.7). The main result we obtain in this context is the above Theorem 1.3, stating that T+
unif (ω) =

TGCC(M,∇gf, ω). As a byproduct of our analysis, we also obtain a lower estimate on the blow up of the
control cost when the Geometric Control Condition is not satisfied. It involves the definition of a quantity
that roughly speaking, measures how two points are far from being the image of a trajectory at time t,
namely

d∇gf(x, y, t) =
1

4
inf

{∫ t

0

|γ̇(s)−∇gf(γ(s))|2g ds, γ ∈ Ut(x, y)

}
, (1.24)

Ut(x, y) =
{
γ ∈W 1,∞([0, t];M), γ(0) = x, γ(t) = y

}
.

Note that we have d∇gf(x, y, t) ≈ d(x, φ−t(y)) for bounded t, where d denotes the Riemannian distance
and φt the flow of the vector field ∇gf (see Lemma A.2 where d∇gf(x, y, t) is interpreted as a control cost
from x to φ−t(y) with time varying metric).

Proposition 1.12. Assume that (M,∇gf, ω) does not satisfy (GCC). Then, we have

d([0,T ],ω) := sup
y∈M

inf
x∈ω,t∈[0,T ]

d∇gf(x, y, t) > 0.

Moreover, for any δ > 0, there is ε0 > 0 such that for all ε ∈ (0, ε0), we have

C0(T, ε) ≥ C+
0 (T, ε) ≥ e

d([0,T ],ω)−δ

ε . (1.25)

Note that this exponential blowup is a refinement of the Guerrero-Lebeau [GL07] result (first part of
Theorem 1.1 above). However, we provide here with a precise geometric rate (namely d([0,T ],ω)) quantifying
this blowup phenomenon.

The proofs of Theorem 1.3 and Proposition 1.12 rely on estimates on the kernel of the associated
equation. Note that kernel estimates have already been used in [Mil04] to prove lower bounds for the
cost of controllability of the usual heat equation in the short time asymptotics, and in [LL21b] to prove
observability of positive solutions to the heat equation with optimal constants.

1.4 Further remarks

In this section, we collect several remarks and comments related to our results.

1. The principal interest of working with gradient vector fields X = ∇gf is that the associated operator
−∇gf − ε∆g can be conjugated to a selfadjoint Schödinger operator (1.8). And the limit ε →
0+ then corresponds to the semiclassical limit, which has been the object of many studies (see
e.g. [Wit82, Sim83, HS84, HS85, Hel88, CFKS87, All98, HKN04, HN06]. This conjugation does no
longer hold in case X is not a gradient vector field. One could also consider that giving counter-
examples with gradient flows is “stronger” than general counter-examples. We do not know wether
an analogue of Theorem 1.3 for positive solutions remains true for general vector fields X . This
seems to be an interesting open problem.
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2. In the context of surfaces of revolution, as presented in Section 1.3.2, we only provide with lower
bounds of Tunif . It would of course be interesting to obtain related upper bounds on this uniform
control time. This would require to provide a very precise description of several spectral quantities
(spectral gaps, localization of eigenfunctions at all energy levels...) for the semiclassical Schrödinger
operator Pε in (1.8), and seems to be a difficult question. See the companion paper [LL21c] for an
upper bound in a related one dimensional situation.

3. The one dimensional one well problem is considered in [LL21c]. In this very particular situation, we
are able to provide with

• improved lower bounds on the minimal time when compared to Theorem 1.5;

• an upper bound on the minimal time.

This requires the knowledge of precise information on the spectral gap and the localization of eigen-
functions at all energy levels E ≥ E0 (whereas Theorem 1.5 is only concerned with the bottom energy
level E0). See also the discussion at the beginning of Section 3.

4. Notice that if one is not interested in null-controllability (i.e. driving the solution exactly to zero at
time T ), but rather in approximate controllability with a reasonable cost (and a precision depending
on the viscosity ε), one might be satisfied by the following statement.

Proposition 1.13. Suppose ∂M = ∅ and (M, X, ω, T ) satisfies (GCC) (resp. ∂M 6= ∅ and
(M, X, ω, T ) satisfies (FC)). Then, there exist C,C0 > 0 such that for all y0 ∈ L2(M), ε ∈ (0, 1]
there is h = hε ∈ L2((0, T )× ω) with

‖hε‖L2((0,T )×ω) ≤ C ‖y0‖L2(M) ,

such that the associated solution to (2.1) satisfies

‖y(T )‖L2(M) ≤ Ce−
C0
ε ‖y0‖L2(M) .

That is to say, one can drive the solutions e−
C0
ε close to zero with a uniformly bounded cost.

This result follows from Proposition 5.7 below (a particular case of [GL07, Proposition 3]) together

with [LL21a, Appendix]. This can be particularly useful for numerical purposes, since e−
C0
ε = 0

numerically for ε small enough.

In the situation of Theorems 1.5 or 1.8, this means that for intermediate times T ∈
(
TGCC(M,∇gf, ω), Tunif (ω)

)

(resp. for T ∈
(
TFC(M,∇gf, ω), Tunif (ω)

)
if ∂M 6= ∅), controlling the solution e−

C0
ε close to zero

costs ≈ 1, whereas controlling the solution exactly to zero costs ≈ e
C
ε .

5. Note that in the context of revolution surfaces of Section 1.3.2, we prove a complementary result
compared to [LL21b, Theorem 1.9/Corollary 1.10]. We prove in Proposition 4.9 that in all cases
of Section 1.3.2, for any rotationally invariant set ω, we have (with the notation of [LL21b], the
constant Keig(ω) being the smallest constant K in the inequality ‖ψλ‖L2(M) ≤ CeK

√
λ ‖ψλ‖L2(ω)

where −∆gψλ = λψλ)

Keig(ω) = R(smin)dA(ω), with dA(ω) = inf
x∈ω

dA(x).

In [LL21b], we only proved Keig(ω) ≥ R(smin)dA(ω) (and only in case S is diffeomorphic to a sphere).
This result is close to that of Allibert [All98], which already proves this in case S is diffeomorphic to
a cylinder and the function R has a single local maximum which is non-degenerate.
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2 Preliminaries: duality, conjugation of gradient flows and (GCC)

2.1 Uniform controllability problems and dual formulation

In this section, we reformulate the above uniform observability questions in terms of uniform controllability
statements. This follows essentially the classical duality approach, see [DR77] or [Cor07, Chapter 2.3].

2.1.1 Duality between internal control and observation problems

In this section, we present the controllability problems associated to the above observability questions,
and we briefly describe the duality between the control and the observation problems. We introduce the
internal control problem






(∂t +X + divg(X)− q − ε∆g)y = 1ωh, in (0, T )×M,

y = 0, on (0, T )× ∂M,

y|t=0 = y0, on M.

(2.1)

Notice that, as opposed to (1.3), the operator appearing in these control problems is X∗ = −X−divg(X),
where the adjoint is taken in the space L2(M, dVolg).

That the appropriate dual observation problem is (1.3) is a consequence of the following lemma.

Lemma 2.1 (Duality equation). For all solutions u ∈ C0([0, T ];L2(M)) of (1.3) on [0, T ] with Dirichlet
boundary conditions and all y ∈ C0([0, T ];L2(M)) solution to (2.1) with h ∈ L2((0, T )×M), we have

(u(T ), y0)L2(M) − (u0, y(T ))L2(M) +

∫ T

0

(
1ωu(t), h(T − t)

)
L2(M)

dt = 0. (2.2)

Notice that one passes from the observed evolution to the controlled evolution by changing (X, q)
into (−X, q − divg(X)). The interest of adding a potential term q(x) in these equations is that the free
equation (1.9) and the controlled equation (2.1) then have the same form (i.e. the adjoint of a vector field
is not a vector field but the adjoint of a first order differential operator is a first order differential operator).

Definition 2.2 (Controllability and cost). Given (ω, ε, T ), we say that (2.1) is null-controllable from (ω, T )
if for any y0 ∈ L2(M), there is h ∈ L2((0, T ) × M) such that the associated solution to (2.1) satisfies
y(T ) = 0. If (2.1) is null-controllable from (ω, T ), we define for y0 ∈ L2(M) the set U(y0) 6= ∅ of all such
controls h ∈ L2((0, T )×M), and the cost function

C0(T, ε) := sup
y0∈L2(M),‖y0‖L2(M)≤1

{
inf

h∈U(y0)
‖h‖L2((0,T )×M)

}
.

As a corollary of Lemma 2.1, together with classical arguments (see e.g. [DR77] or [Cor07, Chapter 2.3])
we deduce the following statement.

Corollary 2.3 (Observability constant = control cost). Given (ω, ε, T ), Equation (2.1) is null-controllable
from (ω, T ) if and only if the observability inequality (1.4) holds. Moreover, we then have C0(T, ε) =
C0(T, ε).

As a consequence, all lower bounds on C0(T, ε) formulated in Theorems 1.5 and 1.8 translate into lower
bounds on C0(T, ε). The time Tunif (ω) is equal to the minimal time of uniform controllability, and all
lower bounds on the time Tunif (ω) obtained in Theorems 1.5 and 1.8 and their corollaries apply.

The uniform observability result for positive solutions of the heat equation in Theorem 1.3 also has a
controllability counterpart. This fact was indeed proved by Le Balc’H [LB20, Theorem 4.1] for the classical
heat equation. In the present context, the uniform observability estimate for positive solutions, associated
to Theorem 1.3, implies the following controllability result.
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Corollary 2.4. Let M be a compact Riemannian manifold with ∂M = ∅, X = ∇gf where f ∈ C3(M),
and ω ⊂ M an open subset. Assume that (M,∇gf, ω) satisfies (GCC), and T > TGCC(M,∇gf, ω). Then,
there exist C, ε0 > 0 so that for any y0 ∈ L2(M) and 0 < ε ≤ ε0, there exists a control h ∈ L2([0, T ], L2(ω))
with

‖h‖L2([0,T ],L2(ω)) ≤ C ‖y0‖L2(M)

such that the solution of (2.1) satisfies y(T ) ≥ 0.

We refer to Section 5.4 for a proof.

2.1.2 Duality between boundary control and observation problems

We now briefly discuss the boundary case and we refer to [GL07] for the details. The boundary control
problem under interest is





(∂t +X + divg(X)− q − ε∆g)y = 0, in (0, T )× Int(M),

y = θh, on (0, T )× ∂M,

y|t=0 = y0, on M,

(2.3)

where θ ∈ C∞(∂M;R) is meant to be a smooth version of 1Γ,Γ ⊂ ∂M. Solutions of (2.3) are defined in
the sense of transposition, and a well-posedness statement can be written as follows.

Lemma 2.5 (Guerrero-Lebeau [GL07] pp 1814-1815). AssumeX is a L∞ vector field on M with divg(X) ∈
L∞(M), q ∈ L∞(M), and let T > 0. Then, there exists C > 0 such that for all y0 ∈ H−1(M), all
h ∈ L2(0, T ;H−1/2(∂M)) and all ε > 0, there is a unique solution y to (2.3) in the sense of transposition,
which satisfies y ∈ L2((0, T )×M) ∩ C0([0, T ];H−1(M)) ∩H1(0, T ;H−2(M)) with

‖y‖L2((0,T )×M) + ‖y‖L∞(0,T ;H−1(M)) + ‖∂ty‖L2(0,T ;H−2(M))

≤ C

ε

(
‖y0‖H−1(M) + ε1/2 ‖h‖L2(0,T ;H−1/2(∂M))

)
.

Such solutions in particular solve the first equation of (2.3) in the sense of distributions.

Definition 2.6 (Controllability and cost). Given (θ, ε, T ), we say that (2.3) is null-controllable from
(θ, T ) if for any y0 ∈ H−1(M), there is h ∈ L2(0, T ;H−1/2(∂M)) such that the associated solution
to (2.3) satisfies y(T ) = 0. If (2.3) is null-controllable from (θ, T ), we define for y0 ∈ H−1(M) the set
U(y0) 6= ∅ of all such controls h ∈ L2(0, T ;H−1/2(∂M)), and the cost function

C0(T, ε) := sup
y0∈H−1(M),‖y0‖H−1(M)≤1

{
inf

h∈U(y0)
‖h‖L2(0,T ;H−1/2(∂M))

}
.

We now describe the link with the boundary observation problem (1.9). We start with the duality
identity.

Lemma 2.7 (Duality equation). For all solutions u ∈ C0([0, T ];H1
0(M)) of (1.9) on [0, T ] and all y ∈

C0([0, T ];H−1(M)) solution to (2.1) with h ∈ L2(0, T ;H−1/2(M)), we have

〈u(T ), y0〉H1
0 ,H

−1 − 〈u0, y(T )〉H1
0 ,H

−1

−
∫ T

0

〈θε∂νu|∂M(t), h(T − t)〉H1/2(∂M),H−1/2(∂M) dt = 0.

The proof is omitted here and only consists in an integration by parts for smooth solutions, and then a
density argument. As in the internal case, classical duality arguments (see [DR77] or [Cor07, Chapter 2.3])
yield the following statement.

Corollary 2.8 (Observability constant = control cost). Given (θ, ε, T ), Equation (2.3) is null-controllable
from (θ, T ) if and only if the observability inequality (1.10) holds. Moreover, we then have C0(T, ε) =
C0(T, ε).

Again, all lower bounds on C0(T, ε) formulated in Theorems 1.5 and 1.8 translate into lower bounds on
C0(T, ε). The time Tunif (θ) is equal to the minimal time of uniform controllability, and all lower bounds
on the time Tunif (θ) obtained in Theorems 1.5 and 1.8 and their corollaries apply.
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2.2 The vanishing viscosity limit for gradient flows. Conjugation and refor-
mulation

We focus in this article on the very particular case (1.6) where X is a gradient vector field (with respect
to the same metric g defining the viscous perturbation ε∆g) of a weight function f : M → R, that is
X = ∇gf · ∇g. In this case, it is classical (see e.g. [Wit82, HS85]) that the operator −ε∆g −∇gf · ∇g − q
can be conjugated to a “semiclassical selfadjoint operator”. Here, X · Y is the inner product of the two
vector fields X and Y given by the metric g in TM.

The first basic computation is the following:

e−
f
2ε∆ge

f
2ε = ∆g +

1

ε
∇gf · ∇g +

|∇gf|2g
4ε2

+
∆gf

2ε
.

We denote by

1

ε2
Pε := −∆g +

|∇gf|2g
4ε2

+
∆gf

2ε
− q

ε
, that is Pε := −ε2∆g +

|∇gf|2g
4

+ εqf, (2.4)

where qf =
∆gf

2 − q. The above computation implies that

e−
f
2ε

( 1
ε2
Pε

)
e

f
2ε = −∆g −

1

ε
∇gf · ∇g −

q

ε
. (2.5)

The interest of this conjugation is that the operator Pε is selfadjoint in L2(M, dVolg) endowed with
domain D(Pε) = H2(M) ∩H1

0 (M). Henceforth, the operator −∆g − 1
ε∇gf · ∇g − q

ε is also selfadjoint in

L2(M, e
f
2ε dVolg). Let us now reformulate the uniform observability problem (1.4) in terms of the heat

equation involving the operator Pε defined in (2.4).

Note that the constant coefficient one dimensional problem introduced in [CG05] enters the “gradient
flow” setting with M = (0, L) ⊂ R, g = 1, ∆g = ∂2x, q = 0, f =Mx for M ∈ R, and thus ∇gf · ∇g =M∂x.
In that context, this form together with its formulation (2.4) have already been used in [CG05, Gla10,
Lis14, Lis15].

Lemma 2.9. Given T0, C0, ε > 0 and a function u, the following statements are equivalent.

1. The function u solves

{
(∂t −∇gf · ∇g − q − ε∆g)u = 0, in (0, T0)× Int(M),

u = 0 on (0, T0)× ∂M,
(2.6)

resp. ‖u(T0)‖2L2(M) ≤ C2
0

∫ T0

0

‖u‖2L2(ω) dt, (2.7)

resp. ‖u(T0)‖2H1
0 (M) ≤ C2

0

∫ T0

0

‖θε∂νu|∂M‖2H1/2(∂M) dt. (2.8)

2. The function v(t, x) = ef(x)/2εu(t, x) solves

{
ε∂tv + Pεv = 0, in (0, T0)× Int(M),

v = 0 on (0, T0)× ∂M,
(2.9)

resp.
∥∥∥e−

f
2ε v(T0)

∥∥∥
2

L2(M)
≤ C2

0

∫ T0

0

∥∥∥e−
f
2ε v
∥∥∥
2

L2(ω)
dt, (2.10)

resp.
∥∥∥e−

f
2ε v(T0)

∥∥∥
2

H1
0 (M)

≤ C2
0

∫ T0

0

∥∥∥θe−
f
2ε ε∂νv|∂M

∥∥∥
2

H1/2(∂M)
dt. (2.11)
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3. The function w(t, x) = v(t/ε, x) = ef(x)/2εu(t/ε, x) solves





∂tw +

1

ε2
Pεw = 0, in (0, T0)× Int(M),

w = 0 on (0, T0)× ∂M,
(2.12)

resp.
∥∥∥e−

f
2εw(εT0)

∥∥∥
2

L2(M)
≤ C2

0

∫ εT0

0

∥∥∥e−
f
2εw

∥∥∥
2

L2(ω)
dt,

resp.
∥∥∥e−

f
2εw(εT0)

∥∥∥
2

L2(M)
≤ C2

0

∫ εT0

0

∥∥∥θe−
f
2ε ε∂νw

∥∥∥
2

H1/2(∂M)
dt. (2.13)

Proof. Start e.g. with u satisfying (2.6). Using (2.5) and the definition of Pε, Equation (2.6) rewrites
equivalently as

∂tu+ e−
f
2ε
1

ε
Pεe

f
2ε u = 0, t ∈ [0, T0].

The function v = e
f
2ε u then satisfies (2.9) (and conversely). Setting w(t, x) = v(t/ε, x) then satisfies (2.12),

and conversely.
The proof that (2.8)⇔(2.11)⇔(2.13) uses additionally that, on account to the Dirichlet boundary

condition, we have ∂ν(e
f
2εu)|∂M = e

f
2ε ∂νu|∂M.

2.3 (GCC) and controllability of the limit equation ε = 0

In this section, we characterize the observability inequality (1.2) for solutions of (1.1) in terms of the
Geometric Control Condition (GCC). In this section, M is always assumed without boundary.

We denote by (φt)t∈R the flow of the vector field X , namely

φ̇t(x) = X(φt(x)), φ0(x) = x ∈ M. (2.14)

This flow is globally defined on account to the compactness of M. We consider the following definition of
the geometric control condition in the manifold M for the vector field X and the set ω, which we denote
(GCC).

Definition 2.10. Let M be a compact manifold without boundary, X a Lipschitz vector field on M,
ω ⊂ M, χ ∈ C0(M), I ⊂ R and interval and T > 0. We say that

• (M, X, ω, I) satisfies (GCC) if for all x ∈ M, there is t ∈ I such that φ−t(x) ∈ ω;

• (M, X, ω, T ) satisfies (GCC) if (M, X, ω, (0, T )) satisfies (GCC);

• (M, X, ω) satisfies (GCC) if there is T > 0 such that (ω, T ) satisfies (GCC);

• (M, X, χ, T ) satisfies (GCC) if (M, X, {χ 6= 0}, T ) satisfies (GCC);

• (M, X, χ) satisfies (GCC) if (M, X, {χ 6= 0}) satisfies (GCC).

In this section, the manifold M is fixed. To lighten notation, we omit the dependence on M in
(M, X, ω, I) and we simply write (X,ω, I) instead of (M, X, ω, I) (with a similar notation for the other
definitions).

Note in particular that an open set ω satisfying (GCC) must contain all singular points of the vector
field X (i.e. all points x ∈ M such that X(x) = 0). We now provide with different reformulations of this
property.

Lemma 2.11. Let M be a compact manifold and X a Lipschitz vector field on M. Given ω ⊂ M and
T > 0, the following properties are equivalent:

1. (X,ω, T ) satisfies (GCC);
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2.
⋃

t∈(0,T ) φt(ω) ⊃ M;

3.
⋃

t∈(0,T ) φ−t(ω) ⊃ M;

4. (−X,ω, T ) satisfies (GCC).

Proof. The definition of (X , ω, T ) satisfying (GCC) is equivalent to: for all x ∈ M, there is t ∈ (0, T ) such
that x ∈ φt(ω). Equivalence between the Items 1 and 2 follows. Item 3 is equivalent to

⋃
t∈(0,T ) φT−t(ω) ⊃

φT (M) = M after having applied φT , which itself is equivalent to Item 2. Equivalence between Item 4
and Item 3 finally follows from the fact that the flow of −X is (φ−t)t∈R.

Proposition 2.12. Assume M is a compact manifold, X is a Lipschitz vector field on M, ds is a positive
density on M, and q ∈ L∞(M). Given ω ⊂ M, χ ∈ C0(M) and T > 0, the following statements hold
true:

1. If (X,ω, T ) satisfies (GCC), then the observability inequality (1.2) for solutions of (1.1) is true;

2. The observability inequality (1.2) for solutions of (1.1) implies that (X,ω, [0, T ]) satisfies (GCC);

3. The observability inequality

C2
0

∫ T

0

∫

M
|χ(x)u(t, x)|2ds(x)dt ≥ ‖u(T )‖2L2(M),

for all u0 ∈ L2(M) and u solution of (1.1). (2.15)

holds true if and only if (X,χ, T ) satisfies (GCC);

4. In all the above observability statements, ‖u(T )‖2L2(M) can be equivalently replaced by ‖u(0)‖2L2(M).

The proof below is inspired by that in [DL09, LL16] for the wave equation. It is constructive and
would also yield a characterisation of the HUM control operator (see e.g. [HKL15] or [Léa18, Section 1.2]
for more on controllability/stabilization properties for transport equations).

Proof. First notice that for u0 ∈ L2(M), the unique solution to (1.1) is explicitly given by

u(t, x) = e
∫

t
0
q◦φt−τ (x)dτu0 ◦ φt(x) ∈ C0(R;L2(M)).

A first direct consequence is the existence of a constant CT,q > 1 such that

C−1
T,q‖u(0)‖2L2(M) ≤ ‖u(T )‖2L2(M) ≤ CT,q‖u(0)‖2L2(M), for all solutions to (1.1),

which proves Item 4. Next, we write the observation term in (1.2) (the same holds for (2.15) if we replace
1ω by χ) as

∫ T

0

∫

ω

|u(t, x)|2ds(x)dt =
∫ T

0

∫

M
1ω(x)|u(t, x)|2ds(x)dt

=

∫ T

0

∫

M
1ω(x)u

2
0 ◦ φt(x)e2

∫ t
0
q◦φt−τ (x)dτds(x)dt.

Using the change of variable y = φt(x) (see e.g. [Lee13, Proposition 16.42 p432]), we obtain

∫ T

0

∫

ω

|u(t, x)|2ds(x)dt =
∫ T

0

∫

M
1ω(φ−t(y))u

2
0(y)e

2
∫ t
0
q◦φ−τ (y)dτ (φ∗−tds)(y)dt

(note that divds(X) is defined by d
dt (φ

∗
t ds)|t=0 = divds(X)ds, so that this expression simplifies slightly in

case divds(X) = 0). Using that the density is positive on the compact M, we get the existence of CT > 1
such that

C−1
T ds(y) ≤ e2

∫

t
0
q◦φ−τ (y)dτ(φ∗−tds)(y) ≤ CTds(y) uniformly for (t, y) ∈ [0, T ]×M.
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As a consequence, we obtain

C−1
T

∫ T

0

∫

M
1ω(φ−t(y))u

2
0(y)ds(y)dt ≤

∫ T

0

∫

M
1ω(x)|u(t, x)|2ds(x)dt

≤ CT

∫ T

0

∫

M
1ω(φ−t(y))u

2
0(y)ds(y)dt.

Hence setting

gω,T (y) :=

∫ T

0

1ω(φ−t(y))dt ∈ L∞(M)

resp. gχ,T (y) :=

∫ T

0

χ2(φ−t(y))dt ∈ C0(M),

we deduce

C−1
T

∫

M
gω,T (y)u

2
0(y)ds(y) ≤

∫ T

0

∫

M
1ω(x)|u(t, x)|2ds(x)dt

≤ CT

∫

M
gω,T (y)u

2
0(y)ds(y). (2.16)

Recalling that ω is an open set and M compact, together with Definition 2.10, we deduce that if (X,ω, T )
satisfies (GCC), then we have the existence of c > 0 such that gω,T (y) ≥ c for a.e. y ∈ M. The lower
bound in (2.16) then implies the observability inequality (1.2), and Item 1 follows.

Concerning Item 2, if (X,ω, [0, T ]) does not satisfy (GCC), then there is a point x0 ∈ M such that
φ−t(x0)∩ω = ∅ for all t ∈ [0, T ]. The set ω×[0, T ] being compact, there is a neighborhood U of x0 such that
φ−t(U) ∩ ω = ∅ for all t ∈ [0, T ]. Setting u0 = 1U , we have on the one hand that ‖u0‖L2(M) > 0. On the
other hand, we have 1ω◦φ−t(y) = 0 for all y ∈ U and t ∈ (0, T ). This implies that gω,Tu0 = gω,T (y)1U = 0

a.e. and, according to the upper bound in (2.16), that
∫ T

0

∫
ω |u(t, x)|2ds(x)dt = 0. This contradicts (2.16)

and concludes the proof of Item 2.
Finally, the proof of Item 3 is split in two parts. That (X,χ, T ) satisfies (GCC) implies the observability

inequality (2.15) follows as in the proof of Item 1. Now assume that (X,χ, T ) does not satisfy (GCC).
Then there is a point x0 ∈ M such that φ−t(x0) ∩ {χ 6= 0} = ∅ for all t ∈ (0, T ). Hence, we have
gχ,T (x0) =

∫ T

0
χ2(φ−t(x0))dt = 0. We now choose a sequence of continuous real-valued initial data

(un0 )n∈N such that ‖un0‖L2(M) = 1 and (un0 )
2(x)ds(x) ⇀ δx0 in the sense of measures on M. The fact that

gχ,T is continuous on M together with the upper bound in (2.16) implies that, denoting by un the solution
of (1.1) with initial datum un0 , we have

∫ T

0

∫

M
|χ(x)un(t, x)|2ds(x)dt ≤CT

∫

M
gχ,T (y)(u

n
0 )

2(y)ds(y)

→ CT 〈δx0 , gχ,T 〉Meas,C0 = 0,

which contradicts the observability inequality (2.15), and concludes the proof of Item 3.

3 General lower bounds without geometric assumption

In this section, we consider a general manifold (with or without boundary) M, and prove the lower
bound for the minimal time of uniform controllability provided in Theorem 1.5. We also give a proof of
Theorem 1.6 as a corollary. To do this, we use the semiclassical reformulation (2.9)-(2.10) of the problem
in Lemma 2.9, as well as exponential decay properties of eigenfunctions of the operator Pε. We rely on the
Helffer-Sjöstrand theory as developed in [HS84, Hel88, DS99]. All results presented in this section apply
as well for the semiclassical heat equation.

The result of Theorem 1.5 is stated for a potential minimum. However, we shall prove a seemingly
more general result, at any energy level in V (M). We shall then explain why this latter result is not more
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general, and how it can be improved in dimension one. We recall the definition of V in terms of f in (1.11),
and define the classically allowed region at any energy level E:

KE = {x ∈ M, V (x) ≤ E}.

We then define the Agmon distance (see e.g. [Hel88, Chapter 3]) to the set KE at the energy level E:

dA,E(x, y) = inf

{∫ 1

0

√
(V (γ(t))− E)+|γ̇(t)|gdt, γ ∈ U1(x, y)

}
,

U1(x, y) =
{
γ ∈ W 1,∞([0, 1];M), γ(0) = x, γ(1) = y

}
,

dA,E(x) = inf
y∈KE

dA,E(x, y). (3.1)

That is to say, dA,E(x) is the distance of x to the set KE for the (pseudo-)metric (V − E)+g. Here again
(V (x)− E)+ = max (V (x) − E, 0). We will use, as in (1.12) the notation dA = dA,E0 where E0 = minM V
for the Agmon distance at the bottom energy. Note that dA,E vanishes identically on KE (and only on
this set). Finally, an important function in the estimates below is given by

WE(x) = dA,E(x) +
f(x)

2
. (3.2)

We shall prove in this section the following result.

Theorem 3.1. Assume the observability estimate (2.7) (resp. the boundary observability inequality (2.8))
for all solutions to (2.6) with constant C0 = C0(T0, ε). Then, for all E ∈ V (M) = [minM V,maxM V ] and
all δ > 0, there is ε0 > 0 such that we have for all ε ∈ (0, ε0)

C0(T0, ε) ≥ exp
1

ε

(
min
ω
WE −max

KE

WE − δ − ET0

)
,

in the internal observation case, and

C0(T0, ε) ≥ exp
1

ε

(
min
Γ
WE −max

KE

WE − δ − ET0

)
,

in the boundary observation case.
In particular, we have for all E ∈ V (M), for each respective case,

Tunif (ω) ≥
1

E

(
min
ω
WE −max

KE

WE

)
,

Tunif (Γ) ≥
1

E

(
min
Γ
WE −max

KE

WE

)
.

Theorem 1.5 is then the particular case E = E0 = minM V in Theorem 3.1. Unfortunately, the function
E 7→ 1

E (minωWE −maxKE WE) is a decreasing function of E. Indeed,

• the sets KE are increasing in E, hence the function E 7→ maxKE WE = maxKE

f
2 increases;

• E 7→ dA,E(x) is decreasing in E, hence the function E 7→ minωWE decreases.

Therefore, the estimate of Theorem 3.1 simply reduces to that for E = E0, that is Theorem 1.5 in the
introduction. This comes from the fact that the estimate involving the term maxKE WE is very rough
(see Section 3.2 below for a more precise discussion). This can be improved in the one dimensional one
well case, see [LL21c]. Moreover, it is interesting to notice that the proof of Theorem 3.1 is not more
involved than the direct proof of Theorem 1.5, and we shall re-use part of it in case of revolution surfaces
in Section 4.
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3.1 Eigenfunctions of semiclassical Schrödinger operators

In this section, we collect classical results concerning eigenfunctions of semiclassical Schrödinger operators,

and some of their decay properties. Recall that Pε = −ε2∆g +
|∇gf|2g

4 + εqf = −ε2∆g + V + εqf is defined
in (2.4). We first need to prove existence of eigenfunctions near any energy level.

Lemma 3.2 (Existence of eigenfunctions). Assume V ∈ W 1,∞(M) and qf ∈ L∞(M) are both real valued.
For all E ∈ V (M) = [minM V,maxM V ] and all ε ∈ (0, 1], there is Eε = E + O

(
ε2/3

)
and ψε ∈

H2(M) ∩H1
0 (M) such that Pεψε = Eεψε.

Note that the O
(
ε2/3

)
precision is relatively poor, and can be improved in different situations (e.g. if

there is a critical point of V at energy E). These refinements are however not needed here.

Proof. The proof consists in constructing a (very rough) quasimode. Assume first that E is reached by an
interior point, i.e. there is x0 ∈ Int(M) such that V (x0) = E. We then only work in a local chart near x0,
centered at x0 (hence we work in Rn in a neighborhood of 0).

We take a cutoff function χ ∈ C∞
c (R) such that χ = 1 in a neighborhood of 0. We set uε(x) =

ε−
n
3 χ
(
ε−

2
3 |x|

)
, so that uε is smooth and moreover supported in the chart for all ε < ε0 with ε0 sufficiently

small, and thus uε ∈ H2(M) ∩H1
0 (M). Notice also that

‖uε‖2L2(M) =

∫
|uε(x)|2

√
|g|(x)dx =

∫
χ2(|y|)

√
|g|(ε2/3y)dy = c0 +O

(
ε2/3

)
,

with c0 > 0. We now estimate (Pε − E)uε. For this, we first have ‖εqfuε‖L2 ≤ Cε. Second, we always
have the rough estimate V (x)− E = V (x)− V (0) = O (|x|) so that we have

‖(V − E)uε‖2L2 ≤ C

∫
|x|2χ2

(
ε−

2
3 |x|

) dx

ε
2n
3

≤ Cε4/3. (3.3)

Third, we have

∥∥ε2∆gu
ε
∥∥2
L2 =

∥∥∥∥∥∥
ε2√
|g|
∑

i,j

∂i

(
gij
√
|g|∂juε

)
∥∥∥∥∥∥

2

L2

≤ Cε4
∑

i,j

∫ [
∂i

(
gij
√
|g| xj|x|

)
ε−

2
3χ′
(
ε−

2
3 |x|

)

+

(
gij
√
|g| xj|x|

)
xi
|x|ε

−4/3χ′′
(
ε−

2
3 |x|

) ]2 dx
ε

2n
3

≤ Cε
4
3 . (3.4)

Combining the above four estimates yields the existence of D, ε0 > 0 such that for all ε < ε0, we have,

‖(Pε − E)uε‖L2 ≤ Cε
2
3 ≤ Dε

2
3 ‖uε‖L2 .

Hence, if E /∈ Sp(Pε), this implies
∥∥(Pε − E)−1

∥∥
L2→L2 ≥ (Dε

2
3 )−1. Finally, the operator Pε being

selfadjoint, we have, for z ∈ C \ Sp(Pε), ‖(Pε − z)−1‖L2→L2 = 1
d(z,Sp(Pε))

, so that, if E /∈ Sp(Pε),

1

d(E, Sp(Pε))
≥ (Dε

2
3 )−1.

In any case, this implies d(E, Sp(Pε)) ≤ Dε
2
3 , and using that the spectrum of Pε is purely pointwise, this

proves the sought result.
Assume now that E is not reached by an interior point, i.e. E /∈ V (Int(M)). This means in particular

that there is x0 ∈ ∂M such that V (x0) = E. Then, we again work in a local chart near x0, centered
at x0. In this chart, M is given by Rn−1 × R− and x0 by 0. We denote (x′, xn) ∈ Rn−1 × R− local
coordinates. We then take χ as above and further define χ̌ ∈ C∞

c (R), non-identically vanishing, such that
supp(χ̌) ⊂ (−1, 0). We define uε(x) = ε−

n
3 χ̌(ε−

2
3xn)χ(ε

− 2
3 |x′|). One can check that all above properties

of uε are still satisfied, and in particular (3.3)-(3.4). In addition, we have suppuε ⊂ R
n−1 ×R

−
∗ , and thus

uε ∈ H2(M) ∩H1
0 (M). The remainder of the proof then follows the same as in the first case.
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Remark 3.3. Note that near a noncritical value of V , or near the boundary of M, the appropriate local
model is −ε2∂2x ± x. Considering concentrating quasimodes of the form χ

(
x
εα

)
leads to

ε2∂2x

(
χ
( x
εα

))
=

ε2

ε2α
χ′′
( x
εα

)
, and xχ

( x
εα

)
= εα

( x
εα

)
χ
( x
εα

)
.

Henceforth, the right scaling is given by 2 − 2α = α, that is α = 2/3. The quasimode we construct are
then O

(
ε2/3

)
. If one wants to obtain a better remainder, one could replace χ by an Airy function, as one

should replace χ by a Hermite function in the case of bottom of potential (in which case the precision of
the quasimode is improved). Also, the remainder ε2/3 is actually the worst possible case.

The next result states the decay estimates for eigenfunctions in the classically forbidden region, and
is a consequence of so-called Agmon estimates (see [HS84, Hel88, DS99]). Here, it is a particular case
of [Hel88, Propositions 3.3.1 and 3.3.4]. Note that with respect to [Hel88, Proposition 3.3.1], our operator
Pε contains an additional term, namely multiplication by εqf. However, this contribution is of lower order
and can be absorbed in the proof of the Agmon estimates.

Theorem 3.4 (Decay of eigenfunctions in the classically forbidden region). Assume V ∈ W 1,∞(M) and
qf ∈ L∞(M). Let

E ∈ V (M) = [min
M

V,max
M

V ]

and assume ψε ∈ H2(M) ∩H1
0 (M) and Eε satisfy

Pεψε = Eεψε, ‖ψε‖L2(M) = 1, max(Eε − E, 0) = o(1) as ε→ 0+. (3.5)

Then for all δ > 0, there exist C = C(δ), ε0 = ε0(δ) > 0 such that, for all ε < ε0, we have

∥∥∥e
1
εdA,Eψε

∥∥∥
L2(M)

≤ Ce
δ
ε . (3.6)

Assuming further that V, qf ∈ C∞(M), we have ψε ∈ C∞(M) and for all δ > 0 and all smooth vector
field Y on M, there exist C = C(δ), ε0 = ε0(δ) > 0 such that, for all 0 < ε < ε0, we have

|ψε(x)|+ |(Y ψε)(x)| ≤ Ce−
1
ε (dA,E(x)−δ), for all x ∈ M. (3.7)

Remark 3.5. Note that the smoothness assumption V, qf ∈ C∞(M) (as well as the smoothness assump-
tions in Theorem 1.5) is essentially only used in [HS84, Hel88, DS99] to perform elliptic regularity estimates
so that the pointwise estimate (3.7) makes sense. A finer (much less demanding) regularity assumption
can be formulated.

As a direct corollary, we have that most of the norm of ψε is near KE, see [Hel88, Corollary 3.3.2].

Corollary 3.6 (Most of the norm is in the classically allowed region). Let E ∈ V (M) = [minM V,maxM V ]
and assume ψε, Eε satisfy (3.5). For any open set U containing KE, there is δ, ε0 > 0 such that for all
0 < ε < ε0, we have

‖ψε‖2L2(U) = 1 +O
(
e−

δ
ε

)
.

3.2 Rough localization of eigenfunctions, and a proof of Theorem 3.1

From the decay estimates in the classically forbidden region (Theorem 3.4) and the rough localization of
the L2 mass of eigenfunctions (Corollary 3.6), together with the existence of eigenfunctions at any energy
level (Lemma 3.2), we may now deduce a proof of Theorem 3.1. Recall that WE is defined in (3.2). We
first prove the following proposition, from which Theorem 3.1 will follow.

Proposition 3.7. Let E ∈ V (M) = [minM V,maxM V ] and assume ψε ∈ H2(M) ∩ H1
0 (M) and Eε

satisfy (3.5). Then for all δ > 0, there exists ε0 = ε0(δ) > 0 such that, for any open set ω ⊂ M and for

21



all ε < ε0, we have
∥∥∥e−

f
2εψε

∥∥∥
L2(M)

≥ e−
1
ε (maxKE

WE+δ), (3.8)
∥∥∥e−

f
2εψε

∥∥∥
L2(M)

≤ e−
1
ε (minM WE−δ), (3.9)

∥∥∥e−
f
2εψε

∥∥∥
L2(ω)

≤ e−
1
ε (minω WE−δ). (3.10)

Assuming also that V, qf ∈ C∞(M) and Γ ⊂ ∂M, we have
∥∥∥e−

f
2ε ∂νψε

∥∥∥
L2(Γ)

≤ e−
1
ε (minΓ WE−δ). (3.11)

Note that Estimate (3.8) is very rough, due to our lack of knowledge on the localization of ψε in the
classically allowed region KE . In the one dimensional one well case, this bound can be refined, see the
companion paper [LL21c].

We first prove Proposition 3.7, and then deduce a proof of Theorem 3.1.

Proof of Proposition 3.7. First, setting Uδ = {x ∈ M, f(x) < maxKE f+ δ} ⊃ KE, we have
∥∥∥e−

f
2εψε

∥∥∥
L2(M)

≥
∥∥∥e−

f
2εψε

∥∥∥
L2(Uδ)

≥ e−
1
ε (maxKE

f
2+

δ
2 ) ‖ψε‖L2(Uδ)

≥ 1

2
e−

1
ε (maxKE

f
2+

δ
2 ),

after having used Corollary 3.6 in the last inequality for ε < ε0(δ). This proves (3.8), recalling that
dA,E = 0 on KE.

Second, notice that (3.9) is a consequence of (3.10). Third, to prove (3.10), we use (3.6) as follows
∥∥∥e−

f
2εψε

∥∥∥
L2(ω)

≤
∥∥∥e−

f
2ε e−

1
εdA,Ee

1
εdA,Eψε

∥∥∥
L2(ω)

≤ e−
1
ε (minω( f

2+dA,E))
∥∥∥e

1
εdA,Eψε

∥∥∥
L2(ω)

≤ e−
1
ε (minω( f

2+dA,E))Ce
δ
ε .

Finally, to prove (3.11), we proceed similarly using (3.7) (instead of the sole (3.6)) with Y = ∂ν . We have
∥∥∥e−

f
2ε ∂νψε

∥∥∥
L2(Γ)

≤
∥∥∥e−

f
2εCe−

1
ε (dA,E−δ)

∥∥∥
L2(Γ)

≤ Ce−
1
ε (minΓ(

f
2+dA,E)−δ),

which concludes the proof of the proposition.

Proof of Theorem 3.1 from Proposition 3.7 and Lemma 3.2. We use the reformulation in Lemma 2.9 and
consider the observability estimate (2.10) for solutions to the evolution equation (2.9).

More precisely, we select E ∈ V (M), and we let vε be the solution to (2.9) associated to the initial
condition vε(0) = ψε, where ψε is given by Lemma 3.2. That is to say, vε(t, x) = e−

Eε
ε tψε(x). We estimate

both sides of (2.10).
Firstly, using (3.8), we have

∥∥∥e−
f
2ε vε(T0)

∥∥∥
L2(M)

= e−
Eε
ε T0

∥∥∥e−
f
2εψε

∥∥∥
L2(M)

≥ 1

2
e−

Eε
ε T0e−

1
ε (maxKE

WE+ δ
2 ),

for ε < ε0(δ). Recalling that Eε = E + O
(
ε2/3

)
, this implies the existence of ε0(δ) > 0 such that for

ε < ε0(δ),
∥∥∥e−

f
2ε vε(T0)

∥∥∥
L2(M)

≥ 1

2
e−

1
ε (ET0+maxKE

WE+δ),

Secondly, concerning the internal case, using (3.10), we have
∫ T0

0

∥∥∥e−
f
2ε vε

∥∥∥
2

L2(ω)
dt =

∫ T0

0

e−2Eε
ε t
∥∥∥e−

f
2εψε

∥∥∥
2

L2(ω)
dt

=
ε

2Eε
(1− e−2Eε

ε T0)
∥∥∥e−

f
2εψε

∥∥∥
2

L2(ω)
≤ Ce−

2
ε (minω WE−δ).
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As a consequence of these two estimates, applying (2.10) implies

e−
2
ε (ET0+maxKE

WE+δ) ≤ C0(T0, ε)
2Ce−

2
ε (minω WE−δ),

which concludes the proof.
In the case of observation from part of the boundary, we simply replace the above use of (3.10) by that

of (3.11).

3.3 An explicit counter-example for a domain of Rn

The purpose of this section is to prove Theorem 1.6. Here M = Ω where Ω ⊂ R
n is an open set, endowed

with the Euclidean metric. For δ > 0, we may assume, up to an appropriate translation of the domain Ω,
that there is η > 0 such that

B(0, η) ⊂ Ω. (3.12)

ω ⊂ (Ω ∩ {x1 > 0, x2 > 0, · · · , xn > 0}) , and B(0, η) ∩ ω = ∅. (3.13)

We let fλ(x1, · · · , xn) be defined as follows:

fλ(t) :=

∫ t

0

√
λ2s2 + 1ds and fλ(x1, · · · , xn) :=

n∑

i=1

fλ(xi). (3.14)

With this definition, the associated gradient vector field and potential are given respectively by

∇fλ(x1, · · · , xn) =
n∑

i=1

f ′
λ(xi)ei =

n∑

i=1

√
λ2x2i + 1ei,

Vλ(x) =
|∇fλ|2

4
=
λ2|x|2 + n

4
,

where (e1, · · · , en) denotes the canonical basis of Rn.
The proof of Theorem 1.6 now directly follows from the following Lemmata 3.8 and 3.9, when taking

λ large enough.

Lemma 3.8. In the above setting, recalling (3.12), (3.13) and that fλ is defined in (3.14), we have

Tunif (ω) ≥ λη2

n for all λ > 0.

Lemma 3.9. In the above setting, recalling (3.12), (3.13) and that fλ is defined in (3.14), (Ω,∇fλ, ω) and
(Ω,∇fλ) both satisfy (FC) and we have for all λ ≥ 0

TFC(Ω,∇fλ, ω) ≤ TFC(Ω,∇fλ) ≤ min
v∈Rn,|v|=1,v·ei≥0∀i

(
max
x∈Ω

x · v −min
x∈Ω

x · v
)

≤ diam(Ω). (3.15)

In particular, both are bounded by a constant uniformly in λ ≥ 0.

We recall that (FC) and TFC are defined in this context in Definition 1.4.
Notice that the quantity maxx∈Ω x ·v−minx∈Ω x ·v represents the minimal Euclidean distance between

two parallel hyperplanes (normal to v) such that Ω is contained between the two hyperplanes.

Proof of Lemma 3.8. The minimum of Vλ is reached at xmin = 0 and Vλ(xmin) = n
4 . The Agmon dis-

tance (3.1) at the bottom energy Vλ(xmin) can be explicitly computed for points x ∈ B(0, η) ⊂ Ω \ ω.
Indeed, for x ∈ Ω we have

√
Vλ(x)− Vλ(xmin) =

λ
2 |x| and thus for x ∈ B(0, η),

dA(x) =
λ

2
inf

{∫ 1

0

|γ(t)||γ̇(t)|dt, γ ∈W 1,∞([0, 1];M), γ(0) = 0, γ(1) = x

}

=
λ|x|2
2

∫ 1

0

tdt =
λ|x|2
4

,
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where, by symmetry arguments, we have noticed that the straight line γ(t) := xt reaches the infinimum
for x ∈ B(0, η). Recalling that Vλ(0) = n

4 and f(0) = 0, application of (1.13) in Theorem 1.5 implies

n

4
Tunif (ω) = Vλ(0)Tunif (ω) ≥ min

ω

(
f

2
+ dA

)
. (3.16)

By a connectedness argument, for any x ∈ ω, we have from (3.13) that dA(x) ≥ miny∈∂B(0,η) dA(y) ≥ λη2

4 .
Moreover, the condition (3.13) together with the definition of fλ in (3.14) imply that fλ(x) ≥ 0 for x ∈ ω.
We thus have

min
ω

(
fλ

2
+ dA

)
≥ min

ω
(dA) ≥

λη2

4
.

Combined with (3.16), this concludes the proof of the lemma.

Proof of Lemma 3.9. Notice first that given v ∈ Rn with |v| = 1 such that ei · v ≥ 0 for all i ∈ {1, · · · , n},
we have for all x ∈ Ω,

∇fλ(x) · v =

n∑

i=1

√
λ2x2i + 1ei · v ≥

n∑

i=1

ei · v ≥

√√√√
n∑

i=1

(ei · v)2 = |v| = 1. (3.17)

Second, following Definition 1.4, we extend fλ as a smooth compactly supported function f̃λ in Rn Given
x ∈ Ω, we denote by γx the maximal (global) solution to γ̇x(t) = −∇f̃λ(γx(t)) with γx(0) = x, defined in
Rn for t ∈ R.

Given v ∈ Rn with |v| = 1 such that ei ·v ≥ 0, Estimate (3.17) thus implies that γ̇x(t)·v = −∇f̃λ(γx(t))·
v ≤ −1. Integrating this between 0 and t, we obtain γx(t) · v − x · v ≤ −t. Assuming that T > maxy∈Ω y ·
v −miny∈Ω y · v thus implies

γx(T ) · v − x · v ≤ −T < −
(
max
y∈Ω

y · v −min
y∈Ω

y · v
)
,

that is
x · v − γx(T ) · v > max

y∈Ω
y · v −min

y∈Ω
y · v.

Since x ∈ Ω, this implies γx(T ) /∈ Ω. This holds true for any x ∈ Ω. Recalling the definition of (FC) in
Definition 1.4, we have obtained that this condition is satisfied by both (Ω,∇fλ, T ) and (Ω,∇fλ, ω, T ).
Moreover, given the definition of TFC as an infimum, we have also obtained that TFC(Ω,∇fλ, ω) ≤
TFC(Ω,∇fλ) ≤ maxy∈Ω y · v − miny∈Ω y · v. Since this holds for all v, we have proved (3.15), which
concludes the proof of the lemma.

4 Surfaces of revolution

4.1 General setting

In this section we introduce the geometric setting for the results presented in Section 1.3.2. We are
concerned with a revolution surface S ⊂ R3 being either

1. Case 1: diffeomorphic to a sphere S2 (in which case ∂S = ∅);

2. Case 2: diffeomorphic to a disk (in which case ∂S is a circle embedded in R3).

3. Case 3: diffeomorphic to a cylinder [0, 1]× S1 ⊂ R3 (in which case ∂S consists in two disjoint circles
embedded in R3, and belonging to two parallel hyperplanes);

We follow [LL21b] and [Bes78, Chapter 4B p95] for the precise geometric description of such manifolds. At
some places, we also consider the case of the torus T2, endowed with a metric invariant in one direction.This
setting does not strictly speaking enter the framework of the present section, but is much simpler to describe
(and we thus do not mention it in the present section).
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Definition and differentiable structure. We assume that (S, g) is an embedded 2D submanifold of R3

(endowed with the induced Euclidean structure), having S1 = (R/2πZ) ∼ SO(2) as an effective isometry
group. The action of S1 on S, denoted by θ 7→ Rθ (such that RθS = S) has:

1. exactly two fixed points denoted by N,S ∈ S called North and South poles in Case 1; we write
∂NS = {N} and ∂SS = {S};

2. exactly one fixed point denoted by N ∈ S called North pole in Case 2; in this case, we write
∂NS = {N}, and ∂SS = ∂S has a single connected component (called “south boundary”) which is
also invariant by Rθ;

3. no fixed point in Case 3; in this case ∂S has two connected components denoted ∂NS and ∂SS (called
“north and south boundaries”) which are both invariant by Rθ.

We denote by P the set of poles, that is P = {N,S} in Case 1, P = {N} in Case 2 and P = ∅ in Case 3
and set

U = S \ P . (4.1)

We now describe a nice parametrization of (S, g), and, in particular, useful coordinates on the set U . We
set L = distg(∂NS, ∂SS) and denote by

IL = (0, L) in Case 1, IL = (0, L] in Case 2 , IL = [0, L] in Case 3. (4.2)

We let γ0 be a geodesic curve of S joining N (resp. ∂NS in case 3) to S (resp. ∂SS in Cases 2 and 3). Note
in particular that length(γ0) = L. For any θ ∈ S1, the isometry Rθ transforms the geodesic γ0 into Rθ(γ0),
which is another geodesic joining N (resp. ∂NS) to S (resp. ∂SS). For every m ∈ U (defined in (4.1)),
there exists a unique θ ∈ S1 such that m belongs to Rθ(γ0). The geodesic Rθ(γ0) can be parametrized by
arclength

ρ : [0, L] → Rθ(γ0), ρ(0) ∈ ∂NS, ρ(L) ∈ ∂SS,
s = distg(ρ(s), ∂NS) = L− distg(ρ(s), ∂SS),

and there exists a unique s ∈ IL such that ρ(s) = m. We use (s, θ) as a parametrization of U ⊂ S:

ζ : U = S \ P → IL × S1

m 7→ ζ(m) = (s, θ).

In Case 3, P = ∅ and thus the whole surface S = U is diffeomorphic to the cylinder IL × S1 via ζ. In
Cases 3 and 1, we further need to describe coordinate charts around the poles. In cases 1 and 2, we define
another exponential chart (UN , ζN ) centered at the pole N by

UN = {N} ∪ ζ−1

((
0,
L

2

)
× S

1

)
= Bg

(
N,

L

2

)
⊂ S,

ζN : UN → BR2

(
0,
L

2

)
, ζN (N) = 0.

with the transition map

ζN ◦ ζ−1 : ζ
(
U ∩ UN

)
=
(
0, L2

)
× S1 → ζN

(
U ∩ UN

)
= BR2

(
0, L2

)
\ {0}

(s, θ) 7→
(
s cos(θ), s sin(θ)

)
.

In Case 1, we add similarly a last exponential chart (US , ζS) centered at the pole S by

US = {S} ∪ ζ−1

((L
2
, L
)
× S

1

)
= Bg

(
S,
L

2

)
⊂ S,

ζS : US → BR2

(
0,
L

2

)
, ζS(S) = 0,
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with the transition map

ζS ◦ ζ−1 : ζ
(
U ∩ US

)
=
(
L
2 , L

)
× S1 → ζS

(
U ∩ US

)
= BR2

(
0, L2

)
\ {0}

(s, θ) 7→
(
(L − s) cos(θ), (L − s) sin(θ)

)
.

We shall need the following notation. For a subset J ⊂ IL, we denote by

CJ = ζ−1(J × S
1) =

{
m = ζ−1(s, θ) ∈ U ; s ∈ J

}
⊂ U ⊂ S

the Rθ invariant set which projects downto J . We will also extend this definition to sets J ⊂ [0, L] by
adding the point N if 0 ∈ J (in Cases 1 and 2) and the point S if L ∈ J (in Case 1).

Riemannian structure and operators involved. On the cylinder IL × S1, the metric g is given by

(ζ−1)∗g = ds2 +R(s)2dθ2, (4.3)

for some smooth function R : IL → R+
∗ (the function R can be interpreted as the Euclidean distance in

R3 of the point parametrized on S by s to the symmetry axis, see e.g. [LL21b, Section 3]). Since g is a
smooth metric on S, [Bes78, Proposition 4.6] gives that R extends to a C∞ function [0, L] → R

+ satisfying
moreover

R(0) = 0, R′(0) = 1, R(2p)(0) = 0 for any p ∈ N, in Cases 1 and 2, (4.4)

R(L) = 0, R′(L) = −1, R(2p)(L) = 0 for any p ∈ N, in addition in Case 1.

For other parametrizations of surfaces of revolution, or direct computations on the sphere S2 and the
disk D, we refer to [LL21b, Section 3].

Example 4.1. In particular, we consider here the following three examples:

• the unit sphere of R3 is given by case 1 L = π, s ∈ (0, π), R(s) = sin(s) (and the maximum of R is
reached at s0 = π

2 )

• the unit disk of R2 is given by case 2 with L = 1 and R(s) = s;

• flat cylinder of length L > 0 and radius R0 > 0 is given by case 3 with R(s) = R0.

In these coordinates, the Riemannian volume form is hence R(s)dsdθ, the Riemannian gradient of a
function is

∇gu = ∂su
∂

∂s
+

1

R(s)2
∂θu

∂

∂θ
, with g(∇gu,∇gu) = |∂su|2 +

1

R(s)2
|∂θu|2, (4.5)

and the Laplace-Beltrami operator is given by

∆s,θ =
1

R(s)
∂sR(s)∂s +

1

R(s)2
∂2θ .

We define by L2(S) := L2(S, dVolg) the space of square integrable functions, which is also invariant by
the action of (Rθ)θ∈S1 . We will sometime also use the same definition for L2(CJ ) := L2(CJ , dVolg) for
J ⊂ [0, L].

Another important operator is the infinitesimal generator Xθ of the group (Rθ)θ∈S1 , defined, for u ∈
C∞(S), by

Xθu = lim
ϑ→0

ϑ−1(u ◦ Rϑ − u). (4.6)

In the chart (U, ζ), the action of Rθ is given by (ζ−1)∗Rθ(u, θ
′) = (u, θ′ + θ), so that (ζ−1)∗Xθ = ∂θ. It is

proved in [LL21b, Section 3.2] that Xθ is a smooth vector field on S. Note also that Xθ(N) = Xθ(S) = 0
and that its norm is given by

√
g(Xθ, Xθ)(s, θ) = R(s) (in the coordinates of U).

Now, remark that (Rθ)θ∈S1 acts as a (periodic) one-parameter unitary group on L2(S) by f 7→ f ◦Rθ.
The Stone Theorem (see e.g. [RS80, Theorem VIII-8 p266]) hence implies that its infinitesimal generator
is iA, where A is a selfadjoint operator on L2(S) with domain D(A) ⊂ L2(S). Since iAf = Xθf for
f ∈ C∞(S) (which is dense in D(A)) according to (4.6), we have that A is the selfadjoint extension of Xθ

i .
From now on, we slightly abuse the notation and still denote Xθ

i for its selfadjoint extension A.
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Gradient vector field and conjugated operator. We finally introduce a function f : S 7→ R, at least
of class W 2,∞ to define the gradient flow. Throughout this section, we assume that Xθf = 0, i.e. f is
invariant by rotation and the same property holds for q. In the coordinates of U , we shall thus simply
write f = f(s). These regularity assumptions can be written in the coordinate of U by

s 7→ f(s) ∈ W 2,∞(0, L), with

f′(0) = 0 (in Cases 1 and 2), and f′(L) = 0 (in Case 1). (4.7)

We may now define as in (2.4) the conjugated operator Pε as

Pε = −ε2∆g +
|∇gf|2g

4
+ ε

∆gf

2
− εq

= −ε2
(

1

R(s)
∂sR(s)∂s +

1

R(s)2
∂2θ

)
+

|f′(s)|2
4

+
ε

2

1

R(s)
∂s(R(s)f

′(s))− εq, (4.8)

where the second writing, in the coordinates of U , uses the invariance of f. Note that the last term in this
expression acts as a multiplication operator by a function in L∞(S) with size ε. We shall often consider
it as a lower order term, and keep the shorter notation ∆gf in place of 1

R(s)∂s(R(s)f
′(s)).

Since both g and f are invariant by the action of Rθ, we have

[Xθ, Pε] = 0. (4.9)

Moreover, Pε is selfadjoint in L2(S, dVolg) with domain H2(S) ∩ H1
0 (S) (= H2(S) in Case 1), and has

compact resolvent. Therefore, the operators Pε and Xθ share a common basis of eigenfunctions (see
e.g. [LL21b, Section 3.2] for a proof). If λ ∈ R is an eigenvalue of Pε, then (in the coordinates of U) the
associated eigenfunction can be written as eikθv(s) with k ∈ Z, v ∈ H2

loc(IL)∩L2 ((0, L), R(s)ds) satisfying

− ε2

R(s)
∂s (R(s)∂sv) + ε2

k2

R(s)2
v +

( |f′(s)|2
4

+ εqf

)
v = λv, (4.10)

together with v(L) = 0 in Case 2 and v(0) = v(L) = 0 in Case 3.

Restoring the dependence of the eigenelements in the parameter ε, we call the normalized eigenfunctions
of Pε: ϕε

k,n = eikθvεk,n(s) with eigenvalues λεk,n, where n ∈ N. In particular, for all ε > 0, we can write
L2(S) = ⊕⊥

(k,n)∈Z×N
span(ϕε

k,n).
We further denote

L2
k = ker(Xθ − ik) =

{
ϕ ∈ L2(S);ϕ|U = eikθf(s), f ∈ L2 ((0, L), R(s)ds)

}
,

and H2
k = D(Pε)∩L2

k = H2(S) ∩H1
0 (S) ∩L2

k. The commutation property (4.9) implies that for all ε > 0,
PεH

2
k ⊂ L2

k, so we can define the operator

P (k)
ε = Pε|L2

k
, with domain H2

k , (4.11)

which is selfadjoint. This can be seen for instance directly on the simultaneous diagonalization which
implies an isometry L2(S) ≈ ℓ2(Z × N) where L2

k ≈ {(k, n) |n ∈ N} as a closed subspace of ℓ2(Z × N).

The fact that Pε has compact resolvent implies that this is also the case for P (k)
ε . With a slight abuse of

notation, we shall still denote by P (k)
ε the one dimensional operator (ζ−1)∗P (k)

ε ζ∗ defined on IL, namely

P (k)
ε w = − ε2

R(s)
∂s (R(s)∂sw) +

(
ε2k2

R(s)2
+

|f′(s)|2
4

+ εqf

)
w. (4.12)

4.2 The conditions (GCC) and (FC) on surfaces of revolution

In this section, we characterize the conditions (GCC) (see Definition 2.10 if ∂M = ∅) and (FC) (see
Definition 1.4 if ∂M 6= ∅) in the above very particular geometry, and further assuming that the observation
region ω is rotationally invariant as well. In case ∂M 6= ∅, we consider the two cases of internal and
boundary observation, and describe the associated minimal times TFC .
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Proposition 4.2. Let δ > 0 and recall that f is assumed to be θ-invariant.

1. In Case 1, we consider the set ω = Bg(N, δ) ∪Bg(S, δ); then (S,∇gf, ω) satisfies (GCC) if and only

if f′(s) 6= 0 for all s ∈ [δ, L− δ] and TGCC(S,∇gf, ω) =
∣∣∣
∫ L−δ

δ
ds

f′(s)

∣∣∣.

2. In Case 2, we consider the set ω = Bg(N, δ); then (S,∇gf, ω) satisfies (FC) if and only if f′(s) 6= 0

for all s ∈ [δ, L] and TFC(S,∇gf, ω) =
∣∣∣
∫ L

δ
ds

f′(s)

∣∣∣.

3. In Case 3, (S,∇gf) satisfies (FC) if and only if f′(s) 6= 0 for all s ∈ [0, L] and TFC(S,∇gf) =∣∣∣
∫ L

0
ds

f′(s)

∣∣∣.

Note that in Case 2, the situations f′ > 0 and f′ < 0 play two different roles (see the proof below).
Indeed, in case f′ > 0, all trajectories of −f′ enter the controlled region ω, whereas, in case f′ < 0, all
trajectories of −f′ flow out of the domain S through ∂ S (without passing into ω). However, the definition
of (FC) in Definition 1.4 does not make a distinction between these two situations.

Proof. We only prove the second item; the other two items are proved similarly. According to Defi-
nition 1.4, (4.5) and the θ-invariance of f, it suffices to check under which conditions the solutions to
ṡ(t) = −f′(s(t)) all enter ω = Bg(N, δ) (resp. all exit S, that is satisfy s(T ) > L). If there is s0 ∈ [δ, L]
such that f′(s0) = 0, then the associated solution satisfies s(t) = s0 ∈ [δ, L] for all t ∈ R, and (S,∇gf, ω)
does not satisfy (FC).

If f′ > 0 on [δ, L], then s(t) is decreasing, and for any σ0, σ1 ∈ R, one has
∫ s(σ1)

s(σ0)
ds

f′(s) = σ0 − σ1. The

longest trajectory that does not enter ω is such that s(0) = L and s(T ) = δ so that T =
∫ L

δ
ds

f′(s) . This

proves TFC(S,∇gf, ω) =
∫ L

δ
ds

f′(s) in this case.

Finally, if f′ < 0 on [δ, L], then s(t) is increasing, and for any σ0, σ1 ∈ R, one has
∫ s(σ1)

s(σ0)
ds

f′(s) = σ0 − σ1.

The longest trajectory that does not enter ω is such that s(0) = δ and s(T ) = L so that −T =
∫ L

δ
ds

f′(s) .

This proves TFC(S,∇gf, ω) = −
∫ L

δ
ds

f′(s) in this case, and hence the proposition.

4.3 Existence of eigenfunctions

One may consider different asymptotic regimes in the parameters ε→ 0+ and k → +∞. Note that the case
k bounded would correspond to the one-dimensional situation treated in the companion paper [LL21c].
Here, we shall consider the limit k → +∞ and make the following choice of the parameter ε:

ε = εk = ck−1 (4.13)

considered as a semiclassical parameter, where c > 0 is a fixed parameter (i.e. which does not depend on
k) that will be chosen but fixed. All constants that appear below might depend on c. The analysis of
the asymptotic of the constant involved as c→ 0 (low level of rotation) or c→ ∞ (high level of rotation)
would be interesting but would require much more work.

In view of (4.12), the choice (4.13) naturally leads to consider

s 7→ Vc(s) :=
c2

R(s)2
+

|f′(s)|2
4

, (4.14)

as the effective potential of the operator P (k)
εk in the semiclassical limit ε = εk = ck−1 → 0+. In particular,

the operator P (k)
ε is now a semiclassical operator with small parameter εk and (4.12) can be rewritten

P (k)
εk w = − ε2k

R(s)
∂s (R(s)∂sw) + (Vc(s) + εkqf)w. (4.15)

In the present section, we recall the existence of eigenfunctions (Analogue of Lemma 3.2 above) associ-
ated to any value of the effective potential Vc. More precisely, in the chosen regime (4.13), for any s0 ∈ IL
(recall that IL is defined in (4.2)), we construct a sequence ψk such that Pεkψk = (Vc(s0) + r(k))ψk, with
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r(k) → 0 as k → +∞. As in Section 3.1, the precision r(k) might depend on whether V ′
c (s0) 6= 0 or

V ′
c (s0) = 0 but we will only state the worst estimate, which is sufficient for our needs. We shall later

on prove localization properties of the ψk’s assuming further that Vc(s0) = minIL Vc (which is a global
assumption). We recall the choice (4.13) and the definition (4.14).

Lemma 4.3 (Existence of eigenfunctions). For all s0 ∈ IL, there is k0 > 0 such that for all k ∈ N, k ≥ k0,
there exists ψk ∈ H2(S) ∩ L2

k in case 1 (resp. ψk ∈ H2(S) ∩H1
0 (S) ∩ L2

k in cases 2-3), and µk ∈ R such
that

µk = Vc(s0) +O
(

1

k2/3

)
=

c2

R(s0)2
+

|f′(s0)|2
4

+O
(

1

k2/3

)
,

Pεkψk = µkψk, ‖ψk‖L2(S) = 1, ψk(s, θ) = eikθϕk(s),

with Pε defined in (4.8) and εk in (4.13).

The proof is very similar to Lemma 3.2. Indeed, the study of the operator Pεk in L2
k reduces to the

1D problem for the operator P (k)
ε defined in (4.11) and (4.15). The proof consists first in constructing

quasimodes exactly as in the proof of Lemma 3.2. Deducing existence of an exact eigenfunction from a
quasimode requires the use of the right selfadjoint extension P (k)

εk . This issue is however treated in detail
in [LL21b, Lemma 3.6]. Note that s0 ∈ IL implies that it cannot be a pole so that R(s0)−1 is finite.

4.4 Geometric assumptions and the Agmon distance

The next step is to study the behavior of the eigenfunction ψk constructed in Lemma 4.3. This will require
some global assumptions on the effective potential Vc. Recall that Vc is defined in (4.14), is continuous on
IL, and tends to +∞ near to the poles. Indeed, in Cases 1 and 2 we have for instance

Vc(s) ∼s→0+
c2

R(s)2
∼s→0+

c2

s2
→s→0+ +∞,

as a consequence of (4.4) and (4.7) (and similarly when s→ L− in Case 1). As a consequence, Vc admits
a minimum on the interval IL, which we denote by

Vmin = min
s∈IL

Vc(s) ∈ R
∗
+.

In the following, we make the following assumption (a precised version of (1.17)) on the set where Vc
reaches its global minimum.

Assumption 4.4. The set V −1
c (Vmin) = {smin} ⊂ IL consists in a single point.

Note that this is assumption is generic. Here it is not strictly needed to prove the main results, but
simplifies the presentation and statements slightly. We again introduce the relevant Agmon distance at
the minimal energy level Vmin, defined in the coordinates of U by the eikonal equation

(
(dcA)

′(s)
)2 − (Vc(s)− Vc(smin)) = 0, dcA(smin) = 0, sgn((dcA)

′(s)) = sgn(s− smin),

or, more explicitly, for s ∈ IL, by (1.18). In view of the W 2,∞ regularity of f on S and the definition of Vc
in (4.14), the function dcA is of class C2 away from smin, 0 and L and is locally Lipschitz on IL. Note that
this includes Lipschitz regularity up to the boundary s = L in Case 2 and to both boundaries s = 0, L in
Case 3. We also consider dcA as a θ-invariant function on the surface S.

Lemma 4.5 (Properties of dcA). Under Assumption 4.4, we have dcA ∈ C2(IL \ {smin}) together with

dcA(s) = −c log(s) +O (1) , as s→ 0+, in Cases 1 and 2, (4.16)

dcA(s) = −c log(L − s) +O (1) , as s→ L−, in Case 1. (4.17)
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Proof. We only consider the asymptotics as s→ 0+, that is, prove (4.16). The proof of (4.17) follows the
same. Remark that according to (4.4), we have 1

R(y) → +∞ as y → 0+ with

R(s) = s+O
(
s3
)
, when s→ 0+.

As a consequence, since f ∈W 2,∞(IL), we have

Vc(s) =
c2

s2
+O (1) , when s→ 0+.

With (1.18), we obtain dcA(s) =
∣∣∣
∫ s

smin

c
y (1 +O (y))dy

∣∣∣ = −c log(s) +O (1) as s→ 0+.

4.5 Upper bounds for eigenfunctions: Agmon estimates

As far as upper bounds on ψk are concerned, we have the following Agmon type estimate.

Proposition 4.6. Under Assumption 4.4, assume that µk = Vc(smin) + r(k) with r(k) → 0 and ψk ∈
H2(S) ∩ L2

k(S) solves
Pεkψk = µkψk, on S, ψk|∂S = 0, ‖ψk‖L2(S) = 1,

with Pε defined in (4.8) and εk in (4.13). Then for all 0 < δ < 1, there exist C = C(δ), k0 = k0(δ) > 0
such that, for all k ∈ N, k ≥ k0, the following integral is well defined with the estimate

∫

S
e
2(1−δ)

dcA(m)

εk |ψk|2(m)dVolg(m) ≤ Ce
2 δ

εk .

Also, if ∂S 6= ∅ (that is, in Cases 2 and 3), for all 0 < δ < 1, there exist C = C(δ), k0 = k0(δ) > 0 such
that, for all k ∈ N, k ≥ k0,

‖∂sψk(L, ·)‖2H1(S1) ≤ Ce
−2(1−δ)

dcA(L)

εk , ‖∂sψk(0, ·)‖2H1(S1) ≤ Ce
−2(1−δ)

dcA(0)

εk , (4.18)

where the last estimate (at s = 0) holds true in Case 3 only.

Note that given the asymptotic expansion of dcA in Lemma 4.5, this estimate implies that ψk vanishes
strongly near the poles of S. The proof is made with classical Agmon type identity with some care with
respect to the degeneracy at the poles. It is very similar to the one performed in [LL21b, Theorem 3.9]
and we omit it. Note that, as opposed to [LL21b, Theorem 3.9], we do not assume here that the minimum
be non-degenerate, and only deduce an estimate with loss (δ > 0), which is sufficient for our needs. In the
non-degenerate case, one can take δ = 0 in this estimate and replace the right hand-side by a polynomial
bound of the type ε−M

k , see [LL21b, Theorem 3.9].
The proof of the boundary estimate also requires a bootstrap argument to estimate higher Hs norms

and the use of a trace estimate, see [Hel88, Propositions 3.3.1 and 3.3.4].
We obtain the following two direct Corollaries.

Corollary 4.7. Under the assumptions of Proposition 4.6, for all 0 < δ < 1, there exist C = C(δ), k0 =
k0(δ) > 0 such that, for all k ∈ N, k ≥ k0, and for all rotationally invariant set ω, we have

∫

ω

|ψk|2(m)dVolg(m) ≤ Ce
− 2

εk
((1−δ)dc

A(ω)−δ)
, with dcA(ω) = inf

s∈ω
dcA(s).

Proof. This is a direct consequence of the following estimate:

e
2(1−δ)

dcA(ω)

εk

∫

ω

|ψk|2(m)dVolg(m) ≤
∫

ω

e
2(1−δ)

dcA(m)

εk |ψk|2(m)dVolg(m)

≤
∫

S
e
2(1−δ)

dcA(m)

εk |ψk|2(m)dVolg(m) ≤ Ce
2 δ

εk ,

where we have used Proposition 4.6 in the last inequality.
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Corollary 4.8 (most of the norm is close to the minimum). Under the assumptions of Proposition 4.6,
for any ρ > 0, there exists k0 ∈ N so that

‖ψk‖2L2(C(smin−ρ,smin+ρ))
≥ 1/2, for all k ∈ N, k ≥ k0.

Proof. Applying Corollary 4.7 with ω = S \C(smin−ρ,smin+ρ) ensures that for any δ > 0, there is k0 ∈ N

such that for all k ≥ k0, we have
∫

ω

|ψk|2(m)dVolg(m) ≤ C(δ)e
− 2

εk
((1−δ)dc

A(ω)−δ)
, with dcA(ω) = inf

s∈ω
dcA(s).

From Assumption 4.4, we have dcA(s) > 0 for all s ∈ IL \ {smin}. That ω is closed and does not contain
smin implies that dcA(ω) > 0. Then we fix δ > 0 small enough so that (1 − δ)dcA(ω) − δ > 0. There is
k0 ∈ N such that we have ‖ψk‖2L2(ω) → 0 for k ≥ k0, which implies the result.

4.6 Lower bounds for eigenfunctions: Allibert estimates

In Corollary 4.7, we proved that the family of eigenfunctions ψk decays on ω at least like e−
dcA(ω)

εk . The

purpose of this section is to prove the converse, i.e. that the ψk’s decay at most like e−
dcA(ω)

εk up to δ loss.
This comes from the particular one-dimensional underlying context. We follow in this section the method
of Allibert [All98]. More precisely, we prove the following estimates.

Proposition 4.9. Under Assumption 4.4, assume further that

µk = Vc(smin) + r(k) with r(k) → 0, (4.19)

and ψk ∈ H2(S) ∩ L2
k(S) solves

Pεkψk = µkψk, on S, ψk|∂S = 0, ‖ψk‖L2(S) = 1, ψk(s, θ) = eikθϕk(s),

with Pε defined in (4.8) and εk in (4.13).
Then, for any η, δ > 0, there exist k0, C > 0 so that

‖ψk‖L2(CB(s,η))
≥ Ce

− 1
εk

(dc
A(s)+δ)

, for all k ≥ k0 and s ∈ IL s.t. dist(s,P) > η.

Note that η is a safety distance to the set of poles P defined in Section 4.1. The proof of Proposition 4.9
relies on two lemmata, which we give in the next section.

4.6.1 Two preliminary lemmata

In this section, we assume that the assumptions of Proposition 4.9 are satisfied. In particular, the eigen-
functions under consideration are of the form ψk(s, θ) = eikθϕk(s). We define the following “semiclassical
energy densities” of the eigenfunctions ψk, for s ∈ IL by

Ek(s) := ε2k|∂sψk|2(s) + (Vc(s)− µk + 1)|ψk|2(s) (4.20)

= ε2k|ϕ′
k|2(s) + (Vc(s)− µk + 1)|ϕk|2(s),

E+
k (s) := ε2k|∂sψk|2(s) + (Vc(s)− µk)|ψk|2(s) (4.21)

= ε2k|ϕ′
k|2(s) + (Vc(s)− µk)|ϕk|2(s).

Note that according to elliptic regularity, we have ϕk ∈ H2
loc(IL) and, due to Sobolev embeddings,

ϕ′
k, Ek, E+

k ∈ C0(IL) and in particular Ek, E+
k are defined everywhere on IL. For s, t ∈ IL, we define

Is,t to be the interval between the real numbers s and t, that is, either [s, t] or [t, s]. We also set

Eα = {s ∈ IL; |s− p| ≥ α, for all p ∈ P , and |s− smin| ≥ α}. (4.22)

Recall that P is the set of poles defined in Section 4.1 (and is aimed at covering all Cases 1–3 at the same
time) and smin is the point at which Vc reaches its minimum.
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Lemma 4.10. Assume the assumptions of Proposition 4.9 and recall that E+
k is defined in (4.21). Then,

for any α, δ > 0, there exists k0 > 0 so that for all s, t ∈ IL such that Is,t ⊂ Eα, we have

E+
k (t) ≤ e

2
εk

(|dc
A(s)−dc

A(t)|+δ)E+
k (s), for all k ≥ k0.

Lemma 4.10 provides with a Grönwall type estimate on the energy E+
k , with a precise description of

the constant, under the condition that we remain finitely away from smin. It is an analogue of [All98,
Lemma 12] in our setting (with an additional uniform dependence).

Note that |dcA(s)− dcA(t)| = dcA(s, t) is the Agmon distance between s and t at the lowest energy level.

Proof of Lemma 4.10. On the interval z ∈ Is,t ⊂ Eα, we differentiate E+
k , yielding

(E+
k )′(z) = 2ε2k Re(ϕk

′ϕ′′
k) + V ′

c (z)ϕ
2
k + 2(Vc(z)− µk)Re(ϕkϕk

′).

We recall the choice of εk in (4.13) from the definition of Pεk in (4.8), and the definition of P (k)
εk in (4.10)-

(4.15) that we have

µkϕk = Pεkϕk = −ε2kϕ′′
k − ε2k

R′

R
ϕ′
k + Vcϕk + εkqfϕk.

Replacing ε2kϕ
′′
k in the above identity yields

(E+
k )′(z) = 2 (Vc(z)− µk + εkqf)) Re(ϕkϕk

′)− 2ε2k
R′

R
|ϕ′

k|2 + V ′
c (z)|ϕk|2

+ 2(Vc(z)− µk)Re(ϕkϕk
′)

=
(
4(Vc(z)− µk) + 2εkqf

)
Re(ϕkϕk

′)− 2ε2k
R′

R
|ϕ′

k|2 + V ′
c (z)|ϕk|2. (4.23)

First, using the continuity of Vc on IL and the compactness of Eα in IL, we see that Vc reaches its
minimum on Eα. This, together with the fact that smin /∈ Eα, implies that C−2

α ≤ Vc(s)− Vc(smin) ≤ C2
α

uniformly for s ∈ Eα. Recalling (4.19), this yields the existence of k0(α) such that for k ≥ k0(α), we have
Vc − µk ≥ 1

2Cα
> 0 on Eα.

We now estimate each of the terms in (4.23). We first have

|4(Vc − µk)Re(ϕkϕk
′)| ≤ 4ε−1

k

√
Vc − µk (εk|ϕ′

k|)
(√

Vc − µk|ϕk|
)

≤ 2ε−1
k

√
Vc − µk

[
ε2k|ϕ′

k|2 + (Vc − µk)|ϕk|2
]

= 2ε−1
k

√
Vc − µkE+

k .

Moreover, according to (4.19), there exists a constant Cα > 0 such that we have
√
Vc − µk ≤

√
Vc − Vc(smin)+

Cα|r(k)| uniformly for s ∈ Eα. Together with the above inequality, this implies

|4(Vc − µk)Re(ϕkϕk
′)| ≤ ε−1

k (2
√
Vc − Vc(smin) + Cα|r(k)|)E+

k , on Eα.

Second, we have

∣∣V ′
c |ϕk|2

∣∣ = |V ′
c |

Vc − µk
(Vc − µk)|ϕk|2 ≤ 2Cα ‖V ′

c‖L∞(Eα)
E+
k , on Eα.

Third, we have
|εkqf Re(ϕkϕk

′)| ≤ CαE+
k , on Eα.

Finally, since R′

R is bounded on Eα, we have
∣∣∣∣ε

2
k

R′

R
|ϕ′

k|2
∣∣∣∣ ≤ Cαε

2
k|ϕ′

k|2 ≤ CαE+
k on Eα.

Combining the last four estimates in (4.23) yields for another constant Cα > 0 and for all k ≥ k0(α)

∣∣(E+
k )′(z)

∣∣ ≤ 2ε−1
k

[√
Vc(z)− Vc(smin) + Cα|r(k)|+ Cαεk

]
E+
k (z), for all z ∈ Eα.
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Applying the Grönwall Lemma on the interval Is,t contained in Eα yields

E+
k (s) ≤ e

2
εk

(
∣

∣

∣

∫

s
t

√
Vc(z)−Vc(smin)dz

∣

∣

∣
+Cα|r(k)|+Cαεk

)

E+
k (t),

which is the sought result.

The next Lemma is aimed at giving a rough Grönwall type estimate for the energy Ek, without precise
constants. The interest of this less precise result is that it remains true close to the minimum smin. This
allows to compensate the fact that Lemma 4.10 is not uniform when s is close to smin. Similarly as Eα

in (4.22), we define

Fα = {s ∈ IL; |s− p| ≥ α, for all p ∈ P}.

Lemma 4.11. Assume the assumptions of Proposition 4.9 and recall that Ek is defined in (4.20). For any
α > 0, there exist Cα, Dα > 0 so that for all s, t ∈ Fα, we have

Ek(s) ≤ Cαe
2
εk

Dα|s−t|Ek(t), for all k ≥ k0.

Lemma 4.11 is an analogue of [All98, Lemma 11] in our setting. Recall that P is the set of poles defined
in Section 4.1.

Proof. The proof is quite close to that of Lemma 4.10. We only use the fact that there exists Cα so that
C−1

α ≤ Vc−µk+1 ≤ Cα on Fα if k ≥ k0(α). This gives a constantDα > 0 such thatD−1
α

(
ε2k|ϕ′

k|2 + |ϕk|2
)
≤

Ek ≤ Dα

(
ε2k|ϕ′

k|2 + |ϕk|2
)

on Fα. The same computation as in (4.23) gives

E ′
k = (E+

k )′ + 2Re(ϕkϕk
′)

= (4(Vc − µk) + rk + 1)Re(ϕkϕk
′)− 2ε2k

R′

R
|ϕ′

k|2 + V ′
c (z)|ϕk|2,

with supFα
rk → 0 as k → +∞. As a consequence, for k ≥ k0(α), we have constants C′

α, C
′′
α such that for

all z ∈ Fα

|(Ek)′(z)| ≤ ε−1
k C′

α

(
ε2k|ϕ′

k|2 + |ϕk|2
)
≤ ε−1

k C′′
αEk(z),

which allows to conclude as in the proof of Lemma 4.10 above by Grönwall estimates.

4.6.2 Proof of Proposition 4.9 from Lemmata 4.10 and 4.11

The sketch of the proof of Proposition 4.9 is as follows:

1. the total mass of ϕk is dominated by its mass near the minimum smin via Corollary 4.8;

2. the mass near smin is dominated by the energy at smin − ρ via Lemma 4.11 (with a small loss if ρ is
small);

3. the energy at smin−ρ is dominated by the energy near s via Lemma 4.10 (with a geometric constant

e
2
εk

dc
A(s));

4. the energy near s is dominated by the L2 norm of ϕk (or ψk) near s via elliptic regularity.

Proof of Proposition 4.9. Without loss of generality, we can assume s < smin − η. Indeed, the case s >
smin + η is treated similarly, and the case s ∈ [smin − η, smin + η] is a direct consequence of Corollary 4.8
applied for ρ = η/2.

Now, since smin ∈ IL, notice that we have necessarily d := dist(smin,P) > 0, and we may also assume
that δ < d/4. Lemma 4.11 can be applied with α = d/4 and produces some constants C = Cα, D = Dα.
Let us now choose

ρ = ρδ = min(δ/(4D), d/4, η/2).
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Application of Lemma 4.11 gives for any u ∈ (smin − ρ, smin + ρ) (so that dist(u,P) > η)

Ek(smin − ρ) ≥ C−1e
− 4

εk
DρEk(u) ≥ C−1e

− δ
εk Ek(u).

Integrating in u ∈ (smin − ρ, smin + ρ) gives

Ek(smin − ρ) ≥ C

2ρ
e
− δ

εk

∫ smin+ρ

smin−ρ

Ek(u) du ≥ C1e
− δ

εk , (4.24)

where we have used Ek(u) ≥ 1
2 |ϕk|2(u) (for k large enough) and Corollary 4.8.

Taking y ∈ [s, s+ η/2], we still have y ≤ smin − ρ from the definition of ρ. Choosing α = ρ/2 ≤ η, we
can check that [y, smin − ρ] ⊂ Eα, so that Lemma 4.10 applies on Eα and gives

E+
k (y) ≥ e

− 2
εk

(|dc
A(y)−dc

A(smin−ρ)|+δ)E+
k (smin − ρ) ≥ e

− 2
εk

(dc
A(y)+δ)E+

k (smin − ρ). (4.25)

where we have noticed |dcA(y)− dcA(smin − ρ)| = dcA(y)− dcA(smin − ρ) ≤ dcA(y)− dcA(smin) = dcA(y).
Since smin is a strict minimum, there are constants k0(ρ, δ) = k0(δ, η) > 0 and C(ρ, η) = C(δ, η) > 0

such that for k ≥ k0(δ),

Vc(smin − ρ)− µk = Vc(smin − ρ)− Vc(smin) + r(k) ≥ C(δ, η)−1.

This implies

Ek(smin − δ) = E+
k + |ϕk|2 ≤ E+

k + C(δ, η)(Vc − µk)|ϕk|2 ≤
(
1 + C(δ, η)

)
E+
k (smin − δ),

where all functions are taken at the point (smin − δ). Combining this estimate together with (4.25)
and (4.24) yields

Ek(y) ≥ E+
k (y) ≥ Ce

− 2
εk

(dc
A(y)+δ)E+

k (smin − ρ) ≥ Ce
− 2

εk
(dc

A(y)+δ)Ek(smin − ρ)

≥ Ce
− 2

εk
(dc

A(y)+2δ) ≥ Ce
− 2

εk
(dc

A(s)+2δ)
,

where C is a new constant depending only on δ and η. Note that in the last inequality, we have used that
dcA(s) ≥ dcA(y). Integrating for y ∈ [s, s+ η/2], we get

∫

[s,s+η/2]

Ek(y)dy ≥ Ce
− 2

εk
(dc

A(s)+2δ)
. (4.26)

Now, turning to the global manifold and recalling that ψk(s, θ) = eikθϕk(s), (4.5) and (4.13), we have
∫

C[s,s+η/2]

Ek(y)R(y)dy = ε2k

∫

C[s,s+η/2]

|∇gψk|2dVolg

+

∫

C[s,s+η/2]

( |∇gf|2
4

− µk + 1

)
|ψk|2dVolg

≤ C ‖ψk‖2H1(C[s,s+η/2])
. (4.27)

Finally, an interpolation estimates together with Pεkψk = µkψk and the definition of Pεk in (4.8) gives

‖ψk‖2H1(C[s,s+η/2])
≤ Cη

(
‖ψk‖2L2(C[s,s+η/2])

+ ‖ψk‖L2(C[s−η,s+η])
‖∆gψk‖L2(C[s−η,s+η])

)

≤ Cηε
−2
k ‖ψk‖2L2(C[s−η,s+η])

. (4.28)

Now combining (4.26)-(4.27)-(4.28) gives

‖ψk‖2L2(C[s−η,s+η])
≥ Cε2ke

− 2
εk

(dc
A(s)+2δ)

, k ≥ k0(δ, η).

Finally noticing that ε2k ≥ e
− δ

εk for k ≥ k0(δ) ends the proof of Proposition 4.9 up to replacing δ by
δ/3.
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4.7 Minimal time for uniform controllability in the limit ε → 0
+

The main purpose of this section is the proof Theorem 1.8 and its corollaries.

4.7.1 Proof of Theorem 1.8

Recall that we consider the following situation:

• S is a surface of revolution as described in Section 4.1, c > 0 is a fixed constant. Moreover, Assump-
tion (1.17) is fulfilled.

• For k ∈ N, ε = εk = ck−1 and ψk is the set of solutions of Pεkψk = µkψk defined in Lemma 4.3
associated to s0 = smin is the minimum of Vc.

• the function

vk(t, x) = e
−µk

εk
t
ψk(x) (4.29)

is the solution to (2.9), namely (εk∂t + Pεk)vk = 0, vk|∂S = 0, and vk|t=0 = ψk. Here, ψk denotes
the eigenfunction constructed in Section 4.3 above (in particular ‖ψk‖L2(S) = 1) and studied in
Sections 4.5-4.6.

We now want to test Inequality (2.10) on vk, and thus estimate both sides of this inequality. This is
achieved in Lemmata 4.12 and 4.13. Theorem 1.8 is then a direct consequence of these two lemmata. We
recall that Vc is defined in (1.16) and W c in (1.20).

Lemma 4.12. For any δ > 0, there exist C, k0 > 0 such that for all k ≥ k0 and all 0 ≤ T0 ≤ δ−1, we have

∥∥∥e−
f
2ε vk(T0)

∥∥∥
L2(S)

≥ Ce
−Vc(smin)T0+Wc

m+δ

εk , W c
m = min

IL
W c,

with vk defined in (4.29) and W c(s) = dcA(s) +
f(s)
2 .

Proof. Note first that the function W c = dcA + f
2 is continuous on IL and converges to +∞ close to the

poles p ∈ P , according to the asymptotics of dcA in Lemma 4.5. Hence, it reaches its minimum in (at least)
one point that we denote s1 ∈ IL, that is W c(s1) = W c

m = minIL W
c. We take 0 < η < dist(s1,P) small

enough so that |f(s)− f(s1)| ≤ δ for |s− s1| ≤ η. We have for k ≥ k0 large enough
∥∥∥e−

f
2ε vk(T0)

∥∥∥
L2(S)

= e
−µk

εk
T0

∥∥∥e−
f
2εψk

∥∥∥
L2(S)

≥ e
−µk

εk
T0

∥∥∥e−
f
2εψk

∥∥∥
L2(C(s1−η,s1+η))

≥ e
−µk

εk
T0e

− f(s1)+δ

2εk ‖ψk‖L2(C(s1−η,s1+η))

≥ Ce
−µk

εk
T0e

− f(s1)+δ
2εk e

− 1
εk

(dc
A(s1)+δ)

,

where we have used Proposition 4.9 for the last estimate. Since µk → Vc(smin), we have µkT0 ≤
Vc(smin)T0 + δ for k large enough, which, together with the above estimate, concludes the proof (up
to changing 3δ into δ).

Lemma 4.13. For any ω ⊂ S and δ > 0, there exist C, k0 > 0 such that for all k ≥ k0, and all
0 ≤ T0 ≤ δ−1, we have

∫ T0

0

∥∥∥e−
f
2ε vk(t, ·)

∥∥∥
2

L2(ω)
dt ≤ Ce

−2
Wc

ω−δ

εk , W c
ω = min

ω̄
W c,

∫ T0

0

∥∥∥e−
f
2ε ∂svk(t)|s=L

∥∥∥
2

H1(S1)
dt ≤ Ce

−2Wc(L)−δ
εk , in Cases 2 and 3,

∫ T0

0

∥∥∥e−
f
2ε ∂svk(t)|s=0

∥∥∥
2

H1(S1)
dt ≤ Ce

−2Wc(L)−δ
εk , in Case 3,

with vk defined in (4.29).
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Proof. Since we need an upper bound, we can assume without loss of generality that ω is invariant by
rotation. Also, W c

ω is finite except in the trivial case ω ⊂ P . Let δ > 0.
We first estimate the contribution close to the poles in case P 6= ∅. There, the function ψk (hence vk)

is supposed to be very small since dcA is large. More precisely, using the asymptotics of dcA close to P given
by Lemma 4.5, there exists η̃ > 0 so that

dcA(s)

2
≥W c

ω +
‖f‖L∞

2
+ 1; for all s ∈ Nη̃ = {s ∈ IL such that dist(s,P) < η̃}. (4.30)

We start with the estimate
∫ T0

0

∥∥∥e−
f
2ε vk

∥∥∥
2

L2(ω∩CNη̃
)
dt ≤ e

‖f‖L∞
ε ‖ψk‖2L2(CNη̃

)

∫ T0

0

e
−2

µk
εk

t
dt. (4.31)

We have
∫ T0

0
e
−2

µk
εk

t
dt = εk

2µk

∫ T0
2µk
εk

0 e−sds ≤ C εk
2µk

≤ 1 for k large. Corollary 4.7 applied to the set CNη̃

and the constant δ = 1/2, together with (4.30) implies

‖ψk‖L2(CNη̃
) ≤ Ce

− 1
εk

(W c
ω+

‖f‖L∞
2 )

.

With (4.31), this gives

∫ T0

0

∥∥∥e−
f
2ε vk

∥∥∥
2

L2(ω∩CNη̃
)
dt ≤ Ce

‖f‖L∞
ε e

− 2
εk

(W c
ω+

‖f‖L∞
2 )

= Ce
− 2

εk
W c

ω ,

which is the expected bound for this part.
Let us now treat the contribution of the norm away from the poles (which is the whole IL in Case 3).

Since f is uniformly continuous on [0, L] and dcA is uniformly continuous on the compact set N c

η̃ := IL \Nη̃,
there exists η > 0 so that

s, s′ ∈ N c

η̃ and |s− s′| ≤ η =⇒ |f(s)− f(s′)| ≤ δ and |dcA(s)− dcA(s
′)| ≤ δ. (4.32)

We now select a finite sequence si ∈ N c

η̃ , i = 1, · · · , N so that {|s− si| ≤ η} is a finite covering of N c

η̃ . This
property gives the estimate

∫ T0

0

∥∥∥e−
f
2ε vk

∥∥∥
2

L2(ω∩CN c
η̃
)
dt ≤

∫ T0

0

e
−2

µk
εk

t
dt
∑

i∈J

∥∥∥e−
f
2εψk

∥∥∥
2

L2(C(si−η,si+η))

where J = {i = 1, · · · , N ; (si − η, si + η) ∩ ω 6= ∅}. Using |f(s)− f(si)| ≤ δ and |dcA(s)− dcA(si)| ≤ δ for
s ∈ (si − η, si + η) and then Corollary 4.7 with some 0 < δ′ ≤ δ/(1 + dcA(si)) so that (1− δ′)dcA(si)− δ′ ≥
dcA(si)− δ, we obtain

∥∥∥e−
f
2εψk

∥∥∥
L2(C(si−η,si+η))

≤ e−
f(si)+δ

2ε ‖ψk‖L2(C(si−η,si+η))

≤ Ce−
f(si)+δ

2ε e
− 1

εk
((1−δ′)dc

A(si)−δ′)
e

δ
ε ≤ Ce

−Wc(si)−4δ

εk .

We finally obtain

∫ T0

0

∥∥∥e−
f
2ε vk

∥∥∥
2

L2(ω∩CN c
η̃
)
dt ≤ Ce

8δ
εk max

i∈J
e
−2

Wc(si)

εk .

We remark from (4.32) that mini∈J W c(si) ≥ W c
ω − 2δ. This finishes the proof since δ is arbitrary and k

can be chosen large enough.
Finally, the proof of the boundary estimates simply consists in replacing the use of Corollary 4.7 by

that of the Inequality (4.18).

We may now conclude the proof of Theorem 1.8 from Lemmata 4.12 and 4.13
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Proof of Theorem 1.8. Using Lemma 2.9, if uniform observability holds for T0, then, we have the inequality

∥∥∥e−
f
2ε v(T0)

∥∥∥
2

L2(S)
≤ C2

0

∫ T0

0

∥∥∥e−
f
2ε v
∥∥∥
2

L2(ω)
dt.

for any solution v of (2.9). In particular, this inequality holds true for the sequence vk described above.
So, combining Lemmata 4.12 and 4.13, we obtain

e
−Vc(smin)T0+Wc

m+δ

εk ≤ C0e
−Wc

ω−δ

εk , k ≥ k0(δ), for all k ≥ k0.

This implies Vc(smin)T0 ≥W c
ω −W c

m− 2δ when letting k → +∞, which gives the expected result since δ is
arbitrary. The proof of the boundary observability estimate (1.22) follows the same. We also notice that
all the previous results also apply in the case with the alternative Definition 1.19 of the Agmon distance
which is also Lipschitz with the same properties that we used.

4.7.2 Proof of Corollaries of Theorem 1.8

Corollaries 1.9, 1.10 and 1.11, stated in the introduction, are significant examples of application of Theo-
rem 1.8. In this section, we prove these three results.

Proof of Corollary 1.9. We first consider the case S diffeomorphic to S2, i.e. Case 1. The case S dif-
feomorphic to D, i.e. Case 2, is discussed at the end of the proof. We define fδ(s) =

∫ s

0
χδ(t)dt where

χδ ∈ C∞
c ((0, L); [0, 1]), χδ(s) = 1 in a neighborhood of [δ, L − δ]. Such a function fδ is constant near 0

and L, and hence can be extended by continuity as a C∞ function on S (see e.g. [Bes78, Proposition 4.6]).
We notice that f ′

δ(s) = 1 for s ∈ [δ, L − δ], so the statements about TGCC are direct consequences of
Proposition 4.2.

Notice now that we have

Vc(s) :=
c2

R(s)2
+

|χδ(s)|2
4

.

Let us call smin ∈ (0, L) the unique point such that R(smin) = maxR, that is 1
R(smin)2

= min 1
R2 .

Claim: For all c > 0, there is δ0 > 0 such that for all δ ∈ (0, δ0), we have Vc(smin) = minVc and
V −1
c (Vc(smin)) = {smin}.

To prove the claim, we let δ0 > 0 be such that

smin ∈ [δ0, L− δ0], and
c2

R2(s)
>

c2

R(smin)2
+

1

4
for s /∈ [δ0, L− δ0]

(note that δ0 thus depends on c). This is possible since R(s) → 0 as s→ 0+ and s→ L−. Hence, recalling
the definitions of χδ and Vc, for δ < δ0 we have

Vc(smin) =
c2

R(smin)2
+

1

4
, Vc(s) >

c2

R(smin)2
+

1

4
for all s ∈ [δ0, L− δ0] \ {smin},

together with

Vc(s) ≥
c2

R2(s)
>

c2

R(smin)2
+

1

4
for s /∈ [δ0, L− δ0].

As a consequence, Vc reaches its minimum at smin only, which proves the claim.
Now Assumption 4.4 is satisfied and smin does not depend on δ. We compute the Agmon distance (1.18)

dcA(s) =

∣∣∣∣
∫ s

smin

√
Vc(y)− Vc(smin)dy

∣∣∣∣

=

∣∣∣∣∣

∫ s

smin

√
c2

R(y)2
+

|χδ(y)|2
4

− c2

R(smin)2
− 1

4
dy

∣∣∣∣∣ .
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Notice that 0 ≥ |χδ(y)|2
4 − 1

4 ≥ − 1
4 uniformly with respect to δ so that the asymptotic expansion of

Lemma 4.5 is valid uniformly in δ: there are C, γ > 0 such that for all δ ∈ (0, δ0),

|dcA(s) + c log(s)| ≤ C for s ∈ (0, γ],

|dcA(s) + c log(L− s)| ≤ C, for s ∈ [L− γ, L).

Now we recall the definition of W c = dcA + fδ
2 , notice that 0 ≤ f′δ ≤ 1 so that 0 ≤ fδ(s) ≤ L for s ∈ IL. As

a consequence, using that dcA ≥ 0 and dcA(smin) = 0, we have for δ ∈ (0, γ],

W c
m = min

IL
W c = min

IL

(
dcA +

fδ

2

)
≤ L

2
+ min

IL
dcA ≤ L

2

W c
ω = min

ω
W c ≥ min

ω
dcA ≥ −c log(δ)− C for ω = Bg(N, δ) ∪Bg(S, δ).

The bound (1.21) of Theorem 1.8 then yields
(

c2

R(smin)2
+

1

4

)
Tunif (ω) ≥ −c log(δ)− C − L

2
,

and hence concludes the proof in the case S diffeomorphic to S2, i.e. Case 1.
In the case S diffeomorphic to D, i.e. Case 2, we instead define fδ(s) =

∫ s

0 χδ(t)dt where χδ ∈
C∞

c ((0, L]; [0, 1]), χδ(s) = 1 in a neighborhood of [δ, L]. Then, the remainder of the proof is the same
except that the minimum can be achieved at s = L, and all sets of the form [δ0, L− δ0] have to be replaced
by [δ0, L] (i.e., only a neighborhood of zero is avoided, and not a neighborhood of L).

Proof of Corollary 1.10. For the sake of simplicity, we may identify S1L = [−L/2, L/2] and Iω = (−α, α)
for α ∈ (0, L/2). We first choose χδ ∈ C∞(S1L) even in this identification, and smin = ±L/2 /∈ (−α, α)
such that

χδ =
1

δ
on

[
−1

2

(
α+

L

2

)
,
1

2

(
α+

L

2

)]
, χδ(smin) = 1,

χ′
δ(s) = 0 if and only if s ∈

[
−1

2

(
α+

L

2

)
,
1

2

(
α+

L

2

)]
or s = smin.

Note that χδ = 1
δ in a neighborhood of (−α, α), and that for δ < 1, χδ reaches at smin = ±L/2 a unique

global minimum and in particular χδ ≥ 1 on S1L. We then set

V δ(s) := χδ +M, M := max
S1L

|f′|2
4
,

so that V δ(s) > |f′(s)|2
4 on S1L, and

Rδ(s) :=

(
V δ(s)− |f′(s)|2

4

)− 1
2

, Rδ ∈ C∞(S1L;R
+
∗ ),

where we have used that f ∈ C∞(S1L). Notice that with these definitions, we have (where V1 denotes Vc
with c = 1)

V1(s) =
1

Rδ(s)2
+

|f′(s)|2
4

= V δ(s).

Notice then that V δ admits a unique global minimum at smin = ±L/2.
On the one hand, we have

(χδ(s) +M)−
1
2 ≤ Rδ(s) ≤ χ

− 1
2

δ (s).

On the other hand, since χδ is even and with the appropriate definition (1.19), we have for s ∈ [0, L/2],

dcA(s) = −
∫ s

L/2

√
V δ(y)− V δ(L/2)dy = −

∫ s

L/2

√
χδ(y)− 1dy.
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As a consequence, we have (recall ω = (−α, α)× S1)

W c
m = min

[0,L]
W c = min

[0,L]

(
dcA +

f

2

)
≤
(
dcA +

f

2

)
(L/2) =

f(L/2)

2
,

W c
ω ≥ min

ω
dcA +min

ω

f

2
= dcA(α) + min

ω

f

2
,

where

dcA(α) =

∫ L/2

α

√
χδ(y)− 1dy ≥

∫ 1
2 (α+

L
2 )

α

√
χδ(y)− 1dy =

∫ 1
2 (α+

L
2 )

α

√
1

δ
− 1dy

≥ 1

2
(
L

2
− α)(δ−1/2 − 1)

for δ < 1. Applying Theorem 1.8 concludes the proof of the corollary.

We next prove Corollary 1.11, stated in the introduction. The proof is close to that of Corollary 1.10.

Proof of Corollary 1.11. We first take χ ∈ C∞(R+; [0, 1]) such that χ = 1 on [0, L/4] and suppχ ⊂ [0, L/2).
Next, with

M := max
[0,L]

|f′|2
4
,

we set,

V δ(s) :=
χ(s)

(s+ δ)γ
+ (1− χ(s))

(
s− L

2

)2

+M, for s ∈ [0,
L

2
],

V δ(s) := V δ(L− s) for s ∈ [
L

2
, L].

This function is symmetric about L/2, smooth on [0, L], and satisfies V δ(s) > |f′(s)|2
4 on [0, L]. Hence,

defining Rδ as

Rδ(s) :=

(
V δ(s)− |f′(s)|2

4

)− 1
2

,

and using that f ∈ C∞([0, L]), we deduce that Rδ ∈ C∞([0, L];R+
∗ ). Notice that with these definitions, we

have (where V1 denotes Vc with c = 1)

V1(s) =
1

Rδ(s)2
+

|f′(s)|2
4

= V δ(s).

Notice then that V δ admits a unique global minimum at smin = L/2.
We have on the one hand that for all s ∈ [0, L/4] and δ ∈ (0, δ0],

(s+ δ)
γ
2

1√
1 +M(s+ δ)γ

=
(
V δ(s)

)− 1
2 ≤ Rδ(s) ≤

(
V δ(s)−M

)− 1
2 = (s+ δ)

γ
2 ,

which proves the Item 4 (on account to the symmetry V δ(s) := V δ(L − s)).
On the other hand, recalling that smin = L/2, we have for s ∈ [0, L/2]

V1(smin) = V δ(L/2) =M,

dcA(s) =

∣∣∣∣∣

∫ s

L/2

√
V δ(y)− V δ(smin)dy

∣∣∣∣∣

=

∣∣∣∣∣∣

∫ s

L/2

√
χ(s)

(s+ δ)γ
+ (1− χ(s))

(
s− L

2

)2

dy

∣∣∣∣∣∣
.
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As a consequence, we have

W c
m = min

[0,L]
W c = min

[0,L]

(
dcA +

f

2

)
≤
(
dcA +

f

2

)
(L/2) =

f(L/2)

2
,

W c
{0} =W c(0) ≥ dcA(0) +

f(0)

2
,

where

dcA(0) =

∫ L/2

0

√
χ(s)

(s+ δ)γ
+ (1− χ(s))

(
s− L

2

)2

dy ≥
∫ L/4

0

√
1

(s+ δ)γ
dy

=
δ1−γ/2

γ/2− 1
− (δ + L/4)1−γ/2

γ/2− 1
=

δ1−γ/2

γ/2− 1
+O (1) , for γ > 2.

By symmetry of V δ about L/2, we also have dcA(L) = dcA(0). Applying Theorem 1.8 concludes the proof
of the corollary.

5 Uniform time of observability for positive solutions

The proofs of Theorem 1.3 and Proposition 1.12 rely on fine estimates on the semiclassical heat kernel,
which we borrow from [LY86]. The latter are first presented in Section 5.1. Then, in Section 5.2, we
deduce L1 observability statements and finally conclude the proofs of Theorem 1.3 and Proposition 1.12
in Section 5.3. Throughout this section, we assume ∂M = ∅.

5.1 Estimates on the semiclassical heat kernel

The main tool we use to estimate the heat kernel in the semiclassical limit is the following theorem taken
from Li-Yau [LY86] (see also [Sim83], for a similar result on Rn).

Theorem 5.1 (Theorem 6.1 of [LY86]). Let M be a compact manifold without boundary. Suppose Vε =
V + εq with V, q ∈ C2(M). For any ε > 0, we consider Hε, the fundamental solution of

∂tw −∆gw +
1

ε2
Vε(x)w = 0, on (0,+∞)×M.

Then, we have

lim
ε→0

ε logHε(x, y, εt) = −ρ(x, y, t) (5.1)

where

ρ(x, y, t) = inf

{∫ t

0

1

4
|γ̇(s)|2g + V

(
γ(s)

)
ds, γ ∈W 1,∞([0, t];M), γ(0) = x, γ(t) = y

}
. (5.2)

Moreover, the limit in (5.1) is uniform on any compact set of M2 × (0,+∞).

We recall that Hε(x, y, t) is defined to be the unique solution to




(
∂t −∆g +

1

ε2
Vε(x)

)
Hε(x, y, t) = 0, for (t, x) ∈ R

+
∗ ×M,

Hε(x, y, t)|t=0 = δx=y, for x ∈ M,
(5.3)

where y ∈ M is fixed, and the differential operator −∆g +
1
ε2 Vε(x) acts in the x-variable. We also recall

that Hε(x, y, t) is (well-defined and) continuous in M2× (0,+∞) as soon as Vε ∈ L∞(M), see e.g. [Sim82,
Theorem B.7.1 (a′′′)], so that pointwise estimates like (5.1) make sense.

The statement of Theorem 5.1 is not strictly speaking a consequence of [LY86, Theorem 6.1] for the
following two reasons:
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• the potential Vε is assumed independent of ε in [LY86];

• the uniformity of the limit on any compact subset is not explicitly written in [LY86].

However, let us explain why the proof of [LY86, Theorem 6.1] actually contains these two points. The
limit (5.1) is proved in two steps, a lower bound and an upper bound. The lower bound

lim
ε→0

ε logHε(x, y, εt) ≥ −ρ(x, y, t)

is obtained as a consequence of the explicit estimate ([LY86, Theorem 2.1])

ε logHε(x, y, εt1) ≤ ε logHε(x, y, εt) + ε2A1/ε(t− t1) + ρα,R(x, y, t− t1),

for all 0 < t1 < t, α > 1 and where the constant Aλ (λ = ε−1 in our context) only depends on
‖∆gVε‖L∞(M) , ‖∇gVε‖L∞(M) and α. In particular, the limit limε→0 εA1/ε = 0 holds uniformly. The

proof finally proceeds by taking the limit R→ +∞, and then α → 1+ (in which case ρVε

α,R(x, y, t− t1)) →
ρVε(x, y, t−t1), uniformly on compact sets; here ρVε denotes the function ρ defined by (5.2) with V replaced
by Vε). Taking finally the limit ε→ 0+, and then t1 → 0+, and noticing that

lim
t1→0+

lim
ε→0+

ε logHε(x, y, εt1) ≥ 0

concludes the proof of the lower bound. This last argument relies only on a uniform upper bound on
‖Vε‖L∞(M) together with a comparison argument, namely Inequality [LY86, (6.3)]. It can be checked that
the convergence is uniform on any compact set since it involves the asymptotics on the diagonal of kernels of
heat equations on large balls and without potential, which are known to be uniform on compact sets, see for
instance [Var67, Theorem 4.6]. It only remains to notice that the limit limt1→0+ limε→0+ ρ

Vε(x, y, t− t1) =
ρ(x, y, t) is uniform on compact sets.

The upper bound
lim
ε→0

ε logHε(x, y, εt) ≤ −ρ(x, y, t)

follows from [LY86, Theorem 3.3]. As for the lower bound, this result also furnishes an explicit and uniform
bound involving another constant Aλ enjoying the same type of convergence properties as for the lower
bound.

Note that we have chosen to use the estimate of the semiclassical limit of the Kernel of [LY86] but
it is likely that we could have obtained the observability inequality starting directly from Harnack type
inequalities like [LY86, Theorem 2.1], as we did in [LL21b].

Here, we are mostly interested in the case V (x) = 1
4 |∇gf(x)|2g . In this situation, we can reformulate

the result in terms of the transport equation with vanishing viscosity (1.6).
We next define Kε(x, y, t), the fundamental solution of (1.6) on M2 × (0,+∞) by the unique solution

to {
(∂t −∇gf · ∇g − q − ε∆g)Kε(x, y, t) = 0, for (t, x) ∈ R

+
∗ ×M,

Kε(x, y, t)|t=0 = δx=y, for x ∈ M,
(5.4)

where y ∈ M is fixed, and the differential operator −∇gf ·∇g − q− ε∆g acts in the x-variable. Recall that
for u0 ∈ L1(M), the function

u(t, x) =

∫

M
Kε(x, y, t)u0(y)dVolg(y)

is the unique solution of (1.6) on (0,+∞) × M issued from u|t=0 = u0 (This uses the choice of volume
form dVolg in the embedding L1(M) →֒ D′(M)).

Corollary 5.2. Let M be a compact manifold without boundary. SupposeX = ∇gf where f is a C3 function
defined on M. For any ε > 0, we consider Kε, the fundamental solution of (1.6) on (0,+∞)×M. Then,
we have

lim
ε→0

ε logKε(x, y, t) = −d∇gf(x, y, t),
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with

d∇gf(x, y, t) := ρ(x, y, t) +
f(x)− f(y)

2
, (5.5)

where ρ(x, y, t) is defined by (5.2) with V (x) =
|∇gf|2g

4 . Moreover, the limit is uniform on any compact set
of M2 × (0,+∞).

In particular, for any δ > 0 and any compact subset I ⋐ (0,+∞), there exists ε0 > 0 such that

e−
d∇gf(x,y,t)+δ

ε ≤ Kε(x, y, t) ≤ e−
d∇gf(x,y,t)−δ

ε (5.6)

for any (x, y, t) ∈ M2 × I and 0 < ε ≤ ε0.

Note that the definition of d∇gf in (5.5) is not the same as that given in (1.24) in the introduction.
Equivalence between these two definitions is proved in Lemma A.2.

Note that although the kernelHε(x, y, t) is symmetric (with respect to the Riemannian volume measure
dVolg) since −∆g +

1
ε2 Vε is, this is no longer the case for the kernel Kε(x, y, t) (since the operator in (1.6)

is not symmetric in L2(M, dVolg)). Similarly, ρ(x, y, t) is symmetric whereas d∇gf(x, y, t) is not.

Proof. Setting uy(t, x) = Kε(x, y, t) and wy(t, x) = ef(x)/2εuy(t/ε, x), we have from Equation (5.4) and
Lemma 2.9 that wy(t, x) solves (2.12). Moreover, we have

wy(0, x) = ef(x)/2εuy(0, x) = ef(x)/2εδx=y = ef(y)/2εδx=y.

This implies that wy(t, x) = ef(y)/2εHε(x, y, t) where Hε(x, y, t) is defined in (5.3) with Vε =
|∇gf|2g

4 +

ε
(

∆gf

2 − q
)
. Finally, we have proved that

Hε(x, y, εt) = ef(x)/2εe−f(y)/2εKε(x, y, t),

and hence

lim
ε→0

ε logKε(x, y, t) =
f(y)− f(x)

2
+ lim

ε→0
ε logHε(x, y, εt) =

f(y)− f(x)

2
− ρ(x, y, t),

after having applied (5.1).

5.2 L
1 observability estimates for positive solutions

We first prove intermediate observability statements in L1. The following elementary abstract lemma
shows that concerning positive solutions, observability in a (possibly weighted) L1 norm is equivalent to
the “observability of the Kernel”.

Proposition 5.3. Let M be a compact Borel space (on which we denote by dx a distinguished measure)
and T > 0. Take K = K(x, y, t) ∈ C0(M × M × (0, T ]) be a nonnegative kernel. Assume further that
(t, y) 7→ ‖K(·, y, t)‖L1(M) =

∫
MK(x, y, t)dx is uniformly bounded for (t, y) ∈ (0, T ] × M. Define for

t ∈ (0, T ] the operator

S(t) : Meas(M) → C0(M), [S(t)µ] (x) =

∫

M
K(x, y, t)dµ(y) = 〈µ,K(x, ·, t)〉,

where Meas(M) denotes the space of Radon measures on M. Let w1 ∈ L∞([0, T ]× ω) and w2 ∈ L∞(M)
be two nonnegative weight functions.

Then, for all T, s, C0 > 0, the following statements are equivalent

1. Observability of positive measures:

‖w2 [S(s)µ]‖L1(M) ≤ C0 ‖w1[S(·)µ]‖L1((0,T ]×ω) (5.7)

for any µ ∈ Meas+(M) nonnegative Radon measure.
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2. Observability of positive L1 functions:

‖w2 [S(s)u0]‖L1(M) ≤ C0 ‖w1 [S(·)u0]‖L1([0,T ]×ω)

for any u0 ∈ L1(M, dx) with nonnegative value.

3. Observability of Dirac distributions:

‖w2 [S(s)δy]‖L1(M) ≤ C0 ‖w1 [S(·)δy]‖L1([0,T ]×ω)

for any y ∈ M.

4. Observability of the Kernel:

Is(y) ≤ C0OT (y), for all y ∈ M,

where

OT (y) =

∫ T

0

∫

ω

w1(t, y)K(x, y, t)dxdt, and Is(y) =

∫

M
w2(x)K(x, y, s)dx.

Note first that under the assumption of the theorem, both terms in (5.7) are well-defined. Indeed, the
Tonelli theorem (all functions/measures are nonnegative) implies

‖w1S(·)µ‖L1([0,T ]×ω) =

∫ T

0

∫

ω

w1(t, x)[S(t)µ](x)dxdt

=

∫ T

0

∫

ω

w1(t, x)

∫

M
K(x, y, t)dµ(y)dxdt

=

∫ T

0

∫

M

(∫

ω

w1(t, x)K(x, y, t)dx

)
dµ(y)dt

≤ T ‖w1‖L∞([0,T ]×M) ‖µ‖TV sup
t∈[0,T ]

sup
y∈M

∫

ω

K(x, y, t)dx < +∞,

by assumption. Here ‖µ‖TV denotes the total variation of the measure µ. Note also that u(t) = [S(t)(µ)]
is a continuous nonnegative function for any nonnegative measure µ and t > 0. Remark that OT (y) is
essentially the observation of solutions starting from δy while Is(y) is the weighted norm of this solution
at time s.

Proof. Remark first that

OT (y) =

∫ T

0

∫

ω

w1(t, y)K(x, y, t)dxdt =

∫ T

0

∫

ω

w1(t, y)〈δy ,K(x, ·, t)〉dxdt

= ‖w1 [S(·)δy]‖L1([0,T ]×ω)

Is(y) =

∫

M
w2(x)K(x, y, s)dx =

∫

M
w2(x)〈δy ,K(x, ·, s)〉dx = ‖w2 [S(s)δy]‖L1(M) ,

so that Item 3 ⇔ Item 4. Moreover, applying the Fubini Theorem, we get

‖w1[S(·)µ]‖L1([0,T ]×ω) =

∫ T

0

∫

x∈ω

∫

y∈M
w1(t, y)K(x, y, t)dµ(y)dxdt = 〈µ,OT 〉

‖w2 [S(s)µ]‖L1(M) =

∫

y∈M

∫

x∈M
w1(t, x)K(x, y, t)dµ(y)dxdt = 〈µ, Is〉.

Therefore, Item 1 is equivalent to 〈µ,C0OT−Is〉 ≥ 0 for any µ ∈ Meas+(M) and Item 2 to
∫
M u0(y)(C0OT−

Is)(y)dy ≥ 0 for any u0 ∈ L1
+(M, dx). That Item 4 ⇔ Item 1 ⇔ Item 2 follows from the general fact that

if f ∈ C0(M), one has

f ≥ 0 on M ⇔ 〈µ, f〉 ≥ 0 for all µ ∈ Meas+(M)

⇔
∫

M
u0(y)f(y)dy ≥ 0 for all u0 ∈ L1

+(M, dx).

43



We now give the L1 observability estimate for positive solutions to (1.6).

Proposition 5.4. Assume that T > TGCC(M,∇gf, ω). Then, for any δ, s > 0, there exists ε0 > 0 so that
we have

‖u(s)‖L1(M) ≤ e
δ
ε ‖u‖L1([0,T ]×ω) , for all ε ∈ (0, ε0), (5.8)

for any u0 ∈ L1(M) with non-negative values and u solution of (1.6).

Remark that we only use the case s = T below. It is however remarkable that the stronger result for
s > 0 small holds as well. This is linked to the L1 setting here. Note also that in L1, we have a “converse
inequality”, which we state for the sake of the comparison. Proposition 5.4 is proved afterwards.

Lemma 5.5. Assume ∂M = ∅. For all T > 0, there is CT > 0 such that for all u0 ∈ L1(M;R+) and u
the associated solution of (1.6), we have

‖u(t)‖L1(M) ≤ CT ‖u(T )‖L1(M) , for all t ∈ [0, T ] and ε > 0. (5.9)

In particular, this implies that one cannot hope to replace the loss e
δ
ε by a gain e−

δ
ε in (5.8).

Proof of Lemma 5.5. Assume first that u0 ∈ W 2,1(M) with u0 ≥ 0 a.e. on M. Then, notice that
u(t, x) ≥ 0 for a.e. (t, x) ∈ (0, T )×M. Integrating (1.6) on M, we obtain after an integration by parts
(using that ∂M = ∅)

d

dt

∫

M
u−

∫

M
(divg X − q)u = 0.

Since u ≥ 0, this implies d
dt ‖u(t, ·)‖L1 ≥ γ ‖u(t, ·)‖L1 for all t > 0, with γ = infM(divg X−q). The Grönwall

inequality yields (5.9). The conclusion for a general u0 ∈ L1 follows from a density argument.

We now turn to the proof of the L1 observability estimate of Proposition 5.4, which will use the following
lemma.

Lemma 5.6. Assume
(
M,∇gf, ω, (δ

′, T )
)

satisfies (GCC) (see Definition 2.10) for some δ′ > 0.Then, for
all δ > 0 there is Cδ > 0 such that for all y ∈ M there is an open set Uy ⊂ ω × (δ′, T ) with |Uy| ≥ Cδ and
for all (x, t) ∈ Uy, we have d∇gf(x, y, t) ≤ δ.

Proof of Lemma 5.6. The assumption (GCC) implies that for any y0 ∈ M, there is ty0 ∈ (δ′, T ) and
xy0 = φ−ty0

(y0) ∈ ω where (φt)t∈R is the flow of ∇gf. The trajectory γ(s) = φs(xy0) satisfies γ̇(s) = ∇gf(s)
with γ(0) = xy0 and γ(ty0) = y0 so that Proposition A.4 implies d∇gf(xy0 , y0, ty0) = 0. In particular, we
obtain that for any y0 ∈ M, there is ty0 ∈ (δ′, T ) and xy0 ∈ ω such that d∇gf(xy0 , y0, ty0) = 0.

By uniform continuity of d∇gf (on the compact set M2 × [δ′/2, T + δ′]) together with the fact that
ω× (δ′, T ) is open, there exists νy0 > 0 so that Bg(xy0 , νy0)× [ty0 − νy0 , ty0 + νy0] ⊂ ω× (δ′, T ) and for any
y ∈ Bg(y0, νy0), x ∈ Bg(xy0 , νy0)) and t ∈ [ty0 − νy0 , ty0 + νy0 ], we have d∇gf(x, y, t) ≤ δ. By compactness,
we can cover M by M =

⋃
i∈I Bg(yi, νyi) where I is finite. Then, for any y ∈ M, there is i ∈ I such that

y ∈ Bg(yi, νyi), and the set
Uy := Bg(xyi , νyi)× [tyi − νyi , tyi + νyi ]

satisfies the sought properties.

As a consequence of this lemma together with Corollary 5.2 and Proposition 5.3, we may now deduce
a proof of the L1 observability estimate of Proposition 5.4.

Proof of Proposition 5.4. Without any loss of generality, we can assume 0 < δ < s. According to Proposi-
tion 5.3, it is enough to study the “observability of the Kernel”. Using Corollary 5.2, for any δ > 0, there
exists ε0 so that (5.6) holds for all (x, y) ∈ M2, t ∈ [δ, δ−1], 0 < ε ≤ ε0. Proposition 5.3 leads to compare

OT (y) :=

∫ T

0

∫

x∈ω

Kε(x, y, t)dxdt with Is(y) :=

∫

x∈M
Kε(x, y, s)dx
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From (5.6), the fact that Kε(x, y, t) ≥ 0 for (x, y, t) ∈ M2 × (0,∞), and s > δ, we deduce

OT (y) ≥
∫ T

δ′

∫

x∈ω

e−
d∇gf(x,y,t)+δ

ε and Is(y) ≤
∫

x∈M
e−

d∇gf(x,y,s)−δ

ε ,

where δ′ > 0 is chosen sufficiently small so that
(
M,∇gf, ω, (δ

′, T )
)

still satisfies (GCC), which is possible
since T > TGCC(M,∇gf, ω). Using Lemma 5.6 (where Uy and Cδ are defined), we now have

OT (y) ≥
∫

(x,t)∈Uy

e−
d∇gf(x,y,t)+δ

ε dtdx ≥
∫

(x,t)∈Uy

e−
2δ
ε dtdx ≥ Cδe

− 2δ
ε . (5.10)

Also, for any s > δ, using that d∇gf ≥ 0 (see Proposition A.4), we have

Is(y) ≤ Volg(M)e
δ
ε .

When combined with (5.10), we obtain OT (y) ≥ Ce−3 δ
ε Is(y). By Proposition 5.3, this gives (5.8) which

concludes the proof of the proposition (up to changing 4δ into δ).

5.3 From L
1 to L

2 observability estimates for positive solutions

In this section, we conclude the proofs of Proposition 1.12 and Theorem 1.3. We first prove the negative re-
sult of Proposition 1.12 (uniform observability of positive solutions does not hold for T < TGCC(M,∇gf, ω),
with an exponential lower bound of the cost).

Proof of Proposition 1.12. Let us check the first part of the proposition (geometric statement). Since
(M,∇gf, ω, T ) does not satisfy (GCC), there is y0 ∈ M, so that for all t ∈ [0, T ], φ−t(y0) /∈ ω. In particular,
for any (t, x) ∈ [0, T ] × ω, we have φt(x) 6= y0, which implies d∇gf(x, y0, t) > 0 by Proposition A.4. By
compactness of [0, T ]× ω, infx∈ω,t∈[0,T ] d∇gf(x, y0, t) > 0. Therefore, d([0,T ],ω) > 0 as expected.

For the second part, for any δ > 0, select y0 ∈ M so that

inf
(t,x)∈[0,T ]×ω

d∇gf(x, y0, t) ≤ d([0,T ],ω) + δ/8.

By uniform continuity of d∇gf(x, y0, t) defined on [0, 2T ]×ω, we can also find η > 0 so that inf(t,x)∈[0,T+η]×ω d∇gf(x, y0, t) ≥
d([0,T ],ω) − δ/4 and d∇gf(x, y0, η) ≤ δ/4 for x ∈ B(y0, η). We take as initial datum u0(x) = Kε(x, y0, η),
yielding u(t, x) = Kε(x, y0, t+ η) (see the definition of Kε in (5.4)) as the associated solution of (1.6). We
have u0 ∈ L2(M) together with a lower bound coming from (5.6) with a sufficiently small δ (replaced by
δ/4)

‖u0‖L2(M) ≥ ‖u0‖L2(B(y0,η))
≥ C(η)e−

δ
2ε .

Concerning the observation term, we deduce from the upper bound in (5.6) that for ε small enough,

∫ T

0

∫

ω

|u(t, x)|2dxdt =
∫ T

0

∫

ω

Kε(x, y0, t+ η)2dxdt

≤ Volg(ω)T sup
x∈ω,t∈[η,T+η]

e−2
d∇gf(x,y0,t)−δ/4

ε ≤ Ce−2
d([0,T ],ω)−δ/2

ε .

Applying the observability inequality (1.23) to u thus implies that

C+
0 (T, ε)2e−2

d([0,T ],ω)−δ/4

ε ≥ C,

uniformly in ε ∈ (0, ε0], which concludes the proof of the proposition.

To conclude the proof of Theorem 1.3, we need the following dissipation result taken from Guerrero-
Lebeau [GL07]. In that reference, it is written on an open subset Ω ⊂ Rn with the flat metric; however, it
can be checked that the result also applies to the case of a Riemannian manifold (M, g) without boundary
and with an additional potential q.
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Proposition 5.7 (Proposition 3 of [GL07], m = 1). Assume that ∂M = ∅ and that (M, X, ω, T ) satisfies
(GCC). Then, there exist C,C0 > 0 such that

‖u(T )‖2L2(M) ≤ C

(∫ T

0

∫

ω

|u|2dtdx + e−
C0
ε ‖u(0)‖2L2(M)

)
(5.11)

for all ε ∈ (0, 1] and any (not necessarily positive) solution u to (1.3) (and a fortiori for all solutions u to
(2.6)). The same statement holds true if ∂M 6= ∅ and (M, X, ω, T ) satisfies (FC).

We shall also need the following lemma in the proof of Theorem 1.3.

Lemma 5.8. For any δ′ > δ > 0, there exists ε0 > 0 so that

‖u(δ′)‖L2(M) ≤ C ‖u(δ′)‖L∞(M) ≤ Ce
δ
ε ‖u(δ)‖L1(M) (5.12)

for any solution u to (2.6) and 0 < ε ≤ ε0.

Proof. Since the manifold is compact, we only need to prove the L∞ bound which follows from the bound
‖Kε(·, ·, δ′ − δ)‖L∞(M×M) ≤ Ce

δ
ε on the Kernel. This estimate follows from Corollary 5.2 (e.g. (5.6)

together with the fact that d∇gf ≥ 0, see Proposition A.4).

Proof of Theorem 1.3. Inequality (1.25) of Proposition 1.12 directly yields T+
unif (ω) ≥ TGCC(M,∇gf, ω).

Note that it was mostly proved in Guerrero-Lebeau [GL07, Theorem 1] since one can check that the
counterexample they build is a nonnegative solution.

Now, we prove T+
unif (ω) ≤ TGCC(M,∇gf, ω). For any δ > 0 (we will later need 2δ < C0 where C0

is the constant in (5.11)), and for T ≥ TGCC(M,∇gf, ω) + 2δ, we prove the observability inequality for
positive solution

‖u(T )‖2L2(M) ≤ C

∫ T

0

∫

ω

|u|2dtdx. (5.13)

The combination of (5.11) on the time interval (2δ, T ) together with (5.12) on the time interval (δ, 2δ)
implies

‖u(T )‖2L2(M) ≤ C

(∫ T

2δ

∫

ω

u2dtdx+ e−
C0−δ

ε ‖u(δ)‖2L1(M)

)
. (5.14)

Now, applying (5.8) with λ > 0 such that λT = δ, we obtain

‖u(δ)‖L1(M) ≤ e
δ
ε

∫ T

0

∫

ω

udtdx. (5.15)

Combining (5.14), (5.15) together with the Hölder inequality, we deduce

‖u(T )‖L2(M) ≤
(
C + Ce−

C0−2δ
ε

)∫ T

0

∫

ω

u2dtdx.

Choosing δ ∈ (0, C0/2) implies (5.13) uniformly for ε ∈ (0, ε0(δ)], and hence concludes the proof of the
theorem.

5.4 From observability of positive solutions to a controllability statement

This section is devoted to the proof of the controllability result of Corollary 2.4 from the observability of
positive solutions. It relies on the following lemma. The result and its proof follow [LB20, Theorem 4.1].
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Lemma 5.9. Let V be a closed convex set of L2(M) with 0 ∈ V and Ṽ ⊂ V so that Ṽ ⊂ V − v for any
v ∈ V. Assume moreover that there exists CV > 0 so that

CV(T, ε)
2

∫ T

0

∫

ω

|u(t)|2ds(x)dt ≥ ‖u(T )‖2L2(M),

for all u0 ∈ V and u solution of (1.3). (5.16)

Then, for any y0 ∈ L2(M) and 0 < ε ≤ ε0, there exists a control h ∈ L2([0, T ], L2(M)) with

‖h‖L2([0,T ],L2(M)) ≤ CV (T, ε) ‖y0‖L2(M)

so that the solution of (2.1) satisfies (y(T ), u0)L2(M) ≥ 0 for any u0 ∈ Ṽ.

For the proof of Corollary 2.4, we apply this lemma to the sets Ṽ = V = L2(M;R+). Notice that
Lemma 5.9 also contains one implication (namely Observability =⇒ Controllability) in Corollary 2.3
when applied to Ṽ = V = L2(M;R).

Proof. For any α > 0, we consider the functional Jα defined for any u0 ∈ V by

Jα(u0) =
1

2

∫ T

0

∫

ω

|u(t, x)|2dtdx+
α

2
‖u0‖2L2(M) + (u(T ), y0)L2(M) ,

where u is the solution of (1.3). The functional Jα is continuous, convex and coercive. Therefore, Jα
admits a minimum u0,α ∈ V (se e.g. [ET74, Chapter II, Proposition 1.2]). The minimality condition gives
(see e.g. [ET74, Chapter II, Proposition 2.1]) for any p0 ∈ L2(M) that can be written p0 = v0−u0,α, with
v0 ∈ V ,

∫ T

0

∫

ω

p(t, x)uα(t, x)dtdx + α (p0, u0,α)L2(M) + (p(T ), y0)L2(M) ≥ 0. (5.17)

where we have denoted p (resp. uα) the solution of (1.3) with p(0) = p0 (resp. u(0) = u0,α).
Now, let yα be the solution of (2.1) with control function hα(t, x) = uα(T − t, x) and initial datum

yα(0) = y0. The duality equation (2.2) gives for any p0 ∈ L2(M) initial datum for p solution of (1.3)

∫ T

0

∫

ω

p(t, x)uα(t, x)dtdx = (p0, yα(T ))L2(M) − (p(T ), y0)L2(M) .

Combined with (5.17), this implies

(p0, yα(T ))L2(M) + α (p0, u0,α)L2(M) ≥ 0, (5.18)

for every p0 ∈ V − u0,α. This also holds for any p0 ∈ Ṽ since Ṽ ⊂ V − u0,α by assumption.
To obtain an estimate of the control, we apply (5.17) to p0 = 0 − u0,α. After an application of the

Cauchy-Schwarz inequality, we have

∫ T

0

∫

ω

|uα(t, x)|2dtdx+ α ‖u0,α‖2L2(M) ≤ ‖uα(T )‖L2(M) ‖y0‖L2(M) .

The observability inequality (5.16) applies to u0,α ∈ V , so that

∫ T

0

∫

ω

|uα(t, x)|2dtdx+ α ‖u0,α‖2L2(M)

≤ CV(T, ε)

(∫ T

0

∫

ω

|uα(t, x)|2dtdx
)1/2

‖y0‖L2(M) .
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We obtain successively

∫ T

0

∫

ω

|uα(t, x)|2dtdx ≤ CV(T, ε)
2 ‖y0‖2L2(M) , (5.19)

α ‖u0,α‖2L2(M) ≤ CV(T, ε)
2 ‖y0‖2L2(M) . (5.20)

We obtain that 1ωuα is bounded in L2([0, T ]×M) uniformly in α > 0. Take a sequence αn → 0 so that
1ωuαn ⇀ 1ωu in L2([0, T ]×M). The associated solutions yαn with control 1ωuαn(T − t, x) is therefore
bounded in L∞([0, T ], L2(M)) and, again up to a subsequence, converges weakly-∗ to a solution y of (2.1)
with control h(t, x) = 1ωu(T − t, x) and initial datum y0. Moreover, up to a subsequence, we can impose
yαn(T )⇀ y(T ) in L2(M). Passing to the limit in (5.18) using (5.20), we finally obtain

(p0, y(T ))L2(M) ≥ 0

for any p0 ∈ Ṽ . We finally get the expected estimate on h(t, x) = u(T − t, x) passing to the limit in
(5.19).

We may now conclude the proof of Corollary 2.4 from Lemma 5.9.

Proof of Corollary 2.4. We apply Lemma 5.9, with Ṽ = V = L2(M;R+). Note that the Lemma applies
because for any v ∈ L2(M;R+), L2(M;R+) ⊂ L2(M;R+)−v. Indeed, any u ∈ L2(M;R+) can be written
u = (u+ v)− v ∈ L2(M;R+)− v since u+ v ≥ 0. This gives a control h with the expected uniform bound
and so that (y(T ), u0)L2(M) ≥ 0 for any u0 ∈ L2(M;R+). This implies y(T ) ≥ 0.

A About the distances

In this section, (M, g) is a compact Riemannian manifold without boundary.

A.1 A general lemma

We start with a general lemma.

Lemma A.1. Let V ∈ W 1,∞(M) with nonnegative value. Then, for all x, y ∈ M2, we have

1

2
inf
γ,t

{∫ t

0

|γ̇(s)|2g + V(γ(s))ds, t > 0, γ ∈ Ut(x, y)

}

= inf
γ,t

{∫ t

0

|γ̇(s)|g
√
V(γ(s))ds, t > 0, γ ∈ Ut(x, y)

}

= inf
γ

{∫ 1

0

|γ̇(s)|g
√
V(γ(s))ds, γ ∈ U1(x, y)

}
.

where Ut(x, y) =
{
γ ∈ W 1,∞([0, t];M), γ(0) = x, γ(t) = y

}
for t > 0.

This lemma is particularly useful for V = (V −E)+ in which case the (pseudo-) distance defined is the
Agmon distance at energy level E.

Proof. We denote by d1, d2, d3 respectively the three (pseudo-)distances defined in the statement of the
lemma. Then, we notice that the last two quantities are invariant by reparametrization, so that d2 = d3
after a change of variable in the integral. Then, the inequality ab ≤ 1

2 (a
2 + b2) directly yields d2 ≤ d1.

Let us now prove the converse inequality, namely d3 ≥ d1. For ε > 0 there exist δ > 0 and a path
γ : [0, 1] → M such that

∫ 1

0 |γ̇(s)|g
√
V(γ(s)) + δ ds ≤ d3 + ε. We can further assume |γ̇(s)|g > 0 with the

same estimate (indeed, defining a new parametrization ζ by γ(t) = ζ(φ(t)) with φ(t) =
∫ t

0 |γ̇(s)|gds even
yields a Lipschitz reparametrization with constant positive speed, see e.g. [ABB20, Proof of Lemma 3.16]).
Using an approximation argument, we can further assume that γ is smooth up to replacing ε by 2ε. We now

define the following reparametrization γ̃(s) = γ(ϕ(s)) where ϕ solves ϕ̇(s) =
√

V(γ(ϕ(s)))+δ

|γ̇(ϕ(s))|g ≥
√
δ

max[0,1] |γ̇|g >
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0, ϕ(0) = 0 so that | ˙̃γ(s)|g =
√
V(γ̃(s)) + δ for any s ∈ [0, ϕ−1(1)]. In particular, | ˙̃γ(s)|g

√
V(γ̃(s)) + δ =

1
2

(
| ˙̃γ(s)|2g + V (γ̃(s)) + δ

)
and

1

2

∫ ϕ−1(1)

0

(
| ˙̃γ(s)|2g + V(γ̃(s)) + δ

)
ds =

∫ ϕ−1(1)

0

| ˙̃γ(s)|g
√
V(γ̃(s)) + δds

=

∫ 1

0

|γ̇(s)|g
√
V(γ(s)) + δds ≤ d3 + 2ε,

which gives d1 ≤ d3 + 2ε, and concludes the proof of the lemma.

A.2 Equivalence between the two definitions of d∇gf

In this section, we prove equivalence between the two definitions of d∇gf, respectively given in (1.24) in
the introduction and in (5.5). We further give an equivalent quantity in terms of the Riemannian distance
and the flow φt of ∇gf. The function f is assumed to be C3 throughout the section.

We recall that ρ is defined in (5.2) with V =
|∇gf|2g

4 , that is to say

ρ(x, y, t) :=
1

4
inf

{∫ t

0

|γ̇(s)|2g + |∇gf(γ(s))|2gds, γ ∈ Ut(x, y)

}
, (A.1)

with Ut(x, y) =
{
γ ∈ W 1,∞([0, t];M), γ(0) = x, γ(t) = y

}
. Note that it is proved in [LY86, Appendix] that

ρ is continuous on M2×(0,+∞) and, for all t > 0 fixed, Lipschitz continuous as a function of (x, y) ∈ M2.
These quantities are related to the Agmon distance but in finite time, see Section A.3 below. Note that
the quantity ρ is symmetric, ρ(x, y, t) = ρ(y, x, t), and remains unchanged under the change of f by −f.
This is not the case for d∇gf.

Lemma A.2. The function d∇gf defined as

d∇gf(x, y, t) := ρ(x, y, t) +
f(x) − f(y)

2
(A.2)

is continuous on M2× (0,+∞) and, for all t > 0 fixed, Lipschitz continuous as a function of (x, y) ∈ M2.
Moreover, we have

d∇gf(x, y, t) =
1

4
inf

{∫ t

0

|γ̇(s) +∇gf(γ(s))|2g ds, γ ∈ Ut(x, y)

}
, (A.3)

=
1

4
inf

{∫ t

0

|γ̇(s)−∇gf(γ(s))|2g ds, γ ∈ Ut(x, y)

}
, (A.4)

=
1

4
inf

{∫ t

0

|γ̇(s)|2gs ds, γ ∈W 1,∞([0, t];M), γ(0) = x, γ(t) = φ−t(y)

}
, (A.5)

where Ut(x, y) =
{
γ ∈ W 1,∞([0, t];M), γ(0) = x, γ(t) = y

}
, and gs is the time varying metric defined by

|Y |gs = |Dφs(Y )|g.
In particular, for any T ≥ 0, there exists some constant CT > 0 so that

C−1
T d(x, φ−t(y)) ≤ d∇gf(x, y, t) ≤ CT d(x, φ−t(y)), for all t ∈ [0, T ],

where d denotes the Riemannian distance (associated to g).

Proof. The continuity property directly follows from that of ρ proved in [LY86, Appendix]. To prove (A.3),
we remark that for any path γ so that γ(0) = y, γ(t) = x, we have f(x) − f(y) =

∫ t

0
d
ds (f ◦ γ)(t)dt =∫ t

0 ∇gf(γ(t)) · γ̇(t)dt. In particular, from the definition of d∇gf in (A.2) and ρ in (A.1), we can rewrite
d∇gf(x, y, t) as

d∇gf(x, y, t) =
1

4
inf

{∫ t

0

|γ̇(s)|2 + |∇gf(γ(s))|2 + 2∇gf(γ(s)) · γ̇(s)ds, γ ∈ Ut(x, y)

}

=
1

4
inf

{∫ t

0

|γ̇(s) +∇gf(γ(s))|2 ds, γ ∈ Ut(x, y)

}
.
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The statement (A.4) is obtained thanks to the change of path γ̃(s) = γ(t− s).
Now, we compute d∇gf(x, φt(y), t) according to formula (A.4). To this aim, let γ ∈ W 1,∞([0, t];M) so

that γ(0) = x, γ(t) = φt(y). Let γ̃(s) = φ−s(γ(s)) so that γ̇(s) = ∇gf(γ(s)) +Dφs( ˙̃γ(s)). In particular,

|γ̇(s)−∇gf(γ(s))|2g =
∣∣∣Dφs( ˙̃γ(s))

∣∣∣
2

g
=
∣∣∣ ˙̃γ(s)

∣∣∣
2

gs
. It gives (A.5) since any path γ ∈ W 1,∞([0, t];M) so that

γ(0) = x, γ(t) = y can be written γ(s) = φs(γ̃(s)) with γ̃(0) = x, γ̃(t) = φ−t(y), and conversely.

A.3 Further links between the different distances

In this section, we relate the above quantities ρ(x, y, t), d∇gf(x, y, t) with the Agmon distance to the bottom

energy (see 1.12 for V =
|∇gf(x)|2g

4 and E0 = minM V = 0), that is to say

dA(x, y) =
1

2
inf

{∫ 1

0

|∇gf(γ(s))|g|γ̇(s)|gds, γ ∈ U1(x, y)

}
, (A.6)

with U1(x, y) =
{
γ ∈W 1,∞([0, 1];M), γ(0) = x, γ(1) = y

}
and the associated quantity (compare with the

definition of d∇gf in terms of ρ in (A.2))

W (x, y) := dA(x, y) +
f(x) − f(y)

2
. (A.7)

The results of this section are not explicitly used in the proofs of the main part of the paper; however we
believe these links are interesting and enlightening. Indeed, they relate the quantity dA(x, y) appearing in
all general bounds of Section 3 together with the quantities ρ(x, y, t), d∇gf(x, y, t) appearing in results of
Section 5 concerning positive solutions.

Lemma A.3. For all (x, y) ∈ M2, we have

dA(x, y) = inf
t>0

ρ(x, y, t), (A.8)

W (x, y) = inf
t>0

d∇gf(x, y, t). (A.9)

Moreover, if ∇gf(y) = 0, then we have dA(x, y) = lim
t→+∞

ρ(x, y, t).

Proof. Equality in (A.8) is a consequence of Lemma A.1 applied to V = |∇gf|2g. Then, (A.9) is a direct
consequence of the expression of W and d∇gf in terms of dA and ρ in (A.7), (A.2), together with (A.8).

Finally, if ∇gf(y) = 0, then the function t 7→ ρ(x, y, t) is non-increasing. Indeed, taking t1 ≤ t2, from
a path γ1 : [0, t1] → M such that γ1(0) = x and γ1(t1) = y, we can construct the path γ2 : [0, t2] → M
by γ2(s) = γ1(s) for s ∈ [0, t1] and γ2(s) = y for s ∈ [t1, t2]. This yields a path in W 1,∞([0, t2];M) if γ1 ∈
W 1,∞([0, t1];M), and thus the set of admissible paths on [0, t2] is larger than the set of admissible paths
on [0, t1]. Since the contribution

∫ t2
t1

|γ̇2(s)|2 + |∇gγ2(s)|2gds = 0 we deduce that ρ(x, y, t2) ≤ ρ(x, y, t1).
This proves that the inf is actually a lim

t→+∞
in this case.

Note that related properties are proved in the Appendix of [HS85]. For instance, [HS85, Lemma A2.2]
with our notations can be loosely stated as follows: If W (x, y) = 0, then every minimizing geodesic of dA
is a generalized integral curve of ∇gf.

Finally, we state a last result that explains that d∇gf(x, y, t) measures how far x is the final state of a
path of the vector field at time t and starting at y. Part of this result is contained in the last statement
of Lemma A.2; we here give a different proof, which, we believe, is interesting in itself.

Proposition A.4. With d∇gf(x, y, t) defined in (5.5), we have for all (x, y, t) ∈ M2 × (0,+∞),

1. d∇gf(x, y, t) ≥ 0;

2. d∇gf(x, y, t) = 0 if and only if there exists a trajectory of γ̇(s) = ∇gf(γ(s)) with γ(0) = x, γ(t) = y,
that is if and only if y = φt(x).
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In particular, (M,∇gf, ω, T ) satisfies (GCC) if and only if for any x ∈ M, there exist y ∈ ω and t ∈ (0, T )
so that d∇gf(x, y, t) = 0.

Recall that the flow (φt)t∈R is defined in (2.14) and the Geometric Control Condition (GCC) is defined
in Definition 2.10.

Proof. Statement 1 follows from the definition of d∇gf in (A.4). Let us now consider Statement 2. Assume
first that there exists a trajectory of γ̇(s) = ∇gf(γ(s)) with γ(0) = x and γ(t) = y. Then, by definition
of the infimum in (A.4), this yields d∇gf(x, y, t) ≤ 0 and hence d∇gf(x, y, t) = 0. Conversely, assume
d∇gf(x, y, t) = 0. Take a minimizing sequence in (A.4), that is to say that γn ∈ W 1,∞([0, t];M) such that
γn(0) = x, γn(t) = y and γ̇n − ∇gf(γn) = Rn (bounded continuous with values in the tangent bundle of
M) with

∫ t

0

|Rn(s)|2gds→ 0. (A.10)

Since ∇gf is bounded on M, the sequence
∫ t

0 |γ̇n(s)|2gds is then uniformly bounded in R. As a consequence,
the sequence of paths (γn)n∈N is equicontinuous. From Ascoli’s theorem, we may extract a subsequence
(which we do not relabel) (γn)n∈N which converges strongly for the topology C0([0, t];M) to a limit
γ ∈ C0([0, t];M). The latter thus has the same and endpoints γ(0) = x and γ(t) = y. It is solution
of γ̇ = ∇gf(γ) in the distributional sense according to (A.10). Bootstrapping in the differential equation
implies γ ∈ W 1,∞([0, 1];M) and γ is a strong solution to γ̇ = ∇gf(γ). This concludes the proof of
Statement 2.

According to Lemma 2.11 Item 4, that (M, X, ω, T ) satisfies (GCC) is equivalent to the fact that for
any x ∈ M, there exist t ∈ (0, T ) such that y := φt(x) ∈ ω. As a consequence of Item 2, this is equivalent
to having d∇gf(x, y, t) = 0.

Note that an analogue statement for the function W in (A.9) is proved in [HS85, Lemma A2.2], and
could also be deduced from Proposition A.4.

References

[ABB20] Andrei Agrachev, Davide Barilari, and Ugo Boscain. A comprehensive introduction to sub-Riemannian
geometry, volume 181 of Cambridge Studies in Advanced Mathematics. Cambridge University Press,
Cambridge, 2020. From the Hamiltonian viewpoint, With an appendix by Igor Zelenko.

[All98] Brice Allibert. Contrôle analytique de l’équation des ondes et de l’équation de Schrödinger sur des
surfaces de révolution. Comm. Partial Differential Equations, 23(9-10):1493–1556, 1998.

[AM19a] Youcef Amirat and Arnaud Münch. Asymptotic analysis of an advection-diffusion equation and appli-
cation to boundary controllability. Asymptot. Anal., 112(1-2):59–106, 2019.

[AM19b] Youcef Amirat and Arnaud Münch. On the controllability of an advection-diffusion equation with
respect to the diffusion parameter: asymptotic analysis and numerical simulations. Acta Math. Appl.
Sin. Engl. Ser., 35(1):54–110, 2019.

[Bes78] Arthur L. Besse. Manifolds all of whose geodesics are closed, volume 93 of Ergebnisse der Mathematik
und ihrer Grenzgebiete [Results in Mathematics and Related Areas]. Springer-Verlag, Berlin-New York,
1978. With appendices by D. B. A. Epstein, J.-P. Bourguignon, L. Bérard-Bergery, M. Berger and J.
L. Kazdan.

[BP20a] Jon Asier Bárcena-Petisco. Cost of null controllability for parabolic equations with vanishing diffusivity
and a transport term. preprint https://hal.archives-ouvertes.fr/hal-02455632, 2020.

[BP20b] Jon Asier Bárcena-Petisco. Uniform controllability of a Stokes problem with a transport term in the
zero-diffusion limit. SIAM J. Control Optim., 58(3):1597–1625, 2020.

[CF96] Jean-Michel Coron and Andrei V. Fursikov. Global exact controllability of the 2-D Navier-Stokes
equations on a manifold without boundary. Russian J. Math. Phys., 4:429–448, 1996.

[CFKS87] Hans L. Cycon, Richard G. Froese, Werner Kirsch, and Barry Simon. Schrödinger operators with
application to quantum mechanics and global geometry. Texts and Monographs in Physics. Springer-
Verlag, Berlin, study edition, 1987.

51



[CG05] Jean-Michel Coron and Sergio Guerrero. Singular optimal control: A linear 1-D parabolic-hyperbolic
example. Asympt. Anal., 44:237–257, 2005.

[Cha43] Subrahmanyan Chandresekhar. Stochastic problems in physics and astronomy. Rev. Modern Phys.,
15:1–89, 1943.

[Cha09] Marianne Chapouly. On the global null controllability of a Navier-Stokes system with Navier slip
boundary conditions. J. Differential Equations, 247:2094–2123, 2009.

[CMS19] Jean-Michel Coron, Frédéric Marbach, and Franck Sueur. Small-time global exact controllability of the
Navier-Stokes equation with Navier slip-with-friction boundary conditions. J. Europ. Math. Soc., to
appear, 2019.

[Cor96] Jean-Michel Coron. On the controllability of the 2-D incompressible Navier-Stokes equations with the
Navier slip boundary conditions. ESAIM Control Optim. Calc. Var., 1:35–75, 1996.

[Cor07] Jean-Michel Coron. Control and nonlinearity, volume 136 of Mathematical Surveys and Monographs.
American Mathematical Society, Providence, RI, 2007.

[Daf00] Constantine M. Dafermos. Hyperbolic conservation laws in continuum physics. Springer-Verlag, Berlin,
2000.

[DL09] Belhassen Dehman and Gilles Lebeau. Analysis of the HUM control operator and exact controllability
for semilinear waves in uniform time. SIAM J. Control Optim., 48(2):521–550, 2009.

[DLLN19] Giacomo Di Gesù, Dorian Le Peutrec, Tony Lelièvre, and Boris Nectoux. The exit from a metastable
state: concentration of the exit point distribution on the low energy saddle points, Part 1. J. Math.
Pures Appl., to appear, 2019.

[DR77] Szymon Dolecki and David L. Russell. A general theory of observation and control. SIAM J. Control
Optim., 15(2):185–220, 1977.

[DR20] Nguyen Viet Dang and Gabriel Rivière. Pollicott-Ruelle spectrum and Witten Laplacians. J. Eur.
Math. Soc. (JEMS), to appear, 2020.

[DS99] Mouez Dimassi and Johannes Sjöstrand. Spectral asymptotics in the semi-classical limit, volume 268 of
London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1999.

[ET74] Ivar Ekeland and Roger Temam. Analyse convexe et problèmes variationnels. Dunod–Gauthier-Villars,
Paris, 1974.

[Eva98] Lawrence C. Evans. Partial differential equations. Graduate Studies in Mathematics. American Math-
ematical Society, Providence, RI, 1998.

[FI96] Andrei V. Fursikov and Oleg Yu. Imanuvilov. Controllability of evolution equations, volume 34 of Lecture
Notes Series. Seoul National University Research Institute of Mathematics Global Analysis Research
Center, Seoul, 1996.

[GG07] Olivier Glass and Sergio Guerrero. On the uniform controllability of the Burgers equation. SIAM J.
Control Optim., 46:1211–1238, 2007.

[GG08] Olivier Glass and Sergio Guerrero. Some exact controllability results for the linear KdV equation and
uniform controllability in the zero-dispersion limit. Asymptot. Anal., 60:61–100, 2008.

[GG09] Olivier Glass and Sergio Guerrero. Uniform controllability of a transport equation in zero diffusion-
dispersion limit. Math. Models Methods Appl. Sci., 19:1567–1601, 2009.

[GL07] Sergio Guerrero and Gilles Lebeau. Singular optimal control for a transport-diffusion equation. Comm.
Partial Differential Equations, 32:1813–1836, 2007.

[Gla10] Olivier Glass. A complex-analytic approach to the problem of uniform controllability of a transport
equation in the vanishing viscosity limit. J. Funct. Anal., 258:852–868, 2010.

[Hel88] Bernard Helffer. Semi-classical analysis for the Schrödinger operator and applications, volume 1336 of
Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1988.

[HKL15] Daniel Han-Kwan and Matthieu Léautaud. Geometric analysis of the linear Boltzmann equation I.
Trend to equilibrium. Ann. PDE, 1(1):Art. 3, 84, 2015.

[HKN04] Bernard Helffer, Markus Klein, and Francis Nier. Quantitative analysis of metastability in reversible
diffusion processes via a Witten complex approach. Mat. Contemp., 26:41–85, 2004.

[HN06] Bernard Helffer and Francis Nier. Quantitative analysis of metastability in reversible diffusion processes
via a Witten complex approach: the case with boundary. Mém. Soc. Math. Fr. (N.S.), (105):vi+89,
2006.

52



[HS84] Bernard Helffer and Johannes Sjöstrand. Multiple wells in the semiclassical limit. I. Comm. Partial
Differential Equations, 9(4):337–408, 1984.

[HS85] Bernard Helffer and Johannes Sjöstrand. Puits multiples en mécanique semi-classique. IV. Étude du
complexe de Witten. Comm. Partial Differential Equations, 10(3):245–340, 1985.

[Kru70] Stanislav N. Kružkov. First order quasilinear equations with several independent variables. (russian).
Mat. Sb. (N.S.), 81:228–255, 1970.

[LB20] Kévin Le Balc’h. Global null-controllability and nonnegative-controllability of slightly superlinear heat
equations. J. Math. Pures Appl. (9), 135:103–139, 2020.

[Léa10] Matthieu Léautaud. Spectral inequalities for non-selfadjoint elliptic operators and application to the
null-controllability of parabolic systems. J. Funct. Anal., 258:2739–2778, 2010.

[Léa12] Matthieu Léautaud. Uniform controllability of scalar conservation laws in the vanishing viscosity limit.
SIAM J. Control Optim., 50(3):1661–1699, 2012.

[Léa18] Matthieu Léautaud. Sur quelques questions de prolongement unique, de propagation et de
contrôle. Mémoire d’habilitation à diriger des recherches. Université Paris Diderot, 2018.
http://leautaud.perso.math.cnrs.fr/files/HdR.pdf.

[Lee13] John M. Lee. Introduction to smooth manifolds, volume 218 of Graduate Texts in Mathematics. Springer,
New York, second edition, 2013.

[Lio88] Jacques-Louis Lions. Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome
2, volume 9 of Recherches en Mathématiques Appliquées. Masson, Paris, 1988. Perturbations.

[Lis12] Pierre Lissy. A link between the cost of fast controls for the 1-D heat equation and the uniform
controllability of a 1-D transport-diffusion equation. C. R. Math. Acad. Sci. Paris, 350(11-12):591–595,
2012.

[Lis14] Pierre Lissy. An application of a conjecture due to Ervedoza and Zuazua concerning the observability
of the heat equation in small time to a conjecture due to Coron and Guerrero concerning the uniform
controllability of a convection-diffusion equation in the vanishing viscosity limit. Systems Control Lett.,
69:98–102, 2014.

[Lis15] Pierre Lissy. Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive
equations, and a new lower bound concerning the uniform controllability of the 1-D transport-diffusion
equation. J. Differential Equations, 259(10):5331–5352, 2015.

[LL16] Camille Laurent and Matthieu Léautaud. Uniform observability estimates for linear waves. ESAIM
Control Optim. Calc. Var., 22(4):1097–1136, 2016.

[LL21a] Camille Laurent and Matthieu Léautaud. The cost function for the approximate control of waves. work
in progress, 2021.

[LL21b] Camille Laurent and Matthieu Léautaud. Observability of the heat equation, geometric constants in
control theory, and a conjecture of Luc Miller. to appear in Analysis & PDE, 2021.

[LL21c] Camille Laurent and Matthieu Léautaud. On uniform controllability of 1D transport equations in the
vanishing viscosity limit. work in progress, 2021.

[LP10] Dorian Le Peutrec. Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian.
Ann. Fac. Sci. Toulouse Math. (6), 19(3-4):735–809, 2010.

[LR95] Gilles Lebeau and Luc Robbiano. Contrôle exact de l’équation de la chaleur. Comm. Partial Differential
Equations, 20:335–356, 1995.

[LSU68] Ol’ga A. Ladyženskaja, Vsevolod A. Solonnikov, and Nina N. Ural’ceva. Linear and quasilinear equations
of parabolic type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs,
Vol. 23. American Mathematical Society, Providence, R.I., 1968.

[LY86] Peter Li and Shing-Tung Yau. On the parabolic kernel of the Schrödinger operator. Acta Math.,
156(3-4):153–201, 1986.

[Mar14] Frédéric Marbach. Small time global null controllability for a viscous Burgers’ equation despite the
presence of a boundary layer. J. Math. Pures Appl. (9), 102(2):364–384, 2014.

[Mic19] Laurent Michel. About small eigenvalues of the Witten Laplacian. Pure Appl. Anal., 1(2):149–206,
2019.

[Mil04] Luc Miller. Geometric bounds on the growth rate of null-controllability cost for the heat equation in
small time. J. Differential Equations, 204(1):202–226, 2004.

53



[Mün18] Arnaud Münch. Numerical estimations of the cost of boundary controls for the equation yt − εyxx +

Myx = 0 with respect to ε. In Recent advances in PDEs: analysis, numerics and control, volume 17 of
SEMA SIMAI Springer Ser., pages 159–191. Springer, Cham, 2018.

[RS80] Michael Reed and Barry Simon. Methods of modern mathematical physics. I. Academic Press, Inc.
[Harcourt Brace Jovanovich, Publishers], New York, second edition, 1980. Functional analysis.

[Sim82] Barry Simon. Schrödinger semigroups. Bull. Amer. Math. Soc. (N.S.), 7(3):447–526, 1982.

[Sim83] Barry Simon. Instantons, double wells and large deviations. Bull. Amer. Math. Soc. (N.S.), 8(2):323–
326, 1983.

[SM79] Zeev Schuss and Bernard J. Matkowsky. The exit problem: a new approach to diffusion across potential
barriers. SIAM J. Appl. Math., 36(3):604–623, 1979.

[Var67] Srinivasa R. S. Varadhan. Diffusion processes in a small time interval. Comm. Pure Appl. Math.,
20:659–685, 1967.

[Wit82] Edward Witten. Supersymmetry and Morse theory. J. Differential Geometry, 17(4):661–692 (1983),
1982.

54


	Introduction and main results
	Introduction
	Background and motivation
	Main results
	Further remarks

	Preliminaries: duality, conjugation of gradient flows and (GCC)
	Uniform controllability problems and dual formulation
	The vanishing viscosity limit for gradient flows. Conjugation and reformulation
	(GCC) and controllability of the limit equation =0

	General lower bounds without geometric assumption
	Eigenfunctions of semiclassical Schrödinger operators
	Rough localization of eigenfunctions, and a proof of Theorem 3.1
	An explicit counter-example for a domain of Rn

	Surfaces of revolution
	General setting
	The conditions (GCC) and (FC) on surfaces of revolution
	Existence of eigenfunctions
	Geometric assumptions and the Agmon distance
	Upper bounds for eigenfunctions: Agmon estimates
	Lower bounds for eigenfunctions: Allibert estimates
	Minimal time for uniform controllability in the limit 0+

	Uniform time of observability for positive solutions
	Estimates on the semiclassical heat kernel
	L1 observability estimates for positive solutions
	From L1 to L2 observability estimates for positive solutions
	From observability of positive solutions to a controllability statement

	About the distances
	A general lemma
	Equivalence between the two definitions of dgf
	Further links between the different distances


