
HAL Id: hal-02505134
https://hal.sorbonne-universite.fr/hal-02505134v1

Submitted on 11 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Recurrent Neural Cascade-based Model for
Continuous-Time Diffusion

Sylvain Lamprier

To cite this version:
Sylvain Lamprier. A Recurrent Neural Cascade-based Model for Continuous-Time Diffusion. ICML
2019 - 36th International Conference on Machine Learning, Jun 2019, Long Beach, CA, United States.
pp.3632-3641. �hal-02505134�

https://hal.sorbonne-universite.fr/hal-02505134v1
https://hal.archives-ouvertes.fr


A Recurrent Neural Cascade-based Model for Continuous-Time Diffusion

Sylvain Lamprier 1

Abstract

Many works have been proposed in the literature
to capture the dynamics of diffusion in networks.
While some of them define graphical Markovian
models to extract temporal relationships between
node infections in networks, others consider dif-
fusion episodes as sequences of infections via
recurrent neural models. In this paper we propose
a model at the crossroads of these two extremes,
which embeds the history of diffusion in infected
nodes as hidden continuous states. Depending
on the trajectory followed by the content before
reaching a given node, the distribution of influ-
ence probabilities may vary. However, content
trajectories are usually hidden in the data, which
induces challenging learning problems. We pro-
pose a topological recurrent neural model which
exhibits good experimental performances for dif-
fusion modelling and prediction.

1. Introduction
The recent development of online social networks enabled
researchers to suggest methods to explain and predict obser-
vations of diffusion across networks. A diffusion process
refers to the temporal spread of related events on a network.
These events can correspond to the publication of a given
video, the listening of a specific music album, the adoption
of a given behavior or language, or even the infection by
a given disease. Classical cascade models, which are at
the heart of the research literature on diffusion, regard the
phenomenon of diffusion as an iterative process in which a
content transits from nodes to others in the network (Saito
et al., 2008; Gomez-Rodriguez et al., 2011), by a so-called
word-of-mouth phenomenon. In this setting, diffusion mod-
eling corresponds to learning probability distributions of
content transmission. Various cascade models have been
proposed in the literature, each inducing its own learning
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process to extract the main dynamics of the network from
observed diffusion episodes.

However, most of these models rely on a strong Markovian
assumption for which the probabilities of next infections1

only depend on who is infected at the current step, not on
the past trajectories of the diffused content. We claim that
the history of spread contains much valuable information
that should be taken into account by the models. In many
applications the object of the diffusion is either unknown
(due to privacy or technical limitations for instances) or its
available features are not exploitable by the models (low
correlation with the diffusion, high noise, high variability,
etc.). In such cases, which is the setting of our work, past
trajectories can give useful insights about the nature of the
diffusion. Also, the content may be changed during the dif-
fusion, with different transformations depending on which
nodes re-transmit the information.

Some recent approaches rely on representation learning and
recurrent neural networks (RNN) to predict the future spread
of diffusion given the past. A naive possibility would be
to consider diffusion episodes as sequences of infections
and propose temporal point process approaches to model
the dynamics. Using the Recurrent Marked Temporal Point
Process model (Du et al., 2016), the current hidden state of
the RNN would embed the history of the whole diffusion
sequence, which would be used to output the next infected
node and its time of infection. However, diffusion episodes
are not sequences but trees, naive recurrent methods usually
fail in capturing the true dynamics of the networks. Em-
bedding the whole past in the state of a given node rather
than restraining it to its specific ancestor branch leads to
consider many independent and noisy events for future pre-
dictions. A model that would consider the true diffusion
paths would be more effective, by focusing on the useful
past. If the true diffusion paths were known, it would be
possible to adapt works on recurrent neural models for tree
structures such as successfully proposed in (Tai et al., 2015)
for NLP tasks. Unfortunately, in most of applications the
topology of diffusion is unknown while learning. In the task
considered in this paper, the only observations available are
the timestamps of the infected nodes.

1Throughout this paper, we refer to infection for denoting the
participation of a node of the network in the diffusion.
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To cope with it, (Wang et al., 2017a) proposed Topo-LSTM,
a Long-Short Term Memory network that considers a known
graph of relationships between nodes to compute hidden
states and cells of infected nodes. The hidden state and
cell of a given node at t depend on those from each of its
predecessors that have been infected before t. Since nodes
may have multiple predecessors that are infected at time
t, the classical LSTM cannot be applied directly. Instead,
(Wang et al., 2017a) proposed a cell function that aggregates
infector candidate states via mean pooling. This allows to
take the topology of the possible diffusion into account, but
not the past trajectory of the content (it averages all possible
paths). To overcome this, (Wang et al., 2017b) proposed
a cascade attention-based RNN, which defines a neural at-
tention mechanism to assign weights to infector candidates
before summing their contribution in the new hidden state
at t. The attention network is supposed to learn to identify
from whom comes the next infection based on past states.
However, such an approach is likely to converge to most of
attention weight vectors in the center of the simplex, since
diffusion is a stochastic process with mostly very weak in-
fluence probabilities. The deterministic inference process
of the approach limits its ability to produce relevant states
by mixing from multiple candidates rather than sampling
the past trajectories from their posterior probabilities. Note
the similar approach in (Wang et al., 2018), which does not
use a RNN but defines a composition module of the past
via attention networks to embed the episode in a representa-
tion space from which the probability of the next infected
node can be deduced. Beyond the limits discussed above
w.r.t. deterministic mixing of diffusion trajectories, no de-
lay of infection is considered in this work, which makes it
impossible to use for diffusion modeling purposes.

Recently, many works in representation learning used ran-
dom walks on graphs to sample trajectories that can be
used to learn a network embedding which respects some
topological constraints. While DeepWalk (Perozzi et al.,
2014) only uses structural information, models proposed
in (Nguyen et al., 2018) or (Shi et al., 2018) include tem-
poral constraints in random walks to sample feasible tra-
jectories w.r.t. observed diffusion episodes. The approach
DeepCas from (Li et al., 2016) applies this idea for the
prediction of diffusion cascades. However, such approaches
require a graph of diffusion relations as input, which is not
always available (and not always representative of the true
diffusion channels of the considered network as reported in
(Ver Steeg & Galstyan, 2013)). In our work, we consider that
no graph is available beforehand. Moreover, no inference
process is introduced in DeepCas to sample trajectories
from their posterior probabilities given the observed diffu-
sion sequences. The sampling of trajectories is performed
in an initialization step, before learning the parameters of
the diffusion model.

In this paper, we propose the first bayesian topological recur-
rent neural network for sequences with tree dependencies,
which we apply for diffusion cascades modelling. Rather
than building on a preliminary random walk process, the
idea is to consider trajectory inference during learning, in
order to converge to better representations of the infected
nodes. Following the stochastic nature of diffusion, the
model infers trajectory distributions from observations of
infections, which are in turn used for the inference of in-
fection probabilities in an iterative learning process. Our
probabilistic model, based on the famous continuous-time
independent cascade model (CTIC) (Saito et al., 2009) is
able to extract full paths of diffusion from sequential ob-
servations of infections via black-box inference, which has
various applications in the field. Our experiments validate
the approach for both modeling and prediction purposes.

Section 2 presents some background and notations of the
approach. Section 3 presents the proposed model. Section 4
reports experimental results of the approach.

2. Background
2.1. Information Diffusion

Information diffusion is observed as a set of diffusion
episodes D. Classically, episodes considered in this pa-
per only contain the first infection event of each node
(the earliest time a content reached the node). Let U =
{u0, u1, ...., uN−1} be a set of N nodes, u0 standing for
the world node, used to model influences from external
factors or spontaneous infections (as done in (Gruhl et al.,
2004) for instance). A diffusion episode D = (UD, TD)
reports the diffusion of a given content in the network as a
sequence of infected nodes UD =

(
UD0 , ..., U

D
|D|−1

)
and a

set TD = {tDu ∈ R+ +∞|u ∈ U} of infection time-stamps
for all u ∈ U . UD is ordered chronologically w.r.t. the
infection time-stamps TD. Thus, UDi ∈ U corresponds to
the i-th infected node in D for all i ∈ {0, ..., |D| − 1}, with
|D| the number of infected nodes in the diffusion. Every
episode in D starts by the world node u0 (i.e., UD0 = u0

for all episodes D). We note tDu the infection time-stamp
in D for any node in U , ∞ for nodes not infected in D.
Time-stamps are relative w.r.t. to tD

UD1
, arbitrarily set to 1 in

the data. Note that we also set tD
UD0

= 0 for every episode

D. In the following, Di = (UDi , t
D
UDi

) denotes the i − th
infected node in U with its associated time-stamp.

Cascades are richer structures than diffusion episodes, since
they describe how a given diffusion happened. The cas-
cade structure stores the first transmission event (u → v)
that succeeded from any node u to each infected node v.
Thus, a cascade CD = (UD, TD, ID) corresponds to a
transmission tree rooted in u0 and reaching nodes in UD
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during the diffusion, according to a sequence ID of infec-
tor indices in UD: for any j ∈ {1, ..., |D| − 1} and any
i ∈ {0, ..., |D| − 2}, IDj equals i iff UDj was infected by
UDi in the diffusion D (i.e., UDi is the infector of UDj ). We
arbitrarily set ID0 = 0 (no infector for the world node). Note
that ID1 is always equal to 0, since there is no other candi-
date for being the infector of UD1 than the world u0. For
convenience, we note ID(i) ∈ UD the infector of UDi for
i ∈ {0, ..., |D|−1}. Note that the cascade structures respect
that tDID(j) < tD

UDj
for every D and all j ∈ {1, ..., |D| − 1}

(the infector of a node v is mandatory a node that was in-
fected before v). Several different cascade structures are
possible for a given diffusion episode. Cascade models usu-
ally make assumptions on these latent diffusion structures
to learn the diffusion parameters.

2.2. Cascade Models

Unlike the Linear Threshold (LT) methods (Granovetter,
1978), which consider the social pressure exerted on nodes
to trigger new infections, cascade models focus on the in-
dividual influence of the infected nodes on their neighbor-
hood. By considering the spread of diffusion as cascades
of infections over the network, these cascade models tend
to reproduce more realistic temporal diffusion dynamics
on social networks (Guille et al., 2013). The Independent
Cascade model (IC) (Goldenberg et al., 2001) follows an
iterative process in which, at each iteration, every newly in-
fected node u gets a unique chance to infect any other node
v of the network with some probability θu,v. The process
iterates while new infections occur. Since the EM algorithm
proposed by (Saito et al., 2008) to learn its parameters, IC
has been at the heart of diffusion works.

However, in real life, diffusion occurs in continuous time,
not discrete as assumed in IC. (Lamprier et al., 2016) pro-
posed DAIC, a delay-agnostic version of IC, where diffu-
sion between nodes is assumed to follow uniform delay dis-
tributions rather than occurring in successive discrete time-
steps. A neural version of DAIC has then been proposed in
(Bourigault et al., 2016), to improve robustness and compact-
ness, via representation learning of diffusion probabilities.
Beyond uniform time delay distributions, two main works
deal with continuous-time diffusion. NetRate (Gomez-
Rodriguez et al., 2011) learns parametric time-dependent
distributions to fit with observed infection time-stamps. As
NetRate, CTIC (Saito et al., 2009) uses exponential dis-
tributions to model delays of diffusion between nodes, but
rather than a single parameter for each possible relation-
ship, delays and influence factors are considered as sepa-
rated parameters, which leads to more freedom w.r.t. to
observed diffusion tendencies. Delays and influence param-
eters are learned conjointly by an EM-like algorithm. Note
the continuous-time cascade model extension in (Zhang

et al., 2018), which embeds users in a representation space
so that their relative positions both respect some structural
community properties and can be used to explain infection
time-stamps of users. Several extensions of IC have also
concerned the use of context information about the modeled
diffusion (see for instances (Saito et al., 2011), (Wang et al.,
2012), (Guille & Hacid, 2012) or (Lagnier et al., 2013)).

2.3. The Continuous-Time Independent Cascade model

In our model we consider that diffusion probabilities from
any infected node v depend on a latent state associated to
v, which embeds the past trajectory of the diffused content.
This state depends on the state of the node u who first
transmitted the content to v. Therefore, we need to rely
on a continuous-time model such as CTIC (Saito et al.,
2009), which serves as a basis for our work. In CTIC,
two parameters are defined for each pair (u, v) of nodes
in the network: ku,v ∈ [0; 1], which corresponds to the
probability that node u succeeds in infecting v, and ru,v > 0,
which corresponds to a time-delay parameter used in an
exponential distribution when u infects v. If u succeeds
in infecting v in an episode D, v is infected at time tDv =
tDu +δ, where δ ∼ Exp(ru,v). These parameters are learned
via maximizing the following likelihood on a set of episodes
D:

p(D) =
∏
D∈D

p(D) =
∏
D∈D

∏
v∈UD

hDv
∏
v 6∈UD

gDv (1)

where hDv stands for the probability that v is infected at tDv
by previous infected nodes in D and gDv is the probability
that v is not infected by any infected node in D.

We build on this in the following, but rather than considering
a pair of parameters ku,v and ru,v for each pair of nodes
(u, v) (which implies 2 × |U| × (|U| − 1) parameters to
store), we propose to consider neural functions which output
the corresponding parameters according to the hidden state
of the emitter u, depending on its ancestor branch in the
cascade, and a continuous embedding of the receiver v.

3. Recurrent Neural Diffusion Model
This section first presents our recurrent generative model of
cascades. Then, it details the proposed learning algorithm.

3.1. Recurrent Diffusion Model

As discussed above, we consider that each infected node v in
an episode D owns a state zDv ∈ Rd depending on the path
the content followed to reach v in D, with d the dimension
of the representation space. Knowing the state zDu of the
node u that first infected v, the state zDv is computed as:

zDv = fφ(zDu , ω
(f)
v ) (2)
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with fφ : Rd×Rd → Rd a function, with parameters φ, that
transforms the state of u according to a static continuous
representation ω(f)

v ∈ Rd for the node v. This function
can either be an Elman RNN cell, a multi-layer perceptron
(MLP) or a Gated Recurrent Unit (GRU). An LSTM could
also be used here, but zDv should include both the cell and
the state of v in that case.

Given a state z for an infected node u in D, the probability
that u succeeds in transmitting the diffused content to v is
given by:

ku,v(z) = σ
(
< z, ω(k)

v >
)

(3)

where σ(.) stands for the sigmoid function and ω(k)
v an em-

bedding of size d for any node v ∈ U as a content receiver.

Similarly to the CTIC model, if a node u succeeds in in-
fecting another node v, the delay of infection depends on
an exponential distribution with parameter ru,v. To sim-
plify learning, we assume that the delay of infection does
not depend on the history of diffusion, only the probability
of infection does. Thus, for a given pair (u, v), the delay
parameter is the same for every episode D:

ru,v = exp(−| < ω(r,1)
u , ω(r,2)

v > |) (4)

with |x| the absolute value of a real scalar x and where
ω

(r,1)
u and ω(r,2)

v correspond to two embeddings of size d
for any node u ∈ U , ω(r,1) for the source of the transition
and ω(r,2) for its destination in order to enable asymmetric
behavior.

We set Θ =
(
φ, z0, (ω

(f)
u )u∈U , (ω

(r,1)
u )u∈U , (ω

(r,2)
u )u∈U ,

(ω
(k)
u )u∈U

)
as the parameters of our model, where z0 corre-

sponds to the state of the initial node (the world node) u0.
The full generative process, similar to the one of CTIC, is
given in the supplementary material. The process iterates
while there remains some nodes in a set of infectious nodes
(initialized with u0). At each iteration, the process selects
the infectious node u with minimal time-stamp of infection,
removes it from the set of infectious nodes, records it as
infected and attempts to infect each non infected node v
according to the probability ku,v(zDu ). If it succeeds, a time
t is sampled for v with an exponential law with parameter
ru,v. If the new time t for v is lower than its current time
tDv (initialized with tDv =∞), this new time is stored in tDv ,
v is added to the set of infectious nodes and its new state
zDv is computed according to its new infector u.

3.2. Learning the Model

As in CTIC, we need to define the probability that the node
u ∈ UD infects the node v ∈ UD at time tDv > tDu :

aDu,v(z) = ku,v(z)ru,v exp−ru,v(tDv −t
D
u ) (5)

Also, the probability that u does not infect v before tDv given
a state z for u in D is:

bDu,v(z) = 1− ku,v(z)
∫ tDv

tDu

ru,v exp−ru,v(t−tDu ) dt

= ku,v(z) exp−ru,v(tDv −t
D
u ) +1− ku,v(z) (6)

The probability density that node v is infected at time tDv
given a set of states z for all nodes infected before v is:

hDv (z) =
∑
u∈U,
tDu <t

D
v

aDu,v(zu)
∏

x∈U\{u},
tDx <t

D
v

bDx,v(zx)

=
∏
x∈U,
tDx <t

D
v

bDx,v(zx)
∑
u∈U,
tDu <t

D
v

aDu,v(zu)

bDu,v(zu)
(7)

where zu is the state of node u in z. Similarly, the prob-
ability density that node v is not infected in D at the end
of observation time T given a set of states z for all nodes
infected in D is:

gDv (z) =
∏

u∈UD
(ku,v(zu) exp−ru,v(T−tDu ) +1− ku,v(zu))

≈
∏

u∈UD
(1− ku,v(zu)) (8)

where the approximation is done assuming a sufficiently
long observation period.

The learning process of our model is based on a likeli-
hood maximization, similarly to maximizing eq.1 in the
classical CTIC model. However, in our case the infection
probabilities depend on hidden states z associated to the
infected nodes. Since observations only contain infection
time-stamps, this requires to marginalize over every possible
sequence of ancestors I for every D ∈ D:

log p(D) =
∑
D∈D

log p(D) =
∑
D∈D

log
∑

I∈ID
p(D, I) (9)

where ID is the set {v ∈ N|D|−1|v0 = 0∧∀i > 0, vi < i}
of all possible ancestors sequences for D. p(D, I) corre-
sponds to the joint probability of the episode D and an
ancestor sequence I ∈ ID. Taking p(D, I) = p(I)p(D|I)
would lead to an intractable computation of p(D|I) using
our recurrent cascade model, since it would imply to es-
timate the probability of any infection in D according to
the full ancestors sequence. Fortunately, using the bayesian
chain rule, the joint probability can be written as:

p(D, I) =

|D|−1∏
i=1

p(Di|D<i, I<i) p(Ii|D≤i, I<i)

×
∏
v 6∈UD

p(v 6∈ UD|D≤|D|−1, I) (10)
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where D<i = (Dj)j∈{0,...,i−1} corresponds to the se-
quence of the i first components of D (the i first com-
ponents in UD with their associated time-stamps) and
I<i = (Ij)j∈{0,...,i−1} stands for the vector containing the i
first components of I . We have for every i ∈ {1, ..., |D|−1}:
p(Di|D<i, I<i) = hD

UDi
(zD<i), where zD<i is a set contain-

ing the states of the i first infected nodes in D, which can be
deduced from D<i and I<i using the equation 2. We also
have: p(v 6∈ UD|D≤|D|−1, I) = gDv (zD≤i). The probabil-
ity p(Ii|D≤i, I<i) is the conditional probability that I(UDi )
was the node who first infected UDi , given all the previous
infection events and the fact that UDi was infected at tD

UDi
by one of the previously infected nodes in D. It can be
obtained, according to formula 7, via:

p(Ii|D≤i, I<i) =

aD
I(UDi ),UDi

(
zD
I(UDi )

)
/bD
I(UDi ),UDi

(
zD
I(UDi )

)
∑

u∈U,tDu <tDUD
i

aD
u,UDi

(zDu ) /bD
u,UDi

(zDu )
(11)

with I(UDi ) ∈ UD the infector of UDi stored in I .

Unfortunately the log-likelihood from formula 9 is still par-
ticularly difficult to optimize directly since it requires to con-
sider every possible vector I ∈ ID for each training episode
D at each optimization iteration. Moreover, the probability
products in formula 10 would lead to zero gradients be-
cause of floating point representation limits. Therefore, we
need to define an approach where the optimization can be
done via trajectory sampling. Different choices would be
possible. First, MCMC approaches such as the Gibbs Sam-
pling EM could be used, but they require to sample from
the posteriors of the full trajectories of the cascades, which
is very unstable and complex to perform. The full com-
putation of the posterior distributions could be avoided by
using simpler propositional distributions (such as done for
instance via importance sampling with auxiliary variables in
(Farajtabar et al., 2015) for diffusion source detection), but
this would face a very high variance in our case. Another
possibility is to adopt a variational approach (Kingma &
Welling, 2013), where an auxiliary distribution q is learned
for the inference of the latent variables. As done in (Krish-
nan et al., 2016) for the inference in sequences, a smoothing
strategy could be developed by relying on a bi-directional
RNN that would consider past and future infections for the
inference of the ancestors of nodes via q(Ii|D, I<i) for ev-
ery infected node i in an episode D. However, learning
the parameters of such a distribution is particularly diffi-
cult (episodes of different lengths, cascades considered as
sequences, etc.). Also, another possibility for smoothing
would be to define an independent distribution qDi for every
episode D ∈ D and every infection i ∈ {1, ..., |D| − 1}.
However, this induces a huge number of variational param-
eters, increasing with the size of the training set (linearly

in the number of training episodes and quadratically in the
size of the episodes). Thus, we propose to rather rely on the
conditional distribution of ancestors given the past for sam-
pling (i.e, qDi (Ii) = p(Ii|D≤i, I<i)), which corresponds to
a filtering inference process.

From the Jensen inequality on concave functions, we get for
a given episode D:

log p(D) = log
∑
I∈ID

p(D, I)

≥ EI∼qD
[
log p(D, I)− log qD(I)

]
= EI∼qD

|D|−1∑
i=1

log p(Di|D<i, I<i)

+
∑
v 6∈UD

log p(v 6∈ UD|D≤|D|−1, I)


∆
= L(D; Θ) (12)

where qD =
|D|−1∏
i=1

p(Ii|D≤i, I<i). This leads to a lower-

bound of the log-likelihood, which corresponds to an ex-
pectation from which it is easy to sample: at each new in-
fection of a node i in a episode D, we can sample from
a distribution depending on the past only. Maximizing
this lower-bound (also called the ELBO) encourages the
process to choose trajectories that explain the best the ob-
served episode. To maximize it via stochastic optimization,
we refer to the score function estimator (Ranganath et al.,
2014), which leverages the derivative of the log-function
(∇θ log p(x; θ) = ∇θp(x;θ)

p(x;θ) ) to express the gradient as an
expectation from which we can sample. Another possibility
would have been to rely on the Gumbel-Softmax and the
Concrete distribution with reparametrization such as done
in (Maddison et al., 2016), but we observed greatly better re-
sults using the log-trick. The gradient of the ELBO function
for all the episodes is given by:

∇ΘL(D; Θ) = (13)∑
D∈D

EI∼qD

[(
log pI(D)− b

)
∇Θ log qD(I) +∇Θ log pI(D)

]
where pI(D) is a shortcut for

∏|D|−1
i=1 p(Di|D<i, I<i)∏

v 6∈UD p(v 6∈ UD|D≤|D|−1, I) and b is a moving-average
baseline of the ELBO per training episode, used to reduce
the variance (taken over the 100 previous training epochs
in our experiments). This stochastic gradient formulation
enables to obtain unbiased steepest ascent directions despite
the need to sample the ancestor vectors for the computation
of the node states (with the replacement of expectations by
averages over K samples for each episode). It contains two
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terms: while the first one encourages high conditional prob-
abilities for ancestors that maximize the likelihood of the
full episodes, the second one leads to improve the likelihood
of the observed infections regarding the past of the sampled
diffusion path.

The optimization is done using the ADAM optimizer
(Kingma & Ba, 2014) over mini-batches of M episodes
ordered by length to avoid padding (M = 512 and K = 1
in our experiments). Our full efficient algorithm is given in
the supplementary material 2.

4. Experiments
4.1. Setup

We perform experiments on one artificial and three real-
world datasets:

• Arti: Episodes generated on a scale-free random graph
of 100 nodes (obtained following the BarabsiAlbert
algorithm). The generation process follows the CTIC
model, where each ku,v is a function of the transmitted
content and the features of the receiver v. Features of
the hub nodes (nodes with a degree greater than 30) are
sampled from a Dirichet with α = 10 (multi-content
nodes), while those of other nodes are sampled from
a Dirichet with α = 0.1 (content-specific nodes). For
each episode, a content z ∈ R5 is sampled from a
Dirichlet with parameter α = 0.1 before each simula-
tion and the sigmoid of the dot product between this
content and the node features determines the transmis-
sion probabilities. The content remains hidden from
the experimented models. 10000 episodes for training,
5000 for validation, 5000 for testing. Mean length of
the episodes=6.89 (stdev=7.7).

• Digg: Data collected from the Digg stream API during
one month. Infections are the ”diggs” posted by users
on links published on the media. We kept the 100 most
active users from the collected data. 20000 episodes for
training, 5000 for validation, 5000 for testing. Mean
length of the episodes=4.26 (stdev=9,26).

• Weibo: Retweet cascades extracted from the Weibo
microbloging website using the procedure described
in (Leskovec et al., 2009). The dataset was collected
by (Fu et al., 2013). 4000 nodes, 45000 episodes for
training, 5000 for validation, 5000 for testing. Mean
length of episodes=4.58 (stdev=2.15).

• Memetracker: The memetracker dataset described in
(Leskovec et al., 2009) contains millions of blog posts
and news articles. Each website or blog stands as a user,

2The full code in python is available at: https://github.
com/lampriers/recCTIC

and we use the phrase clusters extracted by (Leskovec
et al., 2009) to trace the flow of information. 500 nodes,
250000 for training, 5000 for validation, 5000 for test-
ing. Mean length of episodes=8.68 (stdev=11.45).

We consider the following temporal baselines:

• CTIC: the Continuous-Time Independent Cascade
model in its original version (Saito et al., 2009);

• RNN: the Recurrent Temporal Point Process model
from (Du et al., 2016) where episodes are considered
as sequences that can be treated with a classical RNN
outputting at each step the probability distributions of
the next infected node and its time-stamp;

• CYAN: Similar to RMTPP but with an attention mech-
anism to select previous states (Wang et al., 2017b);

• CYAN-cov: The same as Cyan but with a more sophis-
ticated attention mechanism using an history of atten-
tion states, to give more weights to important nodes;

• DAN: the attention model described in (Wang et al.,
2018). It is very similar to CYAN but uses a pooling
mechanism rather than a recurrent network to consider
the past in the predictions. In the version of (Wang
et al., 2018), the model only predicts the next infected
node at each step, not its time of infection. To enable
a comparison with the other models, we extended it
by adding a time prediction mechanism similar to the
temporal head of CYAN.

• EmbCTIC: a version of our model where the node
state z is replaced in eq. 3 by a static embedding for
the source (similarly to the formulation of the delay
parameter in eq. 4). This corresponds to an embedded
version of CTIC, similarly to the embedded version of
DAIC from (Bourigault et al., 2016).

Note that to adapt baselines based on RNN for diffusion
modeling and render them comparable to cascade-based
ones, we add a ”end node” at the end of each episode before
training and testing them. In such a way, these models are
able to model the end of the episodes via this end node as the
next event (no time-delay prediction for this node however).

Our model and the baselines were tuned by a grid search
process on a validation set for each dataset (although the best
hyper-parameters obtained for Arti1 remained near optimal
for the other ones). For every model with an embedding
space (i.e., all except CTIC), we set its dimension to d =
50 (larger dimensions induce a more difficult convergence
of the learning without significant gain in accuracy). The
reported results for our model use a GRU module as the
recurrent state transformation function fφ.

We evaluate our models on three distinct tasks:

https://github.com/lampriers/recCTIC
https://github.com/lampriers/recCTIC
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Diffusion modelling The performances of the methods
are reported in term of negative log-likelihood of the test
episodes (i.e., NLL = −(1/|Dtest|)

∑
D∈Dtest log p(D)).

Lower values denote models that are less surprised by test
episodes than others, rendering their generalization ability.
The NLL measure depends on the model, but for each one
it renders the probability of an episode to be observed ac-
cording to the model, both on which nodes are eventually
infected and at what time. For our model which has to sam-
ple trajectories, the NLL is approximated via importance
sampling by considering p(D) ≈ 1

S

∑S
s=1

p(D,I(s))
qD(I(s))

com-
puted on S infector vectors sampled from qD. We used
S = 100 in our experiments;

Diffusion generation The models are compared on their
ability to simulate realistic cascades. The aim is to pre-
dict the marginal probabilities of nodes to be eventu-
ally infected. The results are reported in term of Cross-
Entropy (CE) taken over the whole set of nodes for each
episode: CE = 1

|Dtest|×|U|
∑
D∈Dtest

∑
u∈U log p(u ∈

UD)I(u∈U
D) + log p(u 6∈ UD)I(u6∈U

D), where I(.) stands
for the indicator function returning 1 if its argument is true,
0 else. p(u ∈ UD) is estimated via Monte-Carlo simula-
tions (following the generation process of the models and
counting the rate of simulations in which u is infected).
1000 simulations are performed for each test episode in our
experiments.

Diffusion Path prediction The models are assessed on
their ability to choose the true infectors in observed dif-
fusion episodes. This is only considered on the artificial
dataset for which we have the ground truth on who infected
whom. The INF measure corresponds to the expectation of
the rate of true infectors chosen by the models: INF =

1∑
D∈Dtest

(|D|−1)

∑
D∈Dtest

∑
i∈{1,...,|D|−1} p(Ii =

inf(i,D)|D≤i), with inf(i,D) the true infector of the i-th
infected node in the episodeD. In the RNN baseline, their is
no infector selection mechanism, it is thus excluded from the
results for this measure. For models with attention (CYAN
and DAN), we consider the attention weights as selection
probabilities. For cascade based models which explicitly
model this, we directly use the corresponding probability
p(Ii = inf(i,D)|D≤i). In our model, this corresponds to
an expectation over previous infectors in the cascade (i.e.,
1
S

∑S
s=1 p(Ii = inf(i,D)|D≤i, I(s)

<i )), with I(s) the s-th
sampled vector from qD.

For each task, we report results with different amounts of
initial observations from test episodes: infections occurred
before a given delay τ from the start of the episode are
given as input to the models, from with they infer internal
representations, evaluation measures are computed on the
remaining of the episode. In tables 1 to 4, τ0 means that

NLL τ0 τ1 τ2 τ3
rnn 19,72 14,55 11,78 7,65
cyan 18,78 13,62 11,04 7,09
cyan-cov 19,55 14,35 11,56 7,41
dan 18,71 13,49 10,86 6,84
ctic 20,08 14,26 10,18 5,99
embCTIC 19,90 14,13 10,11 5,97
recCTIC 17,39 11,59 8,31 4,97
CE τ0 τ1 τ2 τ3
rnn 79,0 21,0 14,2 9,3
cyan 86,9 19,6 14,4 9,4
cyan-cov 91,7 27,8 19,7 12,4
dan 97,9 98,6 75,7 43,8
ctic 63,1 23,2 24,7 21,8
embCTIC 65,8 22,6 17,2 12,1
recCTIC 68,7 15,9 11,2 8,3
INF τ0 τ1 τ2 τ3
cyan 0,30 0,15 0,11 0,11
cyan-cov 0,29 0,14 0,10 0,10
dan 0,42 0,31 0,23 0,20
ctic 0,73 0,67 0,61 0,58
embCTIC 0,73 0,67 0,61 0,58
recCTIC 0,90 0,88 0,86 0,84

Table 1. Results on the artificial dataset.

nothing was initially observed, the models are not condi-
tioned on the start of the episodes. τ1 means that infections
at the first time stamp are known beforehand, prediction and
modeling results thus concern time-stamps greater than 1
(models are conditioned on diffusion sources). τ2 and τ3
mean that infections occurred respectively before a delay of
τ = maxT/20 and a delay of τ = maxT/10 from the start
of the episode are known and used to condition the models.
More details are given in the supplementary material.

4.2. Results

Results on the artificial dataset are given in Table 1. In this
well-fitted dataset, embedding the history for predicting the
future of diffusion looks of very great importance: our ap-
proach shows very significant improvements over all other
models on the three measures (except for CE with weak
conditioning). In this dataset there exists some hub nodes
through which most of the diffusion episodes transit, what-
ever the nature of the diffusion. This corresponds to a usual
setting in most of real-world (scale-free) networks. In that
case, the path of the diffusion contains very useful informa-
tion that can be leveraged to predict infections after the hub
node: the infection of the hub node is a necessary condition
for the infection of its successors, but not sufficient since
this node is triggered in various kinds of situations. Depend-
ing on who transmitted the content to it, different successors
are infected then. Markovian cascade models such as CTIC
or embCTIC cannot model this since infection probabilities
only depend on disjoint past events of infection, not on paths
taken by the propagated content. RNN-based models are bet-
ter armed for this, but their performances are undermined by
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NLL τ0 τ1 τ2 τ3
rnn 31,03 26,18 24,15 23,02
cyan 16,82 11,56 9,32 8,03
cyan-cov 21,36 16,83 14,50 13,31
dan 18,47 13,52 11,43 10,29
ctic 27,70 22,07 19,20 17,74
embCTIC 15,98 10,31 7,92 6,75
recCTIC 15,67 10,30 7,86 6,74
CE τ0 τ1 τ2 τ3
rnn 0,46 0,28 0,24 0,22
cyan 0,43 0,25 0,21 0,19
cyan-cov 0,43 0,23 0,20 0,17
dan 0,44 0.25 0,22 0,19
ctic 0,45 0,31 0,20 0,16
embCTIC 0,43 0,31 0,21 0,17
recCTIC 0,43 0,27 0,17 0,14

Table 2. NLL and CE results on Digg

their way of aggregating past information. Attention mech-
anisms of CYAN and DAN attempt to overcome this, but
look quite unstable with errors accumulating through time.
Our approach appears as an effective compromise between
both worlds, by embedding past as RNN approaches, while
maintaining the bayesian cascade structures of the data. Its
results on the INF measure are very great compared to the
other approaches, which highlights the very good ability for
uncovering the dynamics of diffusion, even for such com-
plex problems with strong entanglement between diffusion
episodes of different natures.

The good behavior of the approach is not only observed
on the artificial dataset, which has been generated by the
cascade model of CTIC on a graph of relationships, but also
on real-world datasets. Tables 2 to 4 report results on the
three real-world datasets. In these tables, we observe that
RNN based approaches have more difficulties to model test
episodes than cascade based ones. The attention mecha-
nism of the CYAN and DAN approaches allow them to get
sometimes closer to the cascade based results (especially
on Digg), but their performances are very variable from a
dataset to another. These methods are good for the task
they were initially designed - predicting the directly next
infection (this had been observed in our experimentations)-,
but not for modeling or long term prediction purposes. This
is a strong limitation since the directly next infection at a
given point does not help much to understand the dynamics
of a network. Our approach obtains better results than all
other methods in most of settings, especially for the dy-
namics modelling task (NLL), though infection prediction
results (CE) are also usually good compared with its com-
petitors. Interestingly, while embCTIC usually beats CTIC,
recCTIC often obtains even better results. This validates
that the history of nodes in the diffusion has a great im-
portance for capturing the main dynamics of the network.
Thanks to the black-box inference process and the recurrent
mechanism of our proposal, the propositional distribution

NLL τ0 τ1 τ2 τ3
rnn 27,58 28,98 18,62 17,15
cyan 29,59 30,04 30,04 18,79
cyan-cov 27,50 29,12 29,12 18,55
dan 32,35 25,02 21,97 20,39
ctic 23,92 17,88 13,31 12,28
embCTIC 24,71 18,02 13,58 12,39
recCTIC 21,72 14,08 11,29 10,34
CE τ0 τ1 τ2 τ3
rnn 0,59 0,37 0,30 0,28
cyan 0,59 0,37 0,31 0,29
cyan-cov 0,59 0,36 0,30 0,28
dan 0,58 0,26 0,26 0,24
ctic 0,58 0,25 0,31 0,28
embCTIC 0,59 0,26 0,30 0,28
recCTIC 0,59 0,24 0,21 0,20

Table 3. NLL and CE results on Weibo

NLL τ0 τ1 τ2 τ3
rnn 112,3 118,2 110,4 103,6
cyan 115,2 113,1 109,2 102,1
cyan-cov 95,58 95,05 93,64 90,20
dan 91,70 89,97 86,19 78,91
ctic 52,70 55,54 48,48 44,33
embCTIC 54,18 52,29 49,68 45,15
recCTIC 50,11 49,34 48,35 42,20
CE τ0 τ1 τ2 τ3
rnn 1,68 1,66 1,59 1,51
cyan 1,66 1,64 1,59 1,49
cyan-cov 1,61 1,59 1,52 1,39
dan 1,59 1,58 1,58 1,44
ctic 1,33 1,68 1,60 1,46
embCTIC 1,59 1,66 1,57 1,39
recCTIC 1,51 1,60 1,49 1,36

Table 4. NLL and CE results on Memetracker

qD is encouraged to resemble the conditionnal probability
of the full ancestors vector. Regarding the results, the in-
ference process looks to have actually converged toward
useful trajectories. This enables the model to adapt distribu-
tions regarding the diffusion trajectory during learning. This
also allows the model to simulate more consistent cascades
regarding sources of diffusion.

5. Conclusion
We proposed a recurrent cascade-based diffusion modeling
approach, which is at the crossroads of cascade-based and
RNN approaches. It leverages the best of both worlds with
an ability to embed the history of diffusion for prediction
while still capturing the tree dependencies underlying the
diffusion in network. Results validate the approach both for
modeling and prediction tasks. In this work, we based the
sampling of trajectories on a filtering approach where only
the past observations are considered for the inference of the
infector of a node. Outgoing works concern the development
of an inductive variational distribution that rely on whole
observed episodes for inference.
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