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Sorbonne University, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, 4 place Jussieu, 75005 Paris

ABSTRACT

Deep convolutional neural networks (CNNs) are now ubiq-
uitous in computer vision problems. However, these mod-
els usually describe very complicated functions of the input
images. For a number of application, it is of utmost impor-
tance to be able to explain the decisions of a network, e.g.
by highlighting the most relevant pixels in an image or a fea-
ture map w.r.t. a particular class. In this paper, we show that
CNNs locally describe piece-wise affine functions of each
pixel, whose coefficient and bias can be retrieved analyti-
cally. We apply our methodology on several popular CNNs
and draw interesting conclusions on the relative contributions
of pixels and biases for these networks.

Index Terms— Deep learning, deep neural networks, at-
tribution, pixel contribution, bias

1. INTRODUCTION AND RELATED WORK

Nowadays deep convolutional neural networks (CNNs) are
ubiquitous in computer vision. However, the lack of under-
standing behind these models makes them hard to interpret:
it is however important to know why a CNN predicts what it
does in order to trust the outcome of a deep learning-based
intelligent system. Ideally, that means that a CNN should jus-
tify its prediction by identifying relevant parts in an image.

A number of approaches try to solve this problem: one
particular way to deal with this [1] is to occlude a part of the
image and see if observe a drop in accuracy. However, this
method may need a lot of computation if we do not have any
prior knowledge of the localization of the object. Another
approach consists in estimating the contribution of each in-
dividual pixel (or features at different position) to the final
(e.g. classification) task and then find the most discriminative
parts. Nevertheless, there is no consensus on how to mea-
sure whether a pixel is discriminative or not. To this end, a
popular solution is to consider the partial derivation of the
classification score w.r.t the pixel as the importance of this
pixel. An example of this method is guided back-propagation
[2], which is however approximate as it essentially discards

This work was supported by the French National Agency (ANR) in
the frame of its Technological Research (DS0705) 2016 program (Deep in
France, project number ANR-13-CORD-0004).

Fig. 1. Visualization of piece-wise affine representation of a
simple neural network on a toy dataset of 2D generated points.

layer-wise negative contributions of the pixels. Authors in [3]
uses the absolute value of the gradient at pixel position as a
relevance score. Another caveheat of these methods is that
it measures how a small modification of this pixel can affect
the classification score, but not the contribution of this pixel
for classification. For instance, if we consider a binary clas-
sifier f(x1, x2) = x1x2 so that x = (x1, x2) ∈ R+ × R+

belongs to C1 if f(x) > 1. For an input x = (0.1, 20),
∂f
∂x1

= 20 > 0.1 = ∂f
∂x2

. In such a case, if we define the
gradient as the importance, then x1 is way more important
than x2. However, intuitively x2 = 20 is the main reason that
(0.1, 20) is classed toC1 and x1 = 0.1 actually has a negative
evidence for class C1. This simple example shows that both
the gradient and the values shall be used, which is a premise
of our work.

CAM [4] is a visualization method that is specific to ar-
chitectures where the last convolution layer is followed by a
global average pooling and then a fully connected layer, with
no bias. If we note fk(i, j) the activation of unit k in the last
convolution layer at spatial location (i, j), then the activation
after global average pooling is F k =

∑
i,j fk(i, j). For a

given class c, if we writewc
k the weight corresponding to class

c for unit k, then the classification score of class c is Sc =



∑
k w

c
kFk =

∑
i,j

∑
k w

c
kfk(i, j). In this case, it is thus pos-

sible to define the importance of the activation of pixel i, j in
feature map k for predicting class c as

∑
k w

c
kfk(i, j). How-

ever, this approach can only be used for specific architectures
and lacks genericity to describe many popular deep networks.

Grad-CAM [5] generalizes this notion to all kind of
CNNs. In this approach, the authors consider the coeffi-
cient wc

k as the importance of feature map k for predicting
class c. Since for an arbitrary CNN, the above formulation
does not hold, the authors propose an approximation of wc

k

by averaging partial derivations of the classification score for
class c w.r.t the activation of fk(i, j) as αc

k = 1
Z

∑
i,j

∂Sc

∂fk(i,j)

where Z is the sum of activations of feature map k. How-
ever, this approximation considers only the ’importance’ of
different feature maps but ignores the spatial information in-
side the feature map. This can lead to a dire approximation,
particularly when one wants to visualize the activations of
upstream feature maps. In this paper, we propose a method to
compute the exact contribution of each pixel of an image or
an intermediate feature map that holds for every ReLU-based
CNN. The rationale behind our method is that ReLU-based
deep networks are locally equivalent to an affine function.
Figure 1 illustrates this function obtained for a very simple
ReLU-based network with 3 hidden layers with 5 units each.
We apply our methods to several popular networks, show-
ing its interest for visualization as well as understanding the
network behavior. The contributions of this work are thus:

• We propose a new piece-wise affine representation
of deep neural networks for distinguishing pixel-wise
contributions in any feature map of a deep neural net-
work. Our formulation is mathematically exact for
ReLU-based deep networks.

• We apply our method for visualizing activations of
popular networks such as VGG-19 and ResNet-101.
We show both qualitatively and quantitatively that our
method outperforms GradCAM and empirically show
how batch normalization can bring robustness w.r.t.
small perturbations of the inputs.

2. DEEP NEURAL NETS WITH RELU ACTIVATION
ARE PIECE-WISE AFFINE FUNCTIONS

2.1. Structure of a feed-forward networks

In this paper, we focus on traditional feedforward deep neural
networks with piece-wise linear activation such as ReLU[6].
ReLU (g : x → max(0, x)) are widely used in modern net-
works, mainly because they offer good properties to avoid
gradient vanishing while accelerating training process. For
example VGG[7] and ResNet[8] all fall under this descrip-
tion. Consider a feed-forward deep neural network F . F can
be expressed as a composition of elementary operations of its

input X , i.e.:

F (X) = fout ◦ fL−1 ◦ ... ◦ f1(X) (1)

where fl is usually either a linear transformation, ReLU,
max/average pooling or batch normalization operator. All
these operators are piece-wise affine functions. As a conse-
quence, if we ignore the final softmax layer, a ReLU-based
network is a piece-wise affine function of its inputs since any
composition of piece-wise affine functions is still a piece-wise
affine function. In other words, the input space is partitioned
into a number of regions on which the network computes an
affine function.

2.2. Classification score decomposition

Let’s consider a ReLU-based neural network for a classifica-
tion problem (the same consideration holds for a regression
network). Given a input point X ∈ Rn, we are going to ex-
plain how to define the contribution of each component xi of
X . Mathematically, the network defines a piece-wise affine
function F : Rn → RC , where n is the input space dimen-
sion and C is the total number of classes. Several papers such
as [9] have studied the upper bound of the number of linear
regions. Since this number is finite and the intersection of lin-
ear regions is negligible, we can assume that X is not on the
intersection of two linear regions. Therefore, X is located in
the interior of a linear region V (X) and the restriction of F
to this region is an affine function F|V (X) defined as:

F|V (X) : V (X) ⊂ Rn → RC

Y 7→W|V (X)Y + b|V (X) (2)

where W|V (X) = (wc
i|V (X))c,i ∈ RC×n and b|V (X) =

(bc|V (X))c ∈ RC are constants. We note F c
|V (X) the c-th com-

ponent of function F which represent the classification score
of class c. According to Equation 2, F c

|V (X) is defined as :

F c
|V (X) : V (X) ⊂ Rn → R

Y 7→W c
|V (X)Y + bc|V (X)

=
∑
i

wc
i|V (X)yi + bc|V (X) (3)

In this case, it makes sense to define the contribution of
each variable. The contribution of variable xi to the classi-
fication score F c

|V (X) is Sc
xi

= wc
i|V (X)xi. S

c
xi
≥ 0 implies

that variable xi has a positive contribution to class c while
Sc
xi
< 0 means a negative contribution. Apart from the con-

tributions of each variable, there is a bias term bc|V (X) which
define a ’prior knowledge’ of all points in V (X). The larger
the bias is, the more robust the classification score will be w.r.t
a small perturbation of X . Note at this point that bc|V (X) is a
constant that depends on V (X), thus on the whole input X .



To sum it up, for any input X , the classification score of
class c can be decomposed into contribution of each variable
and a bias term. Moreover this decomposition is exact and
unique due to the piece-wise affine property of the network.

2.3. Weights and bias computation

In this section, we show how to compute W|V (X) and b|V (X)

efficiently for a given input X . Since for an affine function,
the coefficient in front of x is equal to the gradient, W c

|V (X)

can be easily calculated by a back-propagation:

W c
|V (X) = ∇F

c
|V (X)(X) (4)

and bc|V (X) can be obtained by:

bc|V (X) = F c
|V (X)(X)−W c

|V (X)X (5)

Then, the contribution of the variable xi to class c can be
calculated simply by:

Sc(xi) = wc
i|V (X)xi (6)

Thus, we show that the importance of variable xi is
wc

i|V (X)xi rather than the gradient wc
i|V (X). In other words,

a pixel is important if both its value and gradient are large,
which echoes the work of [10]. In the case of deep networks
used to solve computer vision problems, X is an image and
we can highlight the contribution of each of its pixels to F . In
the upcoming section, we show the interest of this approach
for visualization as well as understanding the network be-
havior. Also note that this decomposition can be applied at
the level of any feature map within the network because of its
compositional structure. (eg. fout◦fL−1◦...◦fl◦fl−1◦...◦f1
is also a piece-wise affine function of fl−1 ◦ ... ◦ f1)

3. EXPERIMENTS

In this Section, we show the interest of our method for visu-
alization as well as a comparison with the popular GradCAM
method, and use it to understand the behavior of several re-
cent deep architectures, such as VGG-19 (5 blocks of 2 to 4
convolutional layers that will be denoted as conv1,... conv5
in what follows), VGG-19-BN (same network but with extra
batch normalization layers) as well as ResNet-101.

3.1. Visualization and comparison with GradCAM

Figure 2 shows visualization of pixel-wise relevance of pix-
els from features maps at different levels of VGG-19 network,
relatively to the final classification (class “cauliflower” for the
two upper rows, and class “bull mastif” for the two lower
rows). For both our approach and GradCam, negative con-
tributions are discarded for visualization. For the last layers
(conv5), GradCAM and our method outputs similar results.

But for lower layers (conv4 and below), GradCAM is not pre-
cise as it involves spatial averaging of the gradients, which
leads to coarse approximations. By contrast, our method is
able to output more precise results, as the relevant regions are
concentrated on the interesting objects in both cases.

In order to quantify this difference, we conducted an ex-
periment on 100 randomly drawn images from Pascal VOC
dataset. For each image, we computed the pixel-wise rele-
vance of each pixel from the conv4 layer of VGG-19 network
(from which our method and GradCAM differ a lot) for both
our approach and GradCAM. Then, we select the 30% most
relevant pixels relatively to both methods and zero’ed out the
rest of the images. Finally, we applied a forward pass through
VGG-19 network and, for each image, measured the intersec-
tion of the top-5 most relevant classes outputted by VGG-19
between (a) the whole image and the image masked with the
relevance scores provided by our method, and (b) the whole
image and the image masked with the relevance scores pro-
vided by GradCAM. This way, we measured the fidelity of
the prediction outputted using only the most relevant infor-
mation in the image, as highlighted by (a) our method, and
(b) by GradCAM. We observed that in the first case, the top-5
intersection score was 35% vs 17% for GradCAM. This illus-
trates that our method more precisely highlights pixel-wise
contributions to the classification score.

3.2. Bias as a robustness metric

We use our piece-wise affine decomposition of deep neural
networks to investigate the importance of the bias term in the
decomposition. Figure 3 shows the ratio between biases and
the classification scores averaged among the 20 classes on
300 randomly sampled images from Pascal VOC 2012 valida-
tion set. We experiment with 3 popular architectures, namely
VGG-19, VGG-19 with batch normalization and ResNet pre-
trained on ImageNet. First, we see that for the 3 networks,
the bias is relatively important (from approximately 0.6 to 1
time the classification score) in the early stages of the network
(first convolutional layers). It is far more preponderant for
VGG-19-BN and ResNet-101 networks, indicating a greater
robustness w.r.t. small perturbation of the input image or first
feature maps. We also observe a steady decrease in bias im-
portance for VGG-19 as we go upstream in the convolutional
layers, while this decrease is far more abrupt for VGG-19-BN
and ResNet towards the final classification layers. This means
that batch normalization is a crucial element to put more em-
phasis on the bias versus the pixel-wise contribution. This,
in turn, allows the networks to be more robust to small per-
turbation of its inputs or embeddings: this explains why, for
instance, networks trained with batch normalization are more
robust to e.g. adversarial attacks, at remarked in [11].
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Fig. 2. Visualization of our method on two held-out images and VGG-19 network, and comparison with gradCAM. The deeper
we go in the convolutional layers (Conv1 being the deepest), the more spread out the pixels highlighted by GradCAM are. Our
method, however, is more precise as pixels belonging to the objects are relevant to the classification score.

Fig. 3. Bias/score ratio as a function of the layer depth for popular deep architectures. Left to right: VGG-19, VGG-19 (with
batch normalization), and ResNet-101.

4. DISCUSSION AND CONCLUSION

In this paper, we showed that ReLU-based deep neural net-
works are locally equivalent to piece-wise affine functions of
its input. Given an image, this function can be calculated ex-
plicitly through gradient computation, providing a pixel-wise
contribution to the classification score, as well as a global bias
term. We show the interest of our method for vizalization of

pixel-wise contribution at different levels of the network. Fur-
thermore, we compare the pixel-wise contributions and biases
for several networks, and show that deep networks trained
with batch normalization have stronger biases, that decreases
more abruptly towards the final classification layers. Thus
batch normalization increase the robustness of the networks
w.r.t. small perturbations of the images or the intermediate
feature maps.
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