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Glucocorticoids are steroid hormones produced by the adrenal cortex and are

essential for the maintenance of various metabolic and homeostatic functions. Their

function is regulated at the tissue level by 11β-hydroxysteroid dehydrogenases and

they signal through the glucocorticoid receptor, a ligand-dependent transcription

factor. Clinical observations have linked excess glucocorticoid levels with profound

metabolic disturbances of intermediate metabolism resulting in abdominal obesity,

insulin resistance and dyslipidaemia. In this review, we discuss the physiological

mechanisms of glucocorticoid secretion, regulation and function, and survey the

metabolic consequences of excess glucocorticoid action resulting from elevated

release and activation or up-regulated signaling. Finally, we summarize the reported

impact of weight loss by diet, exercise, or bariatric surgery on circulating and

tissue-specific glucocorticoid levels and examine the therapeutic possibility of reversing

glucocorticoid-associated metabolic disorders.
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GLUCOCORTICOID SECRETION

Glucocorticoid hormones are a class of corticosteroids, produced by the adrenal cortex primarily
under the control of the hypothalamic-pituitary-adrenal (HPA) axis (1). Briefly, corticotropin-
releasing hormone (CRH) and vasopressin are released from the hypothalamus and synergistically
stimulate the secretion of stored adrenocorticotropic hormone (ACTH) from corticotrope cells
in the anterior pituitary gland. Following this, ACTH is transported by the blood to the adrenal
cortex, where it rapidly stimulates biosynthesis of corticosteroids such as cortisol from cholesterol
(2). However, it recently became apparent (3) that the fine-tuning and regulation of the adrenal
system is also controlled by ACTH-independent mechanisms. These include a temporal lag
between stimulus-induced changes in circulating ACTH and in corticosteroid levels (4), adrenal
corticosteroidmetabolism and kinetics, and plasma protein binding (5–7).Moreover, dysregulation
is observed in glucocorticoid secretion under pathological conditions (8, 9). An example of this
is in obesity, where several studies in humans report (8, 10–12) an increase of cortisol secretion
directly from the adrenal gland, yet the circulating plasma levels are normal, potentially due to
higher metabolic clearance rate.

A variety of growth factors, neuropeptides, cytokines and adipokines have been demonstrated to
affect adrenal secretions. Correspondingly, adrenocortical cells express receptors for each of these
factors (13, 14). In vitro studies found that vital glucose regulating-peptides also have the capacity
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to regulate ACTH-stimulated glucocorticoid secretion. More
specifically, insulin inhibits cortisol secretion from bovine
adrenocortical cells (15), while glucagon inhibits cortisol
secretion from human adrenocortical cells (16, 17). The
satiety factor leptin was found to directly regulate adrenal
secretions via its receptors on adrenocortical cells (18, 19).
Likewise, the gut-derived incretin hormone glucagon-like
peptide 1 (GLP-1) was also shown to inhibit glucocorticoid
release from rat adrenal cortex in response to ACTH, by
decreasing the activation of adenylate cyclase and by impairing
the late steps of glucocorticoid synthesis (17). Nonetheless,
intracerebroventricular, intravenous, and intraperitoneal
administration of GLP-1 increased circulating levels of cortisol
in rats, a change preceded by an increase in ACTH levels (20, 21).
The mechanisms through which circulating GLP-1 activate the
HPA axis remain to be elucidated, and may provide further
evidence for the beneficial effect of GLP-1 receptor agonists in
obesity and type 2 diabetes (T2DM) treatment.

11β-Hydroxysteroid Dehydrogenases
Although the regulation of glucocorticoid secretion is an
important means of their action, the effects of glucocorticoids
on target tissues such as liver and adipose tissue are dependent
on metabolism by 11β-hydroxysteroid dehydrogenases (11β-
HSDs), with the notable exception of pancreatic β-cells (22).
11β-HSD1 is present in most cells and tissues and acts
predominantly as an NADPH-dependent reductase to regenerate
the active glucocorticoid receptor (GR) ligand cortisol (or
corticosterone, in rodents) from inactive cortisone (Figure 1)
(23). Conversely, 11β-HSD2 inactivates cortisol by converting it
into cortisone, thereby protecting the mineralocorticoid receptor
from cortisol ligands. 11β-HSD2 is largely expressed in the
kidney, placenta, and colon whereas the principle sites of 11β-
HSD1 expression are liver, adipose tissue and muscle (24).
The A-ring reductases, 5-reductase types 1 and 2 (5R1 and
5R2) convert cortisol and cortisone to their dihydrometabolites,
and these are next converted to tetrahydrometabolites through
the action of 3-hydroxysteroid dehydrogenase (25, 26). Total
glucocorticoid production can be estimated by analyzing the
sum of glucocorticoid metabolites in a 24 h urinary sample. The
relative excretion of cortisol to cortisonemetabolites [(5a-THF+

THF+ a-cortol)/(THE+ a-cortolone)] reflects the global activity
of 11β-HSD 1 (27).

Glucocorticoid metabolism at the tissue level is dysregulated
in human obesity, with increased 5-reductase activity and
decreased cortisol levels in the liver (28–30). Contrariwise,
11β-HSD1 activity is increased in adipose tissue, which
increases tissue glucocorticoid levels. Mice overexpressing 11β-
HSD1 in adipose tissue develop visceral obesity, insulin
resistance, dyslipidaemia, and hypertension (31), while liver-
specific 11β-HSD1 overexpression results in insulin resistance
and hypertension, but not obesity (32). Interestingly, 11β-HSD1
appears to be absent from pancreatic α and β- cells though
present in other cell types in the mouse and human islet
(22, 33). Selective 11β-HSD1 inhibitors have been shown to
lower glucose intolerance and reduce food intake and weight
gain in hyperglycaemic mouse models (34–36). 11β-HSD1

knockout mice are resistant to hyperglycaemia when fed a
high-fat diet and show reduced expression of mRNA encoding
the key hepatic gluconeogenic enzyme phosphoenolpyruvate
carboxykinase (PCK1) (37). Overall, these studies place 11β-
HSD1 in a central position of cortisol metabolism and suggest
that its inhibition may be a key target for diabetes and
obesity treatments, especially as a mediator of insulin sensitivity.
Nonetheless, the differential regulation of11β-HSD1 between
organs implies a more complex pathway that may require equal
attention to be paid to 11β-HSD2.

Glucocorticoid Receptors (GR)
The function of glucocorticoids, both at a physiological and
pharmacological level, is mediated by the GR. The GR is
a member of the nuclear receptor superfamily of ligand-
dependent transcription factors and its gene is regulated by
both developmental and tissue-specific factors (38). Activated GR
controls the expression of thousands of genes, either by inducing
or inhibiting their transcription through DNA binding (39–41).
The GR is composed of three main domains; the N-terminal
transactivation, the central DNA-binding and the C-terminal
ligand binding domains, with the central domain containing two
zinc fingers. In the absence of glucocorticoids, GR is located
primarily in the cytoplasm inside a large multi-protein complex.
Once glucocorticoids are bound, GR dissociates from the
complex and exposes two nuclear localization signals. GR then
rapidly translocates into the nucleus through nuclear pores and,
once inside, binds directly to glucocorticoid-responsive elements
(GRE) and regulates the expression of target genes (Figure 1)
(42). Our understanding of the role of the GR protein has
changed dramatically within the last decade, as it is now accepted
that the GR gene can be spliced into a large group of receptor
isoforms, each with a different expression and function that
widens the glucocorticoid diversity of GR action (43). Moreover,
although this review focuses on the genomic mechanism of
glucocorticoid function, several studies have demonstrated a
rapid, non-genomic actionmechanism that does not involve gene
expression alteration and may involve an, as yet uncharacterised,
receptor located at the plasma membrane (44–46).

Glucocorticoids acting through the GR regulate glucose
metabolism in the liver, skeletal muscle, adipose tissue, and
the pancreas, by controlling the expression of key enzymes.
However, in obesity, cortisol levels remain at near normal
concentrations, pointing to intracellular control of GR action
in these circumstances. This suggests that GR polymorphisms
might be responsible for the pathophysiology and evolution
of obesity and diabetes (47, 48). The GR levels and activity
have also been linked to diabetes pathogenesis, as increased
hepatic GR mRNA induces activation of phosphoenolpyruvate
carboxykinase (PEPCK), which results in hyperglycaemia and
insulin resistance in diabetic obese mice and obese Zucker
rats (49, 50). This observation was also made in human
skeletal muscle, as increased GR was linked to the metabolic
syndrome (51). Furthermore, general and hepatic inactivation
of GR, achieved through the use of antagonists, was shown
to improve glucose tolerance and insulin resistance in diabetic
animals (52–54). The mass emerging observations on GR
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FIGURE 1 | Glucocorticoid metabolism. Cortisone is activated to cortisol by the enzyme 11β-HSD1. Conversely, 11β-HSD2 inactivates cortisol by converting it into

cortisone. GR is found in the cytosol. Cortisol binds on the GR and the ligand-receptor complex translocates to the nucleus where in can bind on GRE or to different

transcription factors such as AP-1. Figure was created using Servier Medical Art.

polymorphism could further indicate which receptor subtype can
be a disease risk indicator, as well as improve specificity for GR
antagonism treatment.

METABOLIC FUNCTION OF
GLUCOCORTICOIDS

Glucocorticoids are involved in metabolic, inflammatory,
cardiovascular, and behavioral processes. Thus, as mentioned
above, they modulate the transcription of a variety of genes,
including cytokines and chemokines, receptors, enzymes,
adhesion molecules, and inhibitory proteins. Clinical
observations linking high glucocorticoid levels to the metabolic
syndrome provided evidence for their role on diabetes and
obesity (55). The metabolic effects of glucocorticoids are linked
to physiological mechanisms that are associated with hepatic and
peripheral insulin resistance, hyperglycaemia, and dyslipidaemia.
In the liver, glucocorticoids stimulate gluconeogenesis by
activating PEPCK and glucose-6-phosphatase (G6Pase) (56).
Moreover, in the fasting condition, glucocorticoids stimulate
lipolysis in adipocytes, resulting in generation of glycerol to be
utilized in gluconeogenesis and free fatty acids to be oxidized

and get used as energy (57, 58). Although glucocorticoids are
important for the maintenance of lipid homeostasis, excess
glucocorticoids can result in an increase the circulating free fatty
acids and induce lipid accumulation in skeletal muscle and liver,
both of which are associated with insulin resistance (59–61).
In rat skeletal muscle, glucocorticoid excess can also inhibit
the translocation of GLUT4 glucose transporters to the plasma
membrane in response to insulin, resulting in insulin resistance
(Figure 2) (62). In human adipose tissue, glucocorticoids induce
adipocyte differentiation leading to increased adiposity and
insulin resistance (63–65).

The link between glucocorticoids and T2DM is strong, yet
the effect of glucocorticoids on the endocrine pancreas remains
controversial. The study of transgenic mice overexpressing the
GR selectively in the β-cell indicated that glucocorticoids may
directly inhibit insulin release in vivo (66). Correspondingly,
several in vitro studies have demonstrated an inhibitory effect
of glucocorticoids on mouse islets (67, 68). The function of
11β-HSD1 in mouse and human islets has been examined
in vitro, and data suggest direct control over α-cell glucagon
release and a paracrine effect on insulin secretion (69). In islets
obtained from diabetic obesemice, glucocorticoid administration
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FIGURE 2 | Metabolic functions of glucocorticoids. The effects of increased

cortisol secretion on the endocrine pancreas, adipose tissue, liver, muscle, and

gastrointestinal system. Figure was created using Servier Medical Art.

up regulated 11β-HSD1 causing impaired insulin secretion.
This effect was abolished by GR antagonist or an 11β-HSD1
inhibitor (70).

Glucocorticoids have also been associated with pancreatic
development. Treatment of fetal rats with dexamethasone
reduced β-cell insulin content and examination of embryonic
pancreata from glucocorticoid-treated animals revealed a
decrease of insulin-producing cells and an increase in exocrine
cells, possibly the result of down-regulation of pancreas
maturation transcription factors such as Pdx1, Pax6, and
Nkx6.1 (71, 72). However, islets from Wistar rats treated with
dexamethasone for 5 days showed an enhanced insulin release
in response to glucose, with an increased number of insulin
granules docked at the plasma membrane observed in β-cells
(73). Transgenic mice overexpressing 11β-HSD1 selectively to
the β-cell displayed a reversal of high fat-induced β-cell failure.
This was due to the expansion of β-cell population and the
function of small islets, the latter being linked to protein kinase A
and p21 signaling pathways (74). Finally, corticosterone, cortisol,
and cortisone suppressed voltage-dependent Ca2+ channel
activity in human and rodent β-cells, while in parallel amplifying
cAMP signals and increasing the number of membrane-docked
insulin secretory granules. Interestingly, no changes were
observed in glucose-stimulated insulin secretion nor in the
maximal ATP/ADP responses to glucose (75).

GLUCOCORTICOIDS AND WEIGHT LOSS

Diet and Exercise
Although a link between glucocorticoids and obesity has been
reported in many studies, it is still unclear what changes
following weight loss. Tomlinson et al. (76) reported the effects
of weight loss on glucocorticoids in patients with obesity on
very low calorie diet. Even though circulating cortisol and
cortisone concentrations did not change with weight loss, the
0900h cortisol/cortisone ratio increased, indicating a shift in
set-point toward cortisol generation consistent with increased
11β-HSD1 activity. Expression of 11β-HSD1 in whole adipose
tissue did not change with weight loss but did increase in
isolated adipocytes. No other corticosteroid was affected. A
follow-up of this study (77) showed that total glucocorticoid
secretion in this scenario decreased post-diet-induced weight
loss. However, urinary steroid metabolite ratios that reflect 11β-
HSD1 activity did not change. Moreover, increased cortisol
availability within adipose tissue interstitial fluid was shown after
weight loss.

Inmen with weight loss following 6months of dieting, cortisol
production rate, free cortisol levels and metabolic clearance rate
did not change when compared to baseline (78). Nonetheless,
with greater weight loss and decreased body fat, both cortisol
production and free cortisol levels increased, whilst adipose
11β-HSD-1 decreased, compared to baseline (78). One week
of caloric restriction in men also failed to reveal any change
in cortisol levels (79). These results were further investigated
in overweight/obese post-menopausal women following diet-
induced weight loss with contradictory results. In one study
(80), 11β-HSD1 expression in adipose tissue was decreased post-
weight loss and this reduction was correlated with a reduction
in BMI between baseline and 6 months post-diet initiation. In
contrast, a previous study showed that weight reduction did not
impact gene expression levels of 11β-HSD1 in adipose tissue (81).

Glucocorticoids respond acutely to changes in nutritional
status, with cortisol levels increasing within minutes following a
meal (82, 83). Given the discrepancies between studies, as well
as differences in human and rodent data, it became clear that
the type of meal in each diet had to be specified and specific
dietary macronutrients were investigated with regards to their
effect on metabolism (84). A high fat-low carbohydrate diet
increased whole body 11β-HSD1 activity and decreased 5a- and
5b-reductase activities in men, compared with a moderate fat-
moderate carbohydrate diet, with no effect on subcutaneous
adipose tissue 11β-HSD1 (84). In rodents, although there was no
difference between low carbohydrate and moderate carbohydrate
diets, hepatic 11β-HSD1 mRNA was reduced in both diets when
compared with a high fat Western diet (85).

Apart from diet, exercise is a common treatment for weight
loss. However, exercise is also a form of metabolic stress which
can stimulate the HPA axis and lead to increased levels of
circulating glucocorticoids (86, 87). The importance of this
has been investigated by separating acute intense and chronic
voluntary exercises in rats on treadmill running, where intense
exercise studies have shown higher corticosterone levels in urine,
enlargement of the adrenal glands and reduced adrenal sensitivity
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to ACTH, as indicated by low ACTH-to-glucocorticoid ratio (88,
89), whether regular and voluntary exercise increased adrenal
sensitivity, demonstrating that long-term training balances
glucocorticoid fluctuations (86, 90).

Although increased glucocorticoid concentration can indeed
have a negative impact in pancreatic β-cells alone (91), regular
exercise can improve insulin sensitivity and glucose tolerance
and this could be attributed to tissular, rather than systemic,
glucocorticoid metabolism. It has previously been shown that
exercise can lead to reduced expression of the glucocorticoid
receptor and 11β-HSD1 in muscle and liver, yet unchanged
circulating cortisol, in hamsters (87). Importantly, previous
studies in humans and rodents have demonstrated that various
types of exercise are able to improve insulin sensitivity, by
recovering the function of specific insulin signaling proteins such
as Akt and IRS-1 and also augment GLUT-4 expression (92–
97). Insulin-stimulated glucose uptake in muscle, impaired by
exposure to glucocorticoids, can also be enhanced by exercise.
The effects of exercise appear to involve increased activation of
insulin signal via Akt and IRS1 in rodents, as well as slow the
glucocorticoid-induced muscle atrophy. This appears to improve
through a combination of increases inmTOR and its downstream
target p70S6K protein, and a small increase in MuRF-1 protein
level, the latter a regulator of proteasome-dependent degradation
of muscle proteins (94–96). To date, studies have been able
to demonstrate that exercise is able to attenuate exogenous
glucocorticoid-induced hyperglycaemia, while less is known
about its effect on endogenous glucocorticoids.

Overall, reporting on the relationship between cortisol levels,
obesity and weight loss has been challenging, especially if cortisol
was measured in the serum, urine or saliva which would provide
a snapshot in time rather than continuous reporting. This is most
likely due to the fact that cortisol is secreted in a pulsatile manner,
affected by the circadian rhythm, environmental circumstances
and stress (98), which could even be diet-induced. In addition,
gender and adiposity location also appear to have an effect
on results. It is therefore important to remember that not all
patients with obesity will demonstrate similar cortisol secretion
and metabolism, especially at baseline level. Chronic cortisol
measurement may provide a more appropriate and ubiquitous
way to report changes in glucocorticoid metabolism, potentially
by using hair cortisol measurements (99–102), which has been
shown to be a novel and accurate way to measure average
systemic cortisol levels.

Bariatric Surgery
Bariatric surgery, and particularly Roux-en-Y gastric bypass
(RYGB), causes sustained weight loss in individuals with morbid
obesity, as well as dramatic and rapid improvement of T2DM,
dyslipidaemia, hypertension and a significant reduction of
cardiovascular disease and death (103). Although the effects of
RYGB on diabetes were initially attributed to the substantial
weight loss subsequent to post-operative restriction of nutrient
intake and/or absorption, the same effect was demonstrated
in rodents that did not experience weight loss, suggesting a
mechanism of action that is weight independent. Moreover, the

improvements are observed within hours and days, long before
substantial weight loss occurred.

In an effort to understand the underlying mechanisms of
diabetes remission, this observation has since led to numerous
investigations on the glucoregulatory role of the gastrointestinal
tract, including the role of an increase in observed post-operative
GLP-1 concentration. This includes the “hindgut hypothesis”
which holds that euglycaemic effects are derived from the
expedited delivery of nutrients to the distal intestine, where
GLP-1 is primarily secreted, and therefore enhances the insulin
signal that improves glucose metabolism (104). Few data are
available regarding the specific modifications in glucocorticoid
metabolism after bariatric surgery in human obesity. Given
the numerous endocrine changes following surgery, one might
expect to have a conclusive picture of glucocorticoid metabolism
post-operatively. The fact that this is the case due to different
surgical procedures, as well as alterations of the same procedures,
which can cause perioperative stress and different levels of caloric
restriction and weight loss.

Several observations have linked bariatric surgery to
glucocorticoid metabolism, notably in the context of post-
operative adipose tissue reduction. Woods et al. investigated
the activity and expression of 11β-HSD1 in hepatic and adipose
tissue before and ∼14 months after RYGB, revealing a post-
operative increase in hepatic 11β-HSD1 activity, as inferred
from a by raised serum cortisol/costisone ratio (F/E) (105).
However, subcutaneous adipose tissue 11β-HSD1 activity was
decreased, as showed by the tissue’s F/E. Moreover, total urinary
cortisol metabolites were reduced, suggesting a reduction
in HPA axis activity (105). The decrease of subcutaneous
adipose tissue 11β-HSD1 activity at 1 and 2 years after gastric
bypass surgery in humans has also been reported through both
mRNA expression and urine and adipose tissue F/E, along with
positive changes in insulin sensitivity, circulating leptin, and
adiponectin, and peripheral glucocorticoid metabolism (106–
108). Additionally, intra-adipose levels of cortisone, rather than
cortisol, demonstrated the most obvious changes, suggesting that
the altered glucocorticoid metabolism after weight loss may be
an adaptive response to insufficient levels of adipose cortisol.
Of note, supplementary data in Methlie et al. (108), show that
obese patients at 1 year post-RYGB demonstrated a significant
reduction of adipose tissue F/E, when compared to non-obese
controls. This observation points to an effect potentially caused
by more than surgery-induced weight loss and may include
the gastrointestinal tract manipulation itself. One potential
mechanism could be the effect of post-operatively increased
GLP-1 on glucocorticoid regulation, as discussed before. Taken
together, the reduction in glucocorticoid exposure in subjects
with obesity may represent an additional possible contribution
to the health benefits of bariatric surgery.

DISCUSSION

Glucocorticoids are steroid hormones that are crucial for the
preservation of homeostasis. Their physiological and therapeutic
effects have made them key targets for drug development,
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primarily as anti-inflammatory agents. Nonetheless, their side
effects can be severe, especially in terms of metabolism. In this
review, we provide an overview of the physiology glucocorticoid
regulation, metabolism, and signaling pathways, as well as their
effects on obesity and diabetes. We also discussed the ability of
weight loss to reverse some of these effects.

Overall, high glucocorticoid levels are associated with
hyperglycaemia and insulin resistance and affect key metabolic
organs such as the pancreas, liver, muscle and adipose tissue
(28, 30, 107, 109). Of note, the exact mechanism of glucocorticoid
action remains controversial in pancreatic islets, especially
in insulin secretion during glucocorticoid treatment (66–68).
Glucocorticoid metabolism is largely controlled by 11β-HSD1
and GR and has been shown to be strongly linked to Body Mass
Index, as intra-adipose cortisol levels are increased relative to
inactive cortisone in the obese state, even if circulating cortisol
levels remain stable. Weight loss through diet, exercise, and
bariatric surgery is linked to reduced glucocorticoid secretion
and function, possibly through the recovery of insulin sensitivity
and function of insulin sensitivity proteins. In all three weight
loss interventions, the expression levels of 11β-HSD1 in adipose
tissue and liver remains a matter of debate, as studies report both
increasing and decreasing levels (78–80, 107, 108). Moreover,
acute cortisol measurements are presented, through serum and
plasma samples. It is therefore vital to measure chronic cortisol
levels to get a longer-term picture of cortisol alterations, and
investigate the role of 11β-HSD1 and GR following rapid weight
loss in patients, especially following bariatric surgery which is

currently the least published field. This will help us determine
if the positive observations on glucocorticoid metabolism are
due to weight loss or if direct or indirect gastrointestinal
manipulation can also have an effect.
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