Canopy chlorophyll fluorescence applied to stress detection using an easy-to-build micro-lidar - Sorbonne Université Accéder directement au contenu
Article Dans Une Revue Photosynthesis Research Année : 2019

Canopy chlorophyll fluorescence applied to stress detection using an easy-to-build micro-lidar

Résumé

LEDFLEX is a micro-lidar dedicated to the measurement of vegetation fluorescence. The light source consists of 4 blue Light-Emitting Diodes (LED) to illuminate part of the canopy in order to average the spatial variability of small crops. The fluorescence emitted in response to a 5-μs width pulse is separated from the ambient light through a synchronized detection. Both the reflectance and the fluorescence of the target are acquired simultaneously in exactly the same field of view, as well as the photosynthetic active radiation and air temperature. The footprint is about 1 m 2 at a distance of 8 m. By increasing the number of LEDs longer ranges can be reached. The micro-lidar has been successfully applied under full sunlight conditions to establish the signature of water stress on pea (Pisum Sativum) canopy. Under well-watered conditions the diurnal cycle presents an M shape with a minimum (Fmin) at noon which is Fmin > Fo. After several days withholding watering, Fs decreases and Fmin < Fo. The same patterns were observed on mint (Menta Spicata) and sweet potatoes (Ipomoea batatas) canopies. Active fluorescence measurements with LEDFLEX produced robust fluorescence yield data as a result of the constancy of the excitation intensity and its geometry fixity. Passive methods based on Sun-Induced chlorophyll Fluores-cence (SIF) that uses high-resolution spectrometers generate only flux data and are dependent on both the 3D structure of vegetation and variable irradiance conditions along the day. Parallel measurements with LEDFLEX should greatly improve the interpretation of SIF changes.
Fichier principal
Vignette du fichier
Moya2019_Article_CanopyChlorophyllFluorescenceA.pdf (3.78 Mo) Télécharger le fichier
Origine : Publication financée par une institution
Loading...

Dates et versions

hal-02512338 , version 1 (19-03-2020)

Identifiants

Citer

Roberto Quiroz, Ismael Moya, Hildo Loayza, Abderrahmane Ounis, Yves Goulas, et al.. Canopy chlorophyll fluorescence applied to stress detection using an easy-to-build micro-lidar. Photosynthesis Research, 2019, 142 (1), pp.1-15. ⟨10.1007/s11120-019-00642-9⟩. ⟨hal-02512338⟩
106 Consultations
86 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More