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Abstract

We consider a class of linear second order differential equations with damping and
external force. We investigate the link between a uniform bound on the forcing term
and the corresponding ultimate bound on the velocity of solutions, and we study the
dependence of that bound on the damping and on the “elastic force”.

We prove three results. First of all, in a rather general setting we show that different
notions of bound are actually equivalent. Then we compute the optimal constants in
the scalar case. Finally, we extend the results of the scalar case to abstract dissipative
wave-type equations in Hilbert spaces. In that setting we obtain rather sharp estimates
that are quite different from the scalar case, in both finite and infinite dimensional
frameworks.

The abstract theory applies, in particular, to dissipative wave, plate and beam equa-
tions.

Mathematics Subject Classification 2010 (MSC2010): 35B40, 34D05, 34C11,
35L90.

Key words: linear equation, second order differential equation, dissipative equation,
forcing term, asymptotic behavior of solutions, bounded solutions, ultimate bound.



1 Introduction

The present paper deals with optimal estimates for the ultimate bound of solutions to
a class of evolution problems with bounded source term.

Our starting point is a paper by W. S. Loud [14] concerning the second order ordinary
differential equation

u′′(t) + cu′(t) + g(u(t)) = f(t), (1.1)

which has been the object of many researches since the pioneering papers of G. Duffing
who considered the case where g is a polynomial of degree 3. Many texts have been
written on this special case even recently, see for example [12]. Vector generalizations
of this equation in both finite and infinite dimensional settings appear naturally, with
or without forcing terms, in the context of stability theory for beams, cranes and more
recently suspension bridges, compare for example [3, 6, 7]. Before stating our present
results, we shall recall now only the researches dealing with the linear or “single well”
nonlinear cases.

Previous results In [14] the following asymptotic bounds are proved.

Theorem A (see [14, Theorem 1]). Let us assume that

• c is a positive real number,

• g : R → R is a function of class C1 such that g(0) = 0 and

g′(s) ≥ b ∀s ∈ R (1.2)

for some positive real number b,

• f ∈ L∞((0,+∞),R) is a bounded forcing term.

Then every solution to (1.1) satisfies

lim sup
t→+∞

|u(t)| ≤ min

{

1

b
+

4

c2
,
1

b
+

4

c
√
b

}

‖f‖L∞((0,+∞),R), (1.3)

and

lim sup
t→+∞

|u′(t)| ≤ 4

c
‖f‖L∞((0,+∞),R). (1.4)

Both estimates can be refined by replacing the L∞ norm of f by the limsup at infinity
of f , intended (as we are dealing with functions defined up to a negligible set) as

lim sup
t→+∞

|f(t)| := lim
T→+∞

‖f‖L∞((T,+∞),R).

We also observe that, at least in the linear case where g(s) = bs, the left-hand sides
of (1.3) and (1.4) do not depend on the solution u(t), but just on the forcing term
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f(t). This follows from the decay to zero of solutions to the corresponding homogeneous
equation.

The proof of (1.3) and (1.4) provided in [14] relies on a delicate geometric argu-
ment in the phase space, and it is by no means evident how this argument could be
extended to vector equations, and even less to infinite dimensions. In order to over-
come this difficulty, more than 50 years later the authors of [4, 5] tried to recover the
same estimates by a purely analytical method based on differential inequalities (energy
estimates), obtaining the following result.

Theorem B (see [5, Theorem 1.1, Theorem 2.1, and Proposition 2.4]). Let us consider
equation (1.1) under the same assumptions of Theorem A.

Then every solution satisfies

lim sup
t→+∞

|u(t)| ≤ max

{

1

b
,

2

c
√
b

}

lim sup
t→+∞

|f(t)|, (1.5)

and

lim sup
t→+∞

|u′(t)| ≤



















(

2

c
+

1√
b

)

lim sup
t→+∞

|f(t)| if c < 2
√
b,

2√
b
lim sup
t→+∞

|f(t)| if c ≥ 2
√
b.

(1.6)

As for estimates on u(t), it is not difficult to check that (1.5) improves (1.3) for all
positive values of b and c. The best constant for which an ultimate bound of the form
(1.5) is true was computed in [11] in the case of the linear equation

u′′(t) + cu′(t) + bu(t) = f(t). (1.7)

The result is the following (see also [8]).

Theorem C (see [11, Theorem 2.1]). Let b and c be positive real numbers.
Then every solution to (1.7) satisfies

lim sup
t→+∞

|u(t)| ≤



















1

b
coth

(

cπ

2
√
4b− c2

)

· lim sup
t→+∞

|f(t)| if c < 2
√
b,

1

b
lim sup
t→+∞

|f(t)| if c ≥ 2
√
b,

(1.8)

and this estimate is sharp for all positive values of b and c.

As for estimates on u′(t), it turns out that (1.6) improves (1.4) only when c ≤ 2
√
b.

Even worse, when b is fixed, the constant 4/c of Loud’s estimate (1.4) tends to 0 as
c→ +∞, while this in not true in (1.6).

This is quite difficult to interpret. On the one hand, Loud’s method does not rely
on any conditions on c. On the other hand, the optimality of the constant in (1.8)
suggests that there are actually two distinct regimes. This separation is natural also if
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we consider the linear equation (1.7), whose solutions in the homogeneous case f(t) ≡ 0
are oscillatory when c < 2

√
b, and non-oscillatory when c ≥ 2

√
b.

A natural generalization of (1.7) is the abstract linear evolution equation of the form

u′′(t) +Bu′(t) + Au(t) = f(t), (1.9)

where A and B are suitable operators defined in a Hilbert space. This equation was
considered in [4] for B a multiple of the identity and A a possibly nonlinear operator, and
then in the general linear case in [1], where the following ultimate bounds are proved.

Theorem D (see [1, Theorem 2.1]). Let us consider equation (1.9) in a separable Hilbert
space H. Let us assume that

• A is a self-adjoint operator with dense domain D(A), and satisfying the coercivity
assumption

〈Av, v〉 ≥ b‖v‖2H ∀v ∈ D(A) (1.10)

for some positive real number b,

• B : D(A1/2) → D(A−1/2) is a self-adjoint operator such that

c‖v‖2H ≤ 〈Bv, v〉 ≤ C‖A1/2v‖2H ∀v ∈ D(A1/2) (1.11)

for some positive real numbers c and C,

• f ∈ L∞((0,+∞), H).

Then every weak solution

u ∈ C0
(

(0,+∞), D(A1/2)
)

∩ C1
(

(0,+∞), H)
)

(1.12)

satisfies

lim sup
t→+∞

‖A1/2u(t)‖H ≤ max

{√
3C√
c
,

3

c
√
2

}

lim sup
t→+∞

‖f(t)‖H , (1.13)

and

lim sup
t→+∞

‖u′(t)‖H ≤ max

{√
3C√
c
,

3

c
√
2

}

lim sup
t→+∞

‖f(t)‖H . (1.14)

Apparently the coercivity constant b does not appear in the final estimates (1.13)
and (1.14), but its presence is actually “hidden” in the left-hand side of (1.13), and in
the choice of the constant C. For example, if we restrict to the scalar case where H = R,
Bv = cv and Av = bv, then (1.11) holds true with C := c/b, and hence the estimate on
the velocity reads as

lim sup
t→+∞

|u′(t)| ≤ max

{√
3√
b
,

3

c
√
2

}

lim sup
t→+∞

|f(t)|.

Compared with (1.4), this estimate is better for small values of c, but worse for large
values of c, and again the constant does not tend to 0 as c→ +∞.
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Our results Since the known estimates on u(t) are optimal, at least in the scalar case
(see Theorem C above), in this paper we focus on estimates on derivatives, which are
arguably harder, and we address three questions.

In the first part of the paper we compare different notions of bound. To this end, we
consider equations of the form (1.7) or (1.9) with forcing term f(t) that is defined and
bounded on the whole real line, and not just for positive times. Under these assumptions,
these equations admit a unique global solution that is bounded for all times, positive
and negative. In the scalar case this solution satisfies an inequality of the form

|u′(t)| ≤ KGB‖f‖L∞(R,R) ∀t ∈ R, (1.15)

and similarly in the vector case. The first result of this paper is that the optimal constant
KGB for which global bounds such as (1.15) hold true (for the unique global solution)
coincides with the optimal constant for which ultimate bounds such as (1.4) or (1.6) hold
true (for all solutions defined for positive times). In Theorem 2.2 this result is proved
in a general framework that contains as a special case both the estimates on u(t) and
the estimates on u′(t), and applies to large classes of evolutions problems including (1.7)
and (1.9).

In the second part of the paper we focus on the scalar linear equation (1.7), and
in Theorem 3.1 we compute the optimal constant that appears in ultimate or global
bounds. From the explicit computation we deduce that this constant decreases both
with respect to b and with respect to c, and of course it tends to 0 as c → +∞.
The monotonicity properties are quite delicate, and for this reason we suspect it could
be difficult to extend them to vector equations (the monotonicity with respect to the
“elastic term” is even false in the vector case, as we show in Corollary 4.3).

In the third part of the paper we address the vector equation

u′′(t) + cu′(t) + Au(t) = f(t), (1.16)

namely equation (1.9) in the special case where the damping is a positive multiple of the
velocity. In Theorem 4.1 we prove bounds on the velocity with a constant that tends
to 0 as c → +∞. To be more precise, in finite dimension d the constant is always less
than 2

√
d/c, while in infinite dimensions it is always less that O((log c)1/2/c).

Finally, in Theorem 4.2 we show that the term
√
d is essential in finite dimension,

and that in infinite dimensions the correction (log c)1/2 is essential if the eigenvalues of
the operator are unbounded but grow at most exponentially (this case includes many
operators that are important in the applications, for example the Dirichlet Laplacian,
as shown in Remark 4.4). The need of this unexpected correction could explain why it
was so hard to extend Loud’s result to partial differential equations.

Structure of the paper This paper is organized as follows. In section 2 we prove that
different bounds on the velocity hold true with the same optimal constants. In section 3
we present optimal bounds for the scalar equation (1.7), and we discuss the dependence
of the optimal constant on the parameters b and c. In section 4 we address the vector
equation (1.16), and we prove our estimate from above and from below for the optimal
constants. Finally, in section 5 we present some future perspectives and open problems.
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2 Different notions of optimal bounds

2.1 Functional setting and definitions

In this section we consider the following functional setting:

• X is a (real) Banach space,

• Y is a linear subspace with the norm inherited from X,

• p is a seminorm in X that is continuous with respect to the norm of X, namely
there exists a real number P such that

p(x) ≤ P‖x‖X ∀x ∈ X, (2.1)

• A is the infinitesimal generator of a linear semigroup S(t) on X, which we assume
to be exponentially damped in the sense that there exist two positive real numbers
C and δ such that

‖S(t)x‖X ≤ Ce−δt‖x‖X ∀t ≥ 0, ∀x ∈ X. (2.2)

We consider the abstract evolution equation

U ′(t) + AU(t) = F (t), (2.3)

where F : R → X or F : (0,+∞) → X is a suitable bounded forcing term. When F
is globally defined we look for solutions that are globally bounded. When F is defined
only for positive times, we consider solutions that satisfy a suitable initial condition

U(0) = U0. (2.4)

In the following statement we summarize some well-known results concerning exis-
tence of such solutions, and their representation in terms of the semigroup (see [9, 10]).

Theorem E (Existence of bounded solutions of different types). Let us consider the
evolution equation (2.3) in the functional setting described above.

Then the following statements hold true.

(1) (Bounded solutions for positive times). For every source F ∈ L1
loc((0,+∞),X),

and every initial condition U0 ∈ X, problem (2.3)–(2.4) admits a unique mild
solution U ∈ C0([0,+∞),X), given by the formula

U(t) = S(t)U0 +

∫ t

0

S(t− τ)F (τ) dτ ∀t ≥ 0. (2.5)

If in addition the forcing term F is eventually bounded, namely

lim sup
t→+∞

‖F (t)‖X < +∞, (2.6)

then the solution given by (2.5) is bounded in X.
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(2) (Bounded solutions for all times). For every F ∈ L∞(R,X) there exists a unique
mild solution to equation (2.3) that is globally bounded (both for positive and neg-
ative times). This solution is given by the formula

U(t) =

∫ +∞

0

S(τ)F (t− τ) dτ ∀t ∈ R. (2.7)

If in addition F is periodic, then the solution given by (2.7) is periodic as well.

In the sequel we restrict ourselves to forcing terms with values in the subspace Y,
and we investigate the extent to which a bound on the norm in X of the forcing term
F (t) yields a bound on the seminorm p of solutions U(t). In particular, in the case of
solutions defined for positive times we are interested in estimates such as

lim sup
t→+∞

p(U(t)) ≤ K lim sup
t→+∞

‖F (t)‖X, (2.8)

while in the case of solutions that are globally bounded or periodic we are interested in
estimates such as

sup
t∈R

p(U(t)) ≤ K‖F (t)‖L∞(R,X), (2.9)

or even the “time 0” variant

p(U(0)) ≤ K‖F (t)‖L∞(R,X). (2.10)

We refer to estimates of the form (2.8) as “ultimate bounds”, and we refer to esti-
mates of the form (2.9) as “global bounds”, or “periodic bounds” if the forcing term is
also periodic.

Definition 2.1 (Optimal bounds). Let us consider equation (2.3) under the functional
setting described above.

• The optimal ultimate bound OBU(A,Y, p) is the smallest constant K for which
(2.8) holds true for every forcing term F ∈ L1

loc((0,+∞),Y) satisfying (2.6), and
every corresponding solution U(t) to (2.3) given by (2.5).

• The optimal global bound OBG(A,Y, p) is the smallest constant K for which (2.9)
holds true for every forcing term F ∈ L∞(R,Y), and every corresponding solution
U(t) to (2.3) given by (2.7).

• The optimal periodic bound OBP(A,Y, p) is the smallest constant K for which
(2.9) holds true for every periodic forcing term F ∈ L∞(R,Y), and every corre-
sponding periodic solution U(t) to (2.3) given by (2.7).

• The “time 0” bounds OB0
G(A,Y, p) and OB0

P(A,Y, p) are defined in analogy to
OBG(A,Y, p) and OBP(A,Y, p), just starting with the “time 0” inequality (2.10)
instead of (2.9).
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2.2 Equivalence of optimal bounds

The main and somewhat surprising result of this section is the equivalence between the
different notions of optimal bounds.

Theorem 2.2 (Equivalence of optimal bounds). Let us consider equation (2.3) under
the functional setting described above.

Then the optimal bounds introduced in Definition 2.1 are equal, namely

OBU(A,Y, p) = OBG(A,Y, p) = OB0
G(A,Y, p) = OBP(A,Y, p) = OB0

P(A,Y, p).

Proof. Since A, Y and p are fixed, for the sake of simplicity we drop the dependence on
them in the constants.

The equivalence of OBG and OB0
G follows from the invariance of (2.3) by time-

translations, meaning that if U(t) is the solution corresponding to some forcing term
F (t), then for every t0 ∈ R it turns out that U(t + t0) is the solution corresponding to
F (t+ t0). For the same reason, OBP is equal to OB0

P.
Therefore, it is enough to prove that OBP ≤ OBU ≤ OBG ≤ OBP.

Inequality OBP ≤ OBU. Let F : R → Y be any forcing term that is periodic and
essentially bounded, and let U(t) be the corresponding periodic solution to (2.3) given
by (2.7). Then it turns out that

sup
t∈R

p(U(t)) = lim sup
t→+∞

p(U(t)) ≤ OBU lim sup
t→+∞

‖F (t)‖X = OBU ‖F‖L∞(R,X),

where the two equalities follow from the periodicity of U(t) and F (t), respectively, and
the inequality follows from the definition of OBU once that we regard F (t) and U(t) as
functions defined for nonnegative times.

This proves the required inequality.

Inequality OBU ≤ OBG. Let F ∈ L1
loc((0,+∞),X) be a forcing term satisfying

(2.6), and let U(t) be a corresponding solution to (2.3). For every ε > 0, let Tε be such
that

‖F (t)‖X ≤ ε+ lim sup
t→+∞

‖F (t)‖X

for almost every t ≥ Tε. Let Fε ∈ L∞(R,X) be defined by

Fε(t) :=

{

F (t) if t ≥ Tε,

0 if t < Tε,

and let Uε(t) be the unique globally bounded solution corresponding to Fε(t).
The function U(t)−Uε(t) is a solution to the homogeneous equation in the half-line

t ≥ Tε, and therefore from (2.1) and (2.2) we deduce that

lim
t→+∞

p(U(t)− Uε(t)) ≤ P · lim
t→+∞

‖U(t)− Uε(t)‖X = 0.
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At this point we conclude that

lim sup
t→+∞

p(U(t)) ≤ lim sup
t→+∞

{

p(U(t)− Uε(t)) + p(Uε(t))
}

= lim sup
t→+∞

p(Uε(t))

≤ sup
t∈R

p(Uε(t))

≤ OBG ‖Fε‖L∞(R,X)

= OBG ‖F‖L∞((Tε,+∞),X)

≤ OBG

(

ε+ lim sup
t→+∞

‖F (t)‖X
)

.

Letting ε→ 0+ we obtain the required inequality.

Inequality OBG ≤ OBP. Let F ∈ L∞(R,X) be a bounded forcing term, and let U(t)
denote the corresponding solution to (2.3) that is globally bounded. For every positive
real number T , let FT ∈ L∞(R,X) denote the T -periodic function that coincides with
F (t) for t ∈ [0, T ), and let UT (t) denote the corresponding periodic solution to (2.3).
From (2.7) we know that

U(0)− UT (0) =

∫ +∞

0

S(τ)(F (−τ)− FT (−τ)) dτ =

∫ +∞

T

S(τ)(F (−τ)− FT (−τ)) dτ,

so that from (2.2) we deduce that

‖U(0)− UT (0)‖X ≤
∫ +∞

T

‖S(τ)(F (−τ)− FT (−τ))‖X dτ

≤ 2‖F‖L∞(R,X)

∫ +∞

T

Ce−δτ dτ,

and in particular U(0)− UT (0) → 0 in X as T → +∞.
At this point from (2.1) we deduce that

p(U(0)) ≤ p(UT (0)) + p(U(0)− UT (0))

≤ OB0
P ‖FT‖L∞(R,X) + P‖U(0)− UT (0)‖X

≤ OB0
P ‖F‖L∞(R,X) + P‖U(0)− UT (0)‖X.

Letting T → +∞ we conclude that OB0
G ≤ OB0

P, and hence also OBG ≤ OBP.

Remark 2.3 (Almost periodic forcing terms). In many applications one has to deal
with almost periodic sources rather than general bounded ones. The importance of this
special class has been underlined in many articles and specialized monographs devoted to
wave phenomena, see for example [2, 13]. For this reason, one could introduce “optimal
almost periodic bounds” in analogy with what we did in Definition 2.1. Of course this
notion would coincide with the other ones, since the class of almost periodic forcing
terms is intermediate between the periodic and the bounded ones.
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Remark 2.4 (Regular forcing terms). One could define optimal bounds by limiting
oneself to forcing terms that are more regular, for example continuous or even of class
C∞. Also with this restriction one ends up with the same constants. The reason is that
solutions to (2.3) depend in a continuous way on F (t), in the sense that if Fn(t) → F∞(t)
in L1

loc, then the sequence Un(t) of corresponding solutions converges to the limit solution
U∞(t) uniformly on compact time intervals.

2.3 Application to velocity bounds for second order equations

In this subsection we specialize the abstract theory developed so far to the case of
velocity estimates for solutions to (1.7) and (1.16).

The scalar equation Let us consider the scalar ordinary differential equation (1.7). It
is well known that this equation can be written as a first order system

(

u′(t)
v′(t)

)

+

(

0 −1
b c

)(

u(t)
v(t)

)

=

(

0
f(t)

)

,

and hence also as an abstract equation of the form (2.3) with

X := R
2, A :=

(

0 −1
b c

)

, U(t) :=

(

u(t)
u′(t)

)

, F (t) :=

(

0
f(t)

)

.

We observe that F (t) takes its values in the subspace Y := {0} × R. If we are
interested in ultimate bounds on the velocity of the form

lim sup
t→+∞

|u′(t)| ≤ K lim sup
t→+∞

|f(t)|. (2.11)

or in global bounds of the form

|u′(t)| ≤ K‖f(t)‖L∞(R,R) ∀t ∈ R, (2.12)

then we can consider the seminorm p in X defined by p(u, v) := |v|. In this way the
common value OB(A,Y, p) of the constants of Theorem 2.2 turns out to be the optimal
constant for which (2.11) and (2.12) hold true. In particular it is the same for both
estimates, and can be characterized in several different ways, as shown in Theorem 2.2.

The vector equation Let H be a (real) Hilbert space, and let A be a self-adjoint linear
operator onH with dense domain D(A), and satisfying the coercivity assumption (1.10).
Let us consider equation (1.16), which can be written in the form

(

u′(t)
v′(t)

)

+

(

0 −I
A cI

)(

u(t)
v(t)

)

=

(

0
f(t)

)

,

and hence also as an abstract equation of the form (2.3) with

X := D(A1/2)×H, A :=

(

0 −I
A cI

)

, U(t) :=

(

u(t)
u′(t)

)

, F (t) :=

(

0
f(t)

)

.
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In this setting mild solutions U ∈ C0([0,+∞),X) correspond to weak solutions in
the class (1.12), and similarly for global solutions defined for every t ∈ R.

We observe that F (t) takes its values in the subspace Y := {0} ×H . If we consider
in the phase space X the seminorm p defined by p(u, v) := ‖v‖H , then the common value
OB(A,Y, p) of the constants of Theorem 2.2 is the optimal constant for which ultimate
or global bounds on the velocity hold true.

Remark 2.5 (The role of the seminorm). Different choices of the seminorm p lead to
optimal bounds for different quantities. For example, in the scalar case the seminorm
p(u, v) := |u| leads to ultimate or global bounds on the solution u(t), while in the vector
case the seminorm p(u, v) := (‖A1/2u‖2H + ‖v‖2H)1/2 leads to ultimate or global bounds
on the energy of solutions.

3 Optimal velocity bounds in the scalar case

In this section we consider the scalar equation (1.7), and we investigate the exact value
of the constant that appears in optimal velocity bounds of the form (2.11) and (2.12).
Since (1.7) can be solved almost explicitly, we can compute the exact value of this
constant, which we denote by K(b, c). We also investigate the monotonicity and decay
properties of K(b, c) that will guide our exploration of the infinite dimensional case in
the following section.

Theorem 3.1 (Optimal velocity bounds in the scalar case). Let us consider equation
(1.7), where b and c are two positive real numbers. Let us set

∆ :=

∣

∣

∣

∣

1− 4b

c2

∣

∣

∣

∣

1/2

, (3.1)

and let K(b, c) denote the constant that appears in the optimal velocity bounds.
Then it turns out that

K(b, c) =







































2√
b
·
(

1−∆

1 +∆

)1/(2∆)

if 4b < c2,

4

ec
if 4b = c2,

2√
b
·
{

1− exp
(

− π

∆

)}

−1

· exp
(

−arctan∆

∆

)

if 4b > c2.

(3.2)

As a consequence, the function K(b, c) has the following properties.

• (Monotonicity in b). For every c > 0, the function b→ K(b, c) is decreasing.

• (Monotonicity in c). For every b > 0, the function c→ K(b, c) is decreasing.
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• (Upper and lower bound). It turns out that

4

πc
< K(b, c) <

2

c
∀(b, c) ∈ (0,+∞)2, (3.3)

and the constants 2 and 4/π are optimal.

Remark 3.2. The conclusions of Theorem 3.1 hold true also if (1.7) is interpreted as an
evolution equation in a general Banach space X. The proof relies on a standard duality
argument.

Let X′ denote the dual of X. For every L ∈ X′ we consider the scalar functions
u∗(t) := L(u(t)) and f∗(t) := L(f(t)), and we observe that u∗(t) solves a scalar equation
of the form (1.7) with forcing term f∗(t), and therefore

|L(u′(0))| = |u′
∗
(0)| ≤ K(b, c)‖f∗‖L∞(R,R) ≤ K(b, c)‖f‖L∞(R,X) · ‖L‖X′ .

Taking the supremum over all elements L ∈ X′ with ‖L‖X′ ≤ 1 we conclude that

‖u′(0)‖X ≤ K(b, c)‖f‖L∞(R,X).

Recalling the characterization of the optimal velocity bound as OB0
G, this proves that

the optimal velocity bound for solutions to (1.7) in X is less than or equal to K(b, c).
The opposite inequality follows by considering “simple modes”, namely solutions to

(1.7) in X of the form v(t) = u(t)x0, where x0 ∈ X is any nonzero vector, and u(t) is
any solution to (1.7) in R.

3.1 Proof of Theorem 3.1 – Computation of the optimal bound

We use the characterization of K(b, c) as OB0
G, and we distinguish three cases according

to the sign of c2 − 4b, namely the discriminant of the characteristic equation

x2 + cx+ b = 0. (3.4)

Non-oscillatory case When 4b < c2 we set

α :=
c +

√
c2 − 4b

2
, β :=

c−
√
c2 − 4b

2
,

so that the roots of the characteristic equation (3.4) are the two negative real numbers
−α and −β.

For every forcing term f ∈ L∞(R,R), the unique solution to equation (1.7) that is
bounded for all (positive and negative) times is given by the formula

u(t) :=
1

α− β

∫ +∞

0

(

−e−αs + e−βs
)

f(t− s) ds ∀t ∈ R.

In particular it turns out that

u′(0) =
1

α− β

∫ +∞

0

(

αe−αs − βe−βs
)

f(−s) ds, (3.5)

11



and hence

|u′(0)| ≤ ‖f‖L∞(R,R) ·
1

α− β

∫ +∞

0

∣

∣αe−αs − βe−βs
∣

∣ ds. (3.6)

On the other hand, in the special case where

f(−s) := sign
(

αe−αs − βe−βs
)

∀s ∈ R

we find that

|u′(0)| = ‖f‖L∞(R,R) ·
1

α− β

∫ +∞

0

∣

∣αe−αs − βe−βs
∣

∣ ds. (3.7)

This proves that K(b, c) coincides with the constant that appears in right-hand side
of both (3.6) and (3.7). In order to compute the integral, we observe that the integrand
vanishes only in the point

s0 :=
1

α− β
log

α

β
, (3.8)

so that
∫ +∞

0

∣

∣αe−αs − βe−βs
∣

∣ ds =

∫ s0

0

(

αe−αs − βe−βs
)

ds−
∫ +∞

s0

(

αe−αs − βe−βs
)

ds

=
2

α− β

(

e−βs0 − e−αs0
)

.

Now from (3.8) we obtain that

e−βs0 − e−αs0 =

(

β

α

)β/(α−β)

−
(

β

α

)α/(α−β)

=

(

β

α

)(α+β)/[2(α−β)]
(

√

α

β
−
√

β

α

)

,

and therefore
2

α− β

(

e−βs0 − e−αs0
)

=
2√
αβ

(

β

α

)(α+β)/[2(α−β)]

.

Since
αβ = b, α =

c

2
(1 + ∆), β =

c

2
(1−∆),

we end up with the value given by (3.2) in the case 4b < c2.

Critical case When 4b = c2 the characteristic equation (3.4) has −c/2 as a root of
multiplicity two. If f ∈ L∞(R,R), equation (1.7) admits a unique solution u(t) that is
globally bounded, and this solution is

u(t) =

∫ +∞

0

se−cs/2f(t− s) ds ∀t ∈ R,

so that

u′(0) =

∫ +∞

0

e−cs/2
(

1− cs

2

)

f(−s) ds.

At this point the same argument of the non-oscillatory case shows that

K(b, c) =

∫ +∞

0

e−cs/2
∣

∣

∣
1− cs

2

∣

∣

∣
ds =

4

ec
.
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Oscillatory case When 4b > c2 the characteristic equation (3.4) has two complex con-
jugate roots of the form −γ ± δi, where

γ :=
c

2
, δ :=

√

b− c2

4
.

If f ∈ L∞(R,R), equation (1.7) admits a unique solution u(t) that is globally
bounded, and this solution is

u(t) =
1

δ

∫ +∞

0

e−γs sin(δs)f(t− s) ds ∀t ∈ R,

so that

u′(0) =

∫ +∞

0

e−γs
(

cos (δs)− γ

δ
sin (δs)

)

f(−s) ds.

Arguing again as in the non-oscillatory case, we obtain that

K(b, c) =

∫ +∞

0

e−γs
∣

∣

∣
cos (δs)− γ

δ
sin (δs)

∣

∣

∣
ds

=
1

δ

∫ +∞

0

e−γy/δ
∣

∣

∣
cos y − γ

δ
sin y

∣

∣

∣
dy.

In order to compute the last integral, we call g(y) the function inside the absolute
value. Since g(y) is π-periodic, we obtain that

∫ +∞

0

e−γy/δ|g(y)| dy =

∞
∑

k=0

∫ (k+1)π

kπ

e−γy/δ|g(y)| dy

=

(

∞
∑

k=0

e−kπγ/δ

)

∫ π

0

e−γy/δ|g(y)| dy

=
(

1− e−πγ/δ
)−1
∫ π

0

e−γy/δ|g(y)| dy.

Now we observe that g(y), in the interval (0, π), vanishes only in y0 := arctan(δ/γ),
and

∫ π

0

e−γy/δ|g(y)| dy =
∫ y0

0

e−γy/δg(y) dy−
∫ π

y0

e−γy/δg(y) dy = 2 sin(y0)e
−γy0/δ.

Since
γ

δ
=

1

∆
, y0 = arctan∆, δ =

c∆

2
,

and

sin(y0) =
tan(y0)

(1 + tan2(y0))1/2
=

∆

(1 + ∆2)1/2
=

c∆

2
√
b
,

we obtain the value of K(b, c) given by (3.2) in the case 4b > c2.
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3.2 Proof of Theorem 3.1 – Properties of the optimal bound

From the explicit expression (3.2), it is a calculus exercise to show that, for every c > 0,

lim
b→+∞

K(b, c) =
4

πc
and lim

b→0+
K(b, c) =

2

c
.

Therefore, if we show that K(b, c) is monotone with respect to b, this is enough to
prove both (3.3) and the optimality of the constants 2 and 4/π.

Analogously, it is possible to show that K(b, c) is continuous with respect to b and
with respect to c in (0,+∞)2, since again the only nontrivial thing to check is the limit
in the points with 4b = c2.

Once we know the continuity, we can limit ourselves to show the monotonicity, both
with respect to b and with respect to c, in the two regions 0 < 4b < c2 and 4b > c2.
For practical reasons, what we actually show is the monotonicity with respect to b of
the function b → c · K(b, c), and the monotonicity with respect to c of the function
c→

√
b ·K(b, c).

Monotonicity with respect to b in the non-oscillatory regime When c2 > 4b it turns out
that

c ·K(b, c) =
4

(1−∆2)1/2

(

1−∆

1 +∆

)1/(2∆)

= 4 exp

{

−1

2
log(1−∆2) +

1

2∆
log

(

1−∆

1 +∆

)}

,

where ∆ is defined by (3.1). When b increases from 0 to c2/4, the value of ∆ decreases
from 1 to 0. Therefore, the function b→ c ·K(b, c) is decreasing with respect to b if and
only if the function

f1(x) :=
1

x
log

(

1− x

1 + x

)

− log(1− x2)

is increasing with respect to x in the interval (0, 1). Now let us set

g1(x) := 2x+ log

(

1− x

1 + x

)

.

This function satisfies g1(0) = 0 and

g′1(x) =
2x2

x2 − 1
< 0 ∀x ∈ (0, 1),

and therefore g1(x) < 0 for every x ∈ (0, 1). At this point we can conclude that

f ′

1(x) = −g1(x)
x2

> 0 ∀x ∈ (0, 1),

as required.
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Monotonicity with respect to c in the non-oscillatory regime When c increases from
2
√
b to +∞, the value of ∆ increases from 0 to 1. Since in this regime it turns out that

√
b ·K(b, c) = 2

(

1−∆

1 +∆

)1/(2∆)

,

we need to show that the function

f2(x) :=
1

x
log

(

1− x

1 + x

)

is decreasing with respect to x in the interval (0, 1). Now let us set

g2(x) :=
2x

x2 − 1
− log

(

1− x

1 + x

)

.

This function satisfies g2(0) = 0 and

g′2(x) = − 4x2

(x2 − 1)2
< 0 ∀x ∈ (0, 1),

and therefore g2(x) < 0 for every x ∈ (0, 1). At this point we can conclude that

f ′

2(x) =
g2(x)

x2
< 0 ∀x ∈ (0, 1),

as required.

Monotonicity with respect to b in the oscillatory regime Here we follow the argument
introduced in [8]. When c2 < 4b it turns out that c ·K(b, c) = ϕ1(∆), where

ϕ1(x) :=
4

(1 + x2)1/2
exp

(

−arctan x

x

)

·
{

1− exp
(

−π
x

)}

−1

.

When b increases from c2/4 to +∞, the value of ∆ increases from 0 to +∞. There-
fore, the function b→ c ·K(b, c) is decreasing with respect to b if and only if the function
ϕ1(x) is decreasing with respect to x in the half-line (0,+∞). A long but elementary
computation gives that

ϕ′

1(x) = −4ψ1(x) ·
{

(eπ/x − 1)(x− arctan x)− π
}

∀x > 0,

where

ψ1(x) := exp

(

π − arctanx

x

)

(eπ/x − 1)−2x−2(x2 + 1)−1/2 (3.9)

is a positive function. Therefore, ϕ1(x) is decreasing in (0,+∞) if and only if

(eπ/x − 1)(x− arctanx) > π ∀x > 0.
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Setting y := π/x this inequality can be rewritten in the equivalent form

1

π
arctan

π

y
+

1

ey − 1
− 1

y
< 0 ∀y > 0. (3.10)

The second term in the left-hand side can be estimated from above by replacing ey

with its Taylor polynomial of order four. In this way (3.10) is proved if we show that

γ(y) :=
1

π
arctan

π

y
+

1

y + y2

2
+ y3

6
+ y4

24

− 1

y
< 0 ∀y > 0.

We observe that γ(y) → 0 both when y → 0+ and when y → +∞. Therefore, it is
enough to show that there exists y0 > 0 such that γ′(y) < 0 for every y ∈ (0, y0) and
γ′(y) > 0 for every y > y0. Another long but elementary computation shows that

γ′(y) =
π2(y4 + 8y3 + 40y2 + 48y + 48)− 96(y3 + 3y2 + 6y + 6)

(y2 + π2)(y3 + 4y2 + 12y + 24)2
.

The sign of γ′(y) depends only on the sign of the numerator, which we denote by
θ(y). Now we observe that θ(0) = 48(π2−12) < 0, and θ(y) > 0 when y is large enough.
Moreover, the second derivative

θ′′(y) = 12π2y2 + 48(π2 − 12)y + 16(5π2 − 36)

is a polynomial of degree two with negative discriminant and positive leading coefficient.
It follows that θ(y) is a convex function, and hence its sign switches from negative to
positive at exactly one point y0 > 0, as required.

Monotonicity with respect to c in the oscillatory regime When c2 < 4b it turns out that√
b ·K(b, c) = 2ϕ2(∆), where

ϕ2(x) := exp

(

−arctan x

x

)

·
{

1− exp
(

−π
x

)}

−1

.

When c increases from 0 to 2
√
b, the value of ∆ decreases from +∞ to 0. Therefore,

we need to show that the function ϕ2(x) is increasing with respect to x in the half-line
(0,+∞). Computing the derivative we find that

ϕ′

2(x) = ψ1(x) · (x2 + 1)−1/2 · ψ2(x) ∀x > 0,

where ψ1(x) is the positive function defined in (3.9), and

ψ2(x) := eπ/x
(

(x2 + 1) arctanx− x
)

+ (x− arctan x) + x2(π − arctanx) + π.

At this point it is enough to verify that ψ3(x) := (x2 + 1) arctanx− x is positive for
x > 0, and this is true because ψ3(0) = 0 and ψ′

3(x) = 2x arctanx > 0 for every x > 0.
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4 Optimal velocity bounds in the vector case

In this section we consider the vector equation (1.16), and we investigate the optimal
constant, which now we callK(A, c), involved in optimal ultimate bounds on the velocity
such as (1.14). As shown in section 2, this constant can be characterized in several
equivalent ways, including optimal global bounds on the velocity of the unique global
solution that is bounded on the whole real line.

The first result of this section is an upper bound for K(A, c) that improves (1.14),
at least when the damping is a positive multiple of the velocity. We point out that this
upper bound tends to 0 as c→ +∞.

Theorem 4.1 (Upper estimates for optimal velocity bounds). Let H be a separable
Hilbert space, let A be a self-adjoint linear operator on H with dense domain D(A), and
satisfying the coercivity assumption (1.10) for some positive real number b, and let c be
a positive number. Let K(A, c) denote the constant that appears in the optimal velocity
bounds for solutions to equation (1.16).

Then the following statements hold true.

(1) (General case). Without any further restriction on H and A it turns out that

K(A, c) ≤























4

c
if c2 ≤ 4b,

4

c

√

log2

(

c2

b

)

if c2 > 4b.

(4.1)

(2) (Finite dimensional case). If in addition the dimension of H is a positive integer
d, and hence A is a positive symmetric d× d matrix, then it turns out that

K(A, c) <
2

c

√
d ∀c > 0.

The second result of this section provides some lower bounds for K(A, c), and shows
that Theorem 4.1 is somewhat optimal. In particular, we prove that the factor

√
d

is essential in the finite dimensional case, that a decay of K(A, c) of order O(1/c) is
impossible in the infinite dimensional case if A is unbounded, and that the correction
of order (log c)1/2 is essential when the sequence of eigenvalues of A grows at most
exponentially.

For the sake of simplicity, in the statement and in the proof we assume that H
admits an orthonormal basis of eigenvectors of A, but the result can be extended to
general self-adjoint coercive operators by exploiting that they are unitary isomorphic to
multiplication operators in suitable L2 spaces (see for example [15, Theorem VIII.4]).
We spare the reader this generality that only complicates proofs without introducing
new ideas.
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Theorem 4.2 (Lower estimates for boundedness constants). Let H be a separable
Hilbert space, and let {ei}i∈I be an orthonormal basis of H, with either I = N or
I = {1, . . . , d} for some integer d ≥ 1. Let {λi}i∈I be a nondecreasing (finite or count-
able) sequence of positive real numbers, and let A be the self-adjoint operator on H such
that

Aei = λiei ∀i ∈ I.

Let c be a positive real number, and let K(A, c) denote the constant that appears in
the optimal velocity bounds for solutions to equation (1.16).

Then the following statements hold true.

(1) (General lower bound). Without any further assumption it turns out that

K(A, c) ≥ K(λ1, c) >
4

πc
∀c > 0, (4.2)

where λ1 is the smallest eigenvalue of A, and K(λ1, c) is the optimal velocity bound
of the scalar case given by (3.2). The constant 4/π in this lower bound is optimal.

(2) (Finite dimensional case). Let us assume that the dimension of H is a positive
integer d. Then for every real number δ > 0 there exists a positive symmetric d×d
matrix A such that

K(A, c) ≥ 1− δ

c

√
d+ 3

when c is large enough.

(3) (Unbounded operators). Let us assume that I = N and λi → +∞ as i → +∞
(and therefore A is an unbounded operator). Then it turns out that

lim
c→+∞

c ·K(A, c) = +∞. (4.3)

(4) (Operators with eigenvalues growing at most exponentially). There exists a real
number R0 > 1 with the following property. If I = N, and for some real number
R ≥ R0 the sequence {λn}n∈N admits a subsequence (not relabeled) such that

R0 ≤
λn+1

λn
≤ R ∀n ≥ 1, (4.4)

then it turns out that

K(A, c) ≥ 1

2(log2R)
1/2

· (log2 c)
1/2

c

when c is large enough.

We are now in a position to show that in the vector case the optimal velocity bound
K(A, c) does not depend in a decreasing way on the operator A, in contrast with what
happens in the scalar case.
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Corollary 4.3 (Lack of monotonicity of the optimal velocity bound). If the dimension
of H is at least two, then there exist two self-adjoint coercive operators A1 and A2 on H
with A1 < A2 (in the sense that A2−A1 is a positive operator), but K(A1, c) < K(A2, c)
when c is large enough.

Proof. To begin with, we consider the case where the dimension of H is exactly two. Let
δ be a positive real number such that (1−δ)

√
5 ≥ 2. From statement (2) of Theorem 4.2

we know that there exists a positive symmetric 2 × 2 matrix A2 such that K(A2, c) ≥
(1 − δ)

√
5/c when c is large enough. Let A1 be the identity 2 × 2 matrix multiplied

by a positive real number b. From Remark 3.2 we know that K(A1, c) = K(b, c), and
therefore from (3.3) and our definition of δ we deduce that

K(A1, c) <
2

c
≤ (1− δ)

√
5

c
≤ K(A2, c)

when c is large enough, and we conclude by observing that A1 < A2 when b is less than
the smallest eigenvalue of A2.

If the dimension of H is greater than two, then we consider the operator A∗

1 that is
again equal to b times the identity, and the operator A∗

2 that coincides with A2 in a two
dimensional subspace H∗ of H , and with (b+ 1) times the identity in the orthogonal of
H∗. At this point the conclusion follows from the two dimensional case because A∗

1 < A∗

2,
but

K(A∗

1, c) = K(b, c) = K(A1, c) < K(A2, c) ≤ K(A∗

2, c),

as required.

Finally, we observe that assumption (4.4) is satisfied whenever the eigenvalues of A
do not grow more than exponentially. The following remark shows that the assumption
is satisfied in many applications to partial differential equations.

Remark 4.4 (Dirichlet Laplacian). One of the main examples that fit into the abstract
framework of (1.16) is the dissipative wave equation of the form

utt + cut −∆u = f(t, x)

in some bounded open set Ω ⊆ Rd with regular enough boundary and (for example)
Dirichlet boundary conditions.

In this case the operator A is the Dirichlet Laplacian, and from Weyl’s law we know
that the number N(λ) of eigenvalues of A in the interval [0, λ] satisfies

N(λ) ∼ γλd/2 as λ→ +∞,

where γ is a positive constant that depends on the measure of Ω. This distribution
implies that, for every pair of real numbers R > R0 > 1, the sequence of eigenvalues
admits a subsequence satisfying (4.4). Therefore, from statement (1) of Theorem 4.1
and statement (4) of Theorem 4.2 we deduce that in this case K(A, c) decays, when
c→ +∞, as O((log c)1/2/c), and not faster.

19



4.1 Proof of Theorem 4.1

In this proof we exploit the characterization of K(A, c) as OBU. We start with the
second statement, whose proof is rather short.

Statement (2) We observe that the matrix A can be diagonalized, and therefore any
solution to (1.16) is a vector whose components ui(t) are solutions to scalar ordinary
differential equations of the form

u′′i (t) + cu′i(t) + λiui(t) = fi(t), (4.5)

where the λi’s are the eigenvalues of A. From the scalar case we know that

lim sup
t→+∞

|u′i(t)| ≤
2

c
lim sup
t→+∞

|fi(t)| ≤
2

c
lim sup
t→+∞

‖f(t)‖H ,

and therefore

lim sup
t→+∞

‖u′(t)‖H ≤ lim sup
t→+∞

{

d
∑

i=1

|u′i(t)|2
}1/2

≤ 2

c

√
d · lim sup

t→+∞

‖f(t)‖H .

Statement (1) To begin with, we consider the special case where the operator A is
bounded and c is large, in which case the optimal velocity bound can be estimated in
terms of the norm of the operator and its coercivity constant. This special case is going
to play an important role in the proof for general unbounded operators.

Lemma 4.5 (Coercive bounded operators in non-oscillatory regime). Let H, A and c
be as in Theorem 4.1, and let f ∈ L∞((0,+∞), H). Let us assume in addition that there
exist positive real numbers m and M such that c2 ≥ 4m and

m‖x‖2H ≤ ‖A1/2x‖2H ≤M‖x‖2H ∀x ∈ D(A1/2). (4.6)

Then every solution to (1.16) satisfies

lim sup
t→+∞

‖u′(t)‖H ≤ 1

c

(

1 +

√
3M√
m

)

· lim sup
t→+∞

‖f(t)‖H . (4.7)

Proof. When c2 ≥ 4m, and the damping operator B is c times the identity, then as-
sumption (1.11) is satisfied with C := c/m, and the constant in (1.13) turns out to
be
√

3/m. Therefore, from the boundedness assumption (4.6) and estimate (1.13) we
deduce that

lim sup
t→+∞

‖Au(t)‖H ≤
√
M lim sup

t→+∞

‖A1/2u(t)‖H ≤
√
3M√
m

lim sup
t→+∞

‖f(t)‖H. (4.8)

Now we write equation (1.16) in the form

u′′(t) + cu′(t) = f(t)− Au(t),
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and we regard it as a first order equation in the unknown u′(t). We deduce that

lim sup
t→+∞

‖u′(t)‖H ≤ 1

c
lim sup
t→+∞

(

‖f(t)‖H + ‖Au(t)‖H
)

,

which implies (4.7) because of (4.8).

We are now ready for a proof of (4.1), for which we distinguish two cases.
If c2 ≤ 4b, the result follows directly from Theorem D. Indeed, when the dissipation

operator B is c times the identity, assumption (1.11) is satisfied with C := c/b, so that
from (1.14) we deduce that

lim sup
t→+∞

‖u′(t)‖H ≤ max

{√
3√
b
,

3

c
√
2

}

lim sup
t→+∞

‖f(t)‖H ≤ 4

c
lim sup
t→+∞

‖f(t)‖H , (4.9)

which proves (4.1) in this case.
If c2 > 4b, we take the nonnegative integer k such that

2k <
c2

4b
≤ 2k+1,

and we partition the half-line [b,+∞) as the union of k + 1 intervals of the form

Ij := [2jb, 2j+1b) ∀j ∈ {0, 1, . . . , k}

and the half-line I∞ := [2k+1b,+∞).
From the spectral theory for self-adjoint operators, we know that one can write the

Hilbert space H as a direct orthogonal sum of A-invariant subspaces

H = H0 ⊕H1 ⊕ · · · ⊕Hk ⊕H∞ (4.10)

with the property that

2jb · ‖x‖2H ≤ 〈Ax, x〉 ≤ 2j+1b · ‖x‖2H ∀x ∈ Hj

if 0 ≤ j ≤ k, and

〈Ax, x〉 ≥ 2k+1b · ‖x‖2H ≥ c2

4
‖x‖2H ∀x ∈ H∞ ∩D(A),

According to the decomposition (4.10), we can write A as the sum of k+2 operators
Aj , the solution u(t) as the sum of k + 2 functions uj(t), and the forcing term f(t) as
the sum of k + 2 forcing terms fj(t) in such a way that

u′′i (t) + cu′j(t) + Ajuj(t) = fj(t)

for every admissible value of the index j.
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For every 0 ≤ j ≤ k, the operator Aj satisfies the assumptions of Lemma 4.5 with
M/m = 2, and therefore

lim sup
t→+∞

‖u′j(t)‖H ≤ 1 +
√
6

c
lim sup
t→+∞

‖fj(t)‖H ≤ 4

c
lim sup
t→+∞

‖f(t)‖H .

Moreover, the operator A∞ has coercivity constant greater than or equal to c2/4,
and therefore in analogy with (4.9) we obtain that

lim sup
t→+∞

‖u′
∞
(t)‖H ≤ 4

c
lim sup
t→+∞

‖f∞(t)‖H ≤ 4

c
lim sup
t→+∞

‖f(t)‖H .

From these estimates we deduce that

lim sup
t→+∞

‖u′(t)‖H ≤ lim sup
t→+∞

{

‖u′
∞
(t)‖2H +

k
∑

j=0

‖u′j(t)‖2H

}1/2

≤ 4

c
(k + 2)1/2 lim sup

t→+∞

‖f(t)‖H ,

and we conclude by observing that

k + 2 ≤ log2

(

c2

4b

)

+ 2 = log2

(

c2

b

)

.

4.2 Proof of Theorem 4.2

The technical core of the proof is the following result.

Lemma 4.6. Let H be a Hilbert space, let A be a self-adjoint operator on H, and let
n ≥ 2 be an integer. Let L > ε be two positive real numbers such that

e−ε − 2e−L > 0. (4.11)

Let us assume that A admits n positive eigenvalues λ1, . . . , λn such that

λi+1 ≥
2L

ε
λi ∀i ∈ {1, . . . , n− 1}. (4.12)

Then it turns out that

K(A, c) ≥ e−ε − 2e−L

c
·
√
n + 3 ∀c ≥

(

4L

ε
λn

)1/2

. (4.13)

Proof. Due to the characterization ofK(A, c) as OB0
G, it is enough to exhibit a piecewise

constant forcing term f ∈ L∞(R, H) such that

• ‖f(t)‖H ∈ {0, 1} for every t ∈ R,
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• the unique solution u(t) to (1.16) that is globally bounded satisfies

‖u′(0)‖H ≥ e−ε − 2e−L

c
·
√
n + 3 ∀c ≥

(

4L

ε
λn

)1/2

.

To this end, for every i = 1, . . . , n we set

αi :=
c+

√
c2 − 4λi
2

, βi :=
c−

√
c2 − 4λi
2

.

We observe that −αi and −βi are the two roots of the characteristic equation

x2 + cx+ λi = 0,

and they are negative real numbers because L > ε and hence c2 > 4λi. Moreover βi is
increasing with i.

Now we set T0 := +∞, and Ti := εβ−1
i for every i = 1, . . . , n. We observe that −T1,

. . . , −Tn is an increasing sequence of negative real numbers. For every i = 1, . . . , n−1,
we consider the functions fi : R → {0,−1} defined by

fi(t) :=

{ −1 if t ∈ (−Ti−1,−Ti],
0 otherwise,

and for i = n we consider the function fn : R → {0,−1, 1} defined by

fn(t) :=











−1 if t ∈ (−Tn−1,−Tn],
1 if t ∈ (−Tn, 0],
0 otherwise.

Finally, we define f : R → H by

f(t) :=
n
∑

i=1

fi(t)ei ∀t ∈ R,

where ei is a unit eigenvector of A corresponding to the eigenvalue λi. The function f(t)
vanishes for every positive time, and jumps among unit vectors for negative times, and
hence ‖f(t)‖H = 1 for every t ≤ 0.

Let u(t) denote the unique solution to (1.16) that is globally bounded. This solution
can be written in the form

u(t) =

n
∑

i=1

ui(t)ei,

where ui(t) is the unique bounded solution to the scalar ordinary differential equation
(4.5). We claim that, when c satisfies the condition in (4.13), it turns out that

u′i(0) ≥
e−ε − 2e−L

c
∀i ∈ {1, . . . , n− 1}, (4.14)

23



and

u′n(0) ≥
2(e−ε − 2e−L)

c
. (4.15)

Since numerators are positive because of (4.11), from these claims it follows that

|u′(0)| =
{

n
∑

i=1

u′i(0)
2

}1/2

≥ e−ε − 2e−L

c
·
√
n + 3,

which is exactly (4.13).
In order to prove the claims, we start from the usual formula (see (3.5))

u′i(0) =
1

αi − βi

∫ +∞

0

(

αie
−αis − βie

−βis
)

fi(−s) ds.

If i ∈ {1, . . . , n− 1}, from the definition of fi we obtain that

u′i(0) =
1√

c2 − 4λi

∫ Ti−1

Ti

(

−αie
−αis + βie

−βis
)

ds

=
1√

c2 − 4λi

(

e−αiTi−1 − e−αiTi − e−βiTi−1 + e−βiTi

)

(with the obvious agreement that e−∞ = 0), and therefore

u′i(0) ≥
1√

c2 − 4λi

(

e−βiTi − e−αiTi − e−βiTi−1
)

∀i ∈ {1, . . . , n− 1}. (4.16)

If i = n, from the definition of fn we obtain that

u′n(0) =
1√

c2 − 4λn

{
∫ Tn−1

Tn

(

−αne
−αns + βne

−βns
)

ds+

∫ Tn

0

(

αne
−αns − βne

−βns
)

ds

}

,

and therefore

u′n(0) =
1√

c2 − 4λn

(

2e−βnTn − 2e−αnTn + e−αnTn−1 − e−βnTn−1
)

≥ 2√
c2 − 4λn

(

e−βnTn − e−αnTn − e−βnTn−1
)

. (4.17)

Let us consider the three exponential terms in (4.16) and (4.17). We claim that the
first one (positive) dominates the two negative ones. To this end, let us estimate the
three exponents.

• From the definition of Ti we obtain that βiTi = ε.

• As for the second exponent, we observe that

αiTi
ε

=
αi

βi
=
c+

√
c2 − 4λi

c−
√
c2 − 4λi

=

(

c+
√
c2 − 4λi

)2

4λi
≥ c2

4λi
,

and therefore when c2 ≥ 4Lλn/ε we obtain that

αiTi ≥
εc2

4λi
≥ εc2

4λn
≥ L.
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• As for the third exponent, we observe that

βiTi−1

ε
=

βi
βi−1

=
c−

√
c2 − 4λi

c−
√

c2 − 4λi−1

=
c+

√

c2 − 4λi−1

c+
√
c2 − 4λi

· λi
λi−1

,

and therefore from (4.12) we deduce that

βiTi−1 ≥ ε · c
2c

· λi
λi−1

≥ L.

From these estimates we conclude that

e−βiTi − e−αiTi − e−βiTi−1 ≥ e−ε − e−L − e−L ∀i ∈ {1, . . . , n}. (4.18)

Since
√
c2 − 4λi ≤ c, plugging (4.18) into (4.16) and (4.17), we obtain (4.14) and

(4.15), respectively, as required.

We are now ready to prove the four statements of Theorem 4.2.

Statement (1) We can limit ourselves to forcing terms of the form f(t) := ϕ(t)e1, where
e1 is the element of the orthonormal basis corresponding to the smallest eigenvalue λ1
of A, and ϕ ∈ L∞(R,R). In this case the unique global solution to (1.16) has the form
u(t) = v(t)e1, where v(t) is the unique global bounded solution to the scalar equation

v′′(t) + cv′(t) + λ1v(t) = ϕ(t).

At this point the result follows from Theorem 3.1.

Statement (2) Let us choose real numbers L0 > ε0 > 0 such that

e−ε0 − 2e−L0 ≥ 1− δ.

This is possible whenever ε0 is small enough and L0 is large enough. Let us consider
the diagonal matrix whose eigenvalue are (2L0/ε0)

i for i = 1, . . . , d. At this point the
conclusion follows from Lemma 4.6.

Statement (3) Let us set ε := 1 and L := 2. Since in this case the sequence of the
eigenvalues of A is unbounded, for every n we can always find eigenvalues λ1, . . . , λn
satisfying (4.12). Therefore, from Lemma 4.6 we deduce that

lim inf
c→+∞

c ·K(A, c) ≥ e− 2

e2
·
√
n+ 3.

Since n is arbitrary, this proves (4.3).
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Statement (4) Let us choose real numbers L0 > ε0 > 0 such that

e−ε0 − 2e−L0 ≥ 1

2
,

and let us set

R0 :=
2L0

ε0
.

Let {λn} denote the (sub)sequence of eigenvalues of A satisfying (4.4). For every
positive integer n, let us set

σn :=
(

2R0R
n−1λ1

)1/2
,

and let us choose a positive integer n0 such that σn0
≥ 1 and

Rn−1 ≥ 2R0λ1 ∀n ≥ n0. (4.19)

We claim that

K(A, c) ≥ 1

2
· (log2 c)

1/2

c
· 1

(log2R)
1/2

∀c ≥ σn0
.

Since σn is increasing and tends to +∞, this estimate is proved if we show that for
every n ≥ n0 it turns out that

K(A, c) ≥ 1

2
· (log2 c)

1/2

c
· 1

(log2R)
1/2

∀c ∈ [σn, σn+1]. (4.20)

To this end, let us consider any n ≥ n0. Due to the estimate from below in (4.4),
the eigenvalues λ1, . . . , λn satisfy

λi+1

λi
≥ 2L0

ε0
∀i ∈ {1, . . . , n− 1}.

On the other hand, from the estimate from above in (4.4) we deduce that

λn ≤ Rn−1λ1,

and hence

c ≥ σn = (2R0R
n−1λ1)

1/2 ≥ (2R0λn)
1/2 =

(

4L0

ε0
λn

)1/2

.

Therefore, from Lemma 4.6 we obtain that

K(A, c) ≥ e−ε0 − 2e−L0

c
·
√
n+ 3 ≥ 1

2c

√
n ∀c ≥ σn. (4.21)

Since in addition c ≤ σn+1, from (4.19) we deduce that

c2 ≤ σ2
n+1 = 2R0λ1R

n ≤ R2n−1 ≤ R2n,

and therefore n log2R ≥ log2 c (we recall that c ≥ 1 because σn0
≥ 1). Plugging this

estimate into (4.21) we obtain (4.20), and this completes the proof.
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5 Future perspectives and open problems

In this section we mention some questions and open problems, inspired by this paper,
that it could be interesting to investigate.

The first one concerns the estimates on u(t), which we did not study here for the
sake of shortness. In the linear scalar case the complete answer was already provided
in [11], see Theorem C in the introduction. An extension of that result to the vector
case could lead to interesting applications to semilinear problems.

Open problem 1. Find optimal ultimate bounds for solutions u(t) to the vector equation
(1.16).

Limiting ourselves to scalar problems, now we know the optimal bounds both for
u(t) and for u′(t) in the case of the linear equation (1.7). We suspect that exactly the
same bounds could apply also to solutions to the nonlinear equation (1.1) when the
nonlinearity satisfies (1.2).

Open problem 2. Let us consider the optimal bounds on u(t) provided by Theorem C,
and the optimal bounds on u′(t) provided by Theorem 3.1. Do they remain true also for
solutions to the general equation (1.1) under Loud’s assumption (1.2)?

A positive answer to problem 2 would be consistent with the intuitive idea that a
bigger restoring force prevents solutions from growing too much, and therefore the linear
case is the worst case scenario compatible with (1.2). Some evidence of this effect is
provided by Theorem 3.1, where we proved the monotonicity of K(b, c) with respect to
b. On the other hand, Corollary 4.3 suggests that this is true only in the scalar case.

A third open question concerns the monotonicity of optimal velocity bounds with
respect to c in the vector case.

Open problem 3. Is it true that the constant K(A, c) of section 4 is decreasing with
respect to c?

Concerning optimal estimates, it could be interesting to reduce the gap between the
upper estimates of Theorem 4.1 and the lower estimates of Theorem 4.2. The question
arises in both finite and infinite dimensional frameworks. In the finite dimensional case
we can state the question as follows.

Open problem 4. Let d ≥ 2 be an integer. Determine the supremum of c ·K(c, A) as
A ranges over all positive symmetric d× d matrices, or at least the

sup

{

lim inf
c→+∞

c ·K(A, c) : A is a d× d positive symmetric matrix

}

. (5.1)

From the results of section 4 we know that (5.1) is at least
√
d+ 3 and at most 2

√
d.

Just for completeness, we remind that the infimum of c · K(c, A) as A ranges over all
positive symmetric d× d matrices is 4/π because (4.2) is optimal.
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Finally, it could be interesting to extend Theorem 4.1 to general dissipation operators
as in equation (1.9). The techniques of this paper could probably handle the case where
B is of the form cAα, or more generally the case where B commutes with A. The most
delicate point in the proof is when we decomposed the space in (4.10). In the general
case there is no guarantee that the subspaces are both A-invariant and B-invariant, and
this makes the problem more challenging.

Open problem 5. Provide estimates from above for the constants involved in optimal
bounds for the velocity of solutions to (1.9) under the assumptions of Theorem D.
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