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BRIEF REPORT

Mutations in calmodulin-binding domains of TRPV4/6 channels confer invasive
properties to colon adenocarcinoma cells
Atousa Arbabiana,b*, Mircea Iftincac, Christophe Altierc, Param Priya Singha,b**, Hervé Isamberta,b,
and Sylvie Coscoya,b,d

aLaboratoire Physico Chimie Curie, Institut Curie, CNRS UMR168, PSL Research University, Paris, France; bSorbonne Université, Paris, France;
cDepartment of Physiology and Pharmacology. Inflammation Research Network, Snyder Institute for Chronic Diseases and Alberta Children’s
Hospital Research Institute (ACHRI), University of Calgary, Calgary, Canada; dEquipe Labellisée « Ligue contre le Cancer »

ABSTRACT
Transient receptor potential (TRP) channels form a family of polymodal cation channels gated by
thermal, mechanical, or chemical stimuli, with many of them involved in the control of prolifera-
tion, apoptosis, or cell cycle. From an evolutionary point of view, TRP family is characterized by
high conservation of duplicated genes originating from whole-genome duplication at the onset of
vertebrates. The conservation of such “ohnolog” genes is theoretically linked to an increased
probability of generating phenotypes deleterious for the organism upon gene mutation. We
aimed to test experimentally the hypothesis that TRP mutations, in particular gain-of-function,
could be involved in the generation of deleterious phenotypes involved in cancer, such as gain of
invasiveness. Indeed, a number of TRP channels have been linked to cancer progression, and
exhibit changes in expression levels in various types of cancers. However, TRP mutations in cancer
have been poorly documented. We focused on 2 TRPV family members, TRPV4 and TRPV6, and
studied the effect of putative gain-of-function mutations on invasiveness properties. TRPV chan-
nels have a C-terminal calmodulin-binding domain (CaMBD) that has important functions for
regulating protein function, through different mechanisms depending on the channel (channel
inactivation/potentiation, cytoskeleton regulation). We studied the effect of mutations mimicking
constitutive phosphorylation in TRPV4 and TRPV6 CaMBDs: TRPV4 S823D, S824D and T813D,
TRPV6 S691D, S692D and T702. We found that most of these mutants induced a strong gain of
invasiveness of colon adenocarcinoma SW480 cells, both for TRPV4 and TRPV6. While increased
invasion with TRPV6 S692D and T702D mutants was correlated to increased mutant channel
activity, it was not the case for TRPV4 mutants, suggesting different mechanisms with the same
global effect of gain in deleterious phenotype. This highlights the potential importance to search
for TRP mutations involved in cancer.
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Introduction

TRP (transient receptor potential) channels are
polymodal cation channels gated by thermal,
mechanical, or chemical stimuli. In mammals,
they form a subfamily of about 30 members, sub-
divided into 5 subfamilies, C (Canonical),
V (Vanilloid), M (Melastatin), A (Ankyrin bind-
ing), PP (Polycystin) and ML (Mucolipin) [1,2].
TRP channels play an important role in various
physiological mechanisms such as detection of
pressure, temperature, taste, pain perception and
vision, and mutations in these proteins are the
cause of many genetic diseases, from skeletal

dysplasias to neurodegenerative disorders, visual
troubles, or cardiac genetic diseases (see Nilius
et al. [3] for review). On the other hand, many
TRP channels are involved in the control of pro-
liferation, apoptosis, and cell cycle. TRP channels
could be cancer biomarkers as changes in TRP
expression have been associated with cancer pro-
gression. Structurally, TRP proteins are composed
of six transmembrane domains, with TM4-5 form-
ing the ion pore, and characteristic-conserved
domains like TRP box (short sequence of amino
acid near TM6), domains involved in protein
interactions (coiled-coil, ankyrin, PDZ) and
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calmodulin-binding domains (for TRPVs and
some TRPC).

From an evolutionary perspective, TRP families
show a high conservation of duplicated genes ori-
ginating from whole-genome duplication (so-
called ohnologs), which are likely to be associated
with the emergence of deleterious phenotypes
upon mutations [4–7]. Indeed, following the two
rounds of whole-genome duplication at the onset
of vertebrate about 500 million years ago, each
gene was present in up to four copies (ohnologs).
During the following evolution period, vertebrate
species had a natural tendency to get rid of super-
numerary gene copies. However, a conservation of
ohnologs is observed for specific gene families
with 25–35% of ohnologs retained overall, but
60% for cancer-linked genes and 80% for genes
with an auto-inhibitory activity [4–7]. Many of
them are involved in “gain of function” phenom-
ena, that are deleterious for the organism when
mutated (cancer, genetic diseases). The rationale is
that introducing random mutations to get rid of
supernumerary copies generates deleterious phe-
notypes, leading to “purifying selection” (i.e. elim-
ination of mutants), so that surviving organisms
tend to retain non-mutated copies of “dangerous”
ohnologs that are prone to dominant deleterious
mutations. According to this scheme, we tested the
hypothesis that mutating TRP channels resulted in
deleterious phenotypes. We tested the gain of
invasion, because of the general involvement of
TRP members in cancer.

Indeed, a growing number of TRP channels have
been reported to have a link with cancer [8–11]
(TRPC1, 3, 4, 6, V1, 2, 6, M1, 2, 4, 7, 8, A1, PP1),
with mechanisms that remain to be fully character-
ized but are related at least partly to their function in
calcium signaling and its general role in transcrip-
tion, cell cycle regulation, cytoskeleton dynamics,
and cell contraction. Overexpression or underex-
pression of TRP channels was reported in many
types of cancers, including breast, prostate, pancreas,
colon, lung, and melanomas, and overexpressing
TRP channels in vitro led to gain in proliferation
[12–16], invasion [17–20] or changes in migration
[21]. Strikingly, functional data published in the lit-
erature concern only changes of TRP expression
level, and not somatic TRP mutations in cancers.
(Note that, for some channels like TRPV1, V2, M1,

M8, an additional regulation can be obtained
through alternative splicing). Although some TRP
mutations are found in systematic exome sequencing
of tumors (COSMIC database) [22], it is not known
whether they have any functional implication or sig-
nificance in cancer development.

We focused here on the Vanilloid TRP subfam-
ily, in which some members are linked to cancer
(TRPV1, 2, 6, recently described for TRPV4)
[23,24], and for which gain-of-function mutations
are the cause of genetic diseases (TRPV4 [25]).
TRPV6 is a selective calcium channel mainly
expressed in small intestine, placenta, and pan-
creas, and participates in calcium reabsorption. It
has long been known to be overexpressed in dif-
ferent types of cancers: breast, where it was pro-
posed as a prognostic marker for aggressive breast
cancers; prostate, with an oncogenic potential for
TRPV6; colon, with a proposed protector role;
thyroid, ovary, bladder, cervix, and uterus cancers
[26–28]. TRPV4 is a polymodal nonselective
cation channel involved in many physiological
mechanisms, from control of osmotic pressure to
vascular function, organ function, skeletal integ-
rity, inflammation, and nociception. TRPV4 is
mutated in several genetic diseases like skeletal
dysplasia or neuromuscular diseases [25]. Links
between TRPV4 and cancer have just begun to
be documented. Recent reports show a decreased
of TRPV4 expression in skin and bladder cancers
[15,29], bladder and liver, and an overexpression
in cervix, bladder, colon, lung, and uterus cancers
[28], and TRPV4 is also involved in tumor cells
angiogenesis [30]. TRPV4 was recently reported to
be involved in breast cancer metastasis, through its
action of softening the cell cortex by regulation of
cytoskeleton/cortex proteins (actin/ERM/cad-
herin), by Ca2+-dependent activation of AKT and
E-cadherin downregulation [20,31].

This study aimed to determine whether TRP gain-
of-function mutations confer a gain in invasion. We
focused on C-terminal calmodulin-binding domains
(CaMBDs) that are present in C, V, and
M subfamilies, and that are central in channel inacti-
vation, potentiation, or cytoskeletal regulation,
although with channel-dependent mechanisms.
TRPV6 CaMBD contains a consensus sequence for
PKC phosphorylation, with phosphorylation-
decreasing calmodulin binding and slowing channel
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inactivation [32]. For TRPV4, C-terminal CaMBD
(812–831) was proposed to be involved in calcium
potentiation, via an auto-inhibitory mechanism com-
ing from inhibitory interactions between N- and
C-terminal domains, that would be released upon
calcium entry [33,34]. Importantly, while TRPV6
does not directly interact with the cytoskeleton,
TRPV4 has a dual binding to actin and tubulin via
domain (798–831), superimposing with CaMBD
domain. Phosphorylation of Ser824 (mediated by
SGK kinase) has also been reported to be important
for binding to actin and for and interaction with
STIM1, regulating TRPV4 plasma channel density
[35,36].

In this paper, we performed directed mutagen-
esis on TRPV4 and TRPV6 channels and showed
that some gain-of-function mutations, in particu-
lar those mimicking a constitutive phosphoryla-
tion in the calmodulin-binding domain, increased
cell invasiveness capacities. These results highlight
the importance to study in more detail TRP muta-
tions involved in cancer.

Experimental procedures

Reagents

N-((1 S)-1-{[4-((2 S)-2-{[(2,4-dichlorophenyl)sul-
fonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]
carbonyl}-3-methyl-butyl)-1-benzothiophene-
2-carboxamide GSK1016790A) was purchased
from Sigma Aldrich Chemicals (St. Louis, MO).
The drug was dissolved in DMSO at a stock solu-
tion of 100 mM and used for experiments at a con-
centration of 5 nM. The vehicle had no effect on
the responses of the cells at the concentration
used.

Molecular biology

Plasmid hTRPV4-myc in pCDNA4-T0was a kind gift
ofNathalie Vergnolle andCorinneRolland, TRPV6 in
pIRES of Natalia Prevarskaya. Directed mutagenesis
was performed using QuickChange Site-Directed
Mutagenesis kit (Agilent Technologies). For electro-
physiology, mutations were introduced in bicistronic
pIRES2-DsRed2 (Clontech laboratories) vectors,
allowing transfected cells to be selected for patch-
clamp experiments.

Cell culture and invasion assays

SW480 cells were purchased from ATCC and cul-
tured in L15 + 10% FBS at 37°C, without CO2.
Transient transfection was done by electroporation
with a GenePulser II apparatus (measured trans-
fection efficiency of 30% in our experimental con-
ditions). Invasion assays were carried out in
invasion chambers with Matrigel, 8 μm pores, of
BD Biosciences. A total of 20,000 cells were seeded
on invasion chambers, with 0% SVF on the top
and 10% SVF at the bottom (after FACS selection
of positive cells for TRPV4 experiments with bicis-
tronic vectors). Cells were allowed to migrate 22 h,
and invasive cells at the bottom were fixed with
methanol and colored with cristal violet, while
non-migrating cells on top were scratched away.
Experiments were done in triplicates, with manual
counting of all colored cells in each well. Error
bars are s.e.m.

Electrophysiological measurements

Tissue culture and transfection of human embryonic
kidney cells (tsA-201) cells were carried out as pre-
viously described. Whole-cell patch-clamp experi-
ments on HEK cells were performed 24 h after
transfection. For recordings, cells were placed into
a 2 ml bath containing (in mM): 140 NaCl, 1.5
CaCl2, 5 KCl, 2 MgCl2, 10 HEPES, 25 D-glucose,
pH 7.4 adjusted with NaOH on the stage of an epi-
fluorescence microscope (Olympus IX51, Olympus
America Inc., Center Valley, Pennsylvania, USA).
tsA-201 cells expressing the transfected TRPV4 wild
type or any of the three mutants were identified via
mCherry (red) protein fluorescence. Membrane cur-
rents were measured using conventional whole-cell
patch clamp with pipettes pulled from borosilicate
glass (Harvard Apparatus Ltd, UK) and polished to
2–4 MΩ resistance on a DMZ – Universal puller
(Zeitz-Instruments GmbH, Germany). The pipette
electrolyte contained (in mM): 120 CsCl2, 3
MgCl2,10 EGTA, 10 HEPES, 2 ATP, and 0.5 GTP,
pH 7.2 adjusted with CsOH. Recordings were carried
out using an Axopatch 200B amplifier and pClamp
10.4 software (Axon Instruments, Foster City, CA,
USA). All solutionswere prepared and all experiments
were conducted at room temperature (22 ± 2°C). Data
were filtered at 1 kHz (8-pole Bessel) and digitized at
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10 kHz with a Digidata 1440 A A/D converter (Axon
Instruments). Series resistance was 8.6 ± 0.9 MO
before compensation (B85%), and average cell capaci-
tance was 13.4 ± 2.3 pF. Only those cells that showed
a stable voltage control throughout the recording were
used for analysis.

Results

Conservation of ohnologs for TRP family
members

Ohnologs of TRP channels have been determined
using the method developed by Singh et al. [7,37]
and the open-access online database at http://ohno
logs.curie.fr/, Figure 1 (whole-genome duplications
are marked with an asterisk on the phylogenetic
tree). These results show that almost all TRP subfami-
lies exhibit a high degree of ohnolog conservation. The
probability to be associated to deleterious phenomena
upon gain-of-function mutations has been shown to
increase with the number of ohnologs and becomes
very important if three or four ohnologs are con-
served. It is the case for TRPC, M, V, and PP
subfamilies.

In this study, we focused on TRPV channels
because (1) their CaMBD domain constituted a good
target for generating gain-of-function mutations, and
(2) a wide range of gain-of-function mutations were
already reported for TRPV4 in the frame of genetic
diseases. In TRPV subfamily, five ohnologs were
found: TRPV6/TRPV5 (from a local duplication on
chromosome 7), TRPV4 (on chromosome 12), and
TRPV1/TRPV3 (from a local duplication on chromo-
some 17).

A preliminary screen on gain in invasion upon
known or putative gain-of-function mutations,
most identified in genetic diseases, was performed
for TRPV4 (not shown), highlighting the impor-
tance of mutations in CaMBD. We studied both
TRPV4 (CaMBD involved in potentiation and
cytoskeleton regulation) and TRPV6 (CaMBD
involved in inactivation, no direct interaction
with cytoskeleton). Phosphorylation on these
CaMBD domains was reported to be important
both for TRPV4 and TRPV6 activities; Figure 2
(a) shows that each CaMBD contained three puta-
tive phosphorylation sites. We then performed
systematic mutation in order to mimic their con-
stitutive phosphorylation.

Figure 1. Ohnologs in TRP family. Phylogenetic tree was obtained from Nilius et al. [38], and asterisks correspond to the two whole-
genome duplications on each branch (shown for ohnolog genes) [37].
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Most gain-of-function TRPV4/6 mutations
mimicking constitutive phosphorylation in
CaMBD increase invasiveness of SW480 cells

TRPV6 contains a C-terminal calmodulin domain
with two serines and one threonine (Figure 2(a)).
Mutations TRPV6 S691D, S692D, and T702D,
mimicking a constitutive phosphorylation in
CaMBD, were performed. We quantified invasion
by a classical assay on SW480 colon adenocarci-
noma cells, very weakly invasive when non-
transfected. While SW480 cells have an endogenous
TRPV6 expression [39], TRPV6 expression already
led to a small increase in invasiveness properties
(Figure 2(b)). Two mutations, S692D and T702D,
conferred a gain of invasion to TRPV6 when trans-
fected in SW480 cells, compared to WT TRPV6
expression (Figure 2(b,d)). The number of invasive
cells was 76 ± 5 (n = 3), 902 ± 240 (n = 3) and
213 ± 77 (n = 3) respectively, for S691D, S692D,
and T702D, vs 55 ± 14 (n = 6) for WT TRPV6

control. These results suggest that, in SW480
in vitro invasion assays, mimicking constitutive
phosphorylation of TRPV6 CaMBD confers inva-
siveness in two of three positions.

Like TRPV6 CaMBD, TRPV4 CaMBD contains
two serines and one threonine (Figure 2(a)).
Intestinal cells are not expected to express
a significant level of endogenous TRPV4 [40], and
expression of WT TRPV4 already conferred a slight
increase in invasive capacity, as already reported
[31]. TRPV4 S823D, S824D, and T813D conferred
a strong gain in invasion (Figure 2(c,e)). After
expression in bicistronic vector and selection of
positive cells, the number of invasive cells was
respectively 305 ± 29 (n = 3), 1467 ± 137 (n = 3)
and 320 ± 57 (n = 3) for T813D, S823D, and S824D
mutants, vs 36 ± 22 (n = 9) for the corresponding
TRPV4 WT control (Figure 2(c)). Then, most
CaMBD mutations mimicking constitutive phos-
phorylation in TRPV6 or TRPV4 channels strongly
increased cell invasive properties of SW480 cells.

Figure 2. Mutations in TRPV4 and TRPV6 CaMBDs confer increased invasive properties to SW480 cells. (a) TRPV4 and TRPV6 CaMBD
domains, with serine/threonine residues as potential phosphorylation sites (arrows). (b–c) Invasion assay on TRPV6 (b) and TRPV4 (c)
CaMBD mutants mimicking constitutive phosphorylation. The number of cells passing through Matrigel after 22 h invasion (out of
20,000 seeded cells) is indicated. For TRPV4, bicistronic vectors allowing selection of transfected cells were used. A common
reference (non-transfected cells) is indicated in (b) and (c) (black). (d–e) Typical images on cells harvested in invasion assays, on
Corning BioCoat Matrigel invasion chambers with 8 μm pores, for TRPV6 (d) and TRPV4 (e). Images shown correspond to
experiments with non-bicistronic vectors, both for TRPV6 (b) and TRPV4 (see SI).
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Mutants correspond to gain-of-function in
channel activity for TRPV6 and involve
additional mechanisms for TRPV4

Channel properties of TRPV6 and TRPV4 CaMBD
mutants were studied by whole-cell patch clamp,
following expression in HEK cells devoid of endo-
genous TRPV6/4 (Figure 3). We found a gain of
TRPV6 channel basal activity only for the two
mutations generating a gain in invasion, S692D
and T702D, both exhibiting a similar behavior
(Figure 3(a)). The peak inward current of the
TRPV6 WT channel (recorded at −200 mV) was
smaller (−45.00 ± 6.59 pA/pF) compared to the
T702D and S692D mutants which showed
−149.4 ± 28.77 pA/pF (n = 7) and
−151.35 ± 37.0 pA/pF (n = 6), respectively. This
corresponds to a 332% (P = 0.001) and 336%
(P = 0.001) increase in current for the T702D
and S692D mutants, respectively (Figure 3(a)). As
TRPV6 channels are strong inward rectifiers this
suggested an increased calcium entry at resting
membrane potentials that may constitute the
source of calcium triggering the increased inva-
siveness of the cells. This indicates a possible link
between gain-of-function mutations and danger-
ous phenotype, as predicted by the theory.

The situation was more complex for TRPV4.
Base current was similar between the wild type
and the three mutants (at: 28.87 ± 6.2 pA/pF,
14.94 ± 1.6 pA/pF, 15.11 ± 1.6 pA/pF, and
23.69 ± 4.7 pA/pF, respectively) (not shown).
Exposure of TRPV4 wild-type expressing cells to

the TRPV4 agonist GSK (5 nM) had a strong effect
on the peak current (~600% increase, n = 6,
P = 0.001) when compared to the baseline activity.
However, only the TRPV4 S824D mutant showed
an increase in the GSK-induced current over the
wild type (~1000% increase compared to the base
current, n = 7, P = 0.0003). The T813D mutant had
less GSK-induced current compared to the wild
type (although there was a ~ 650% increase over
the base current, n = 9, P = 0.0001) and, finally, the
GSK sensitivity of the S823D mutant was lost.
~170% (n = 7, P = 0.049) (Figure 3(b)). Of note,
the GSK-induced effect was completely abolished
after a 30-min wash (not shown). When compared
to the TRPV4 wild-type peak current of
164.31 ± 19.1 pA/pF both TRPV4 S823D and
S824D mutants showed statistically significant
lower values at 25.5 ± 3.75 pA/pF (P = 0.00001)
and 100.56 ± 7.43 pA/pF (P = 0.003), respectively
(Figure 3(b)). The currents obtained with TRPV4
S824D mutant by depolarizing steps to +60, +80,
and +100 mV were increased when compared to
the wild-type (peak of 240.55 ± 31.16 pA/pF). These
data reveal a robust and reversible GSK-mediated
stimulation of TRPV4 wild-type, TRPV4 S824D
and TRPV4 T813D currents but not S823D.

Therefore, none of the studied TRPV4 muta-
tions led to a net increase in channel basal activity
although upon stimulation S824D mutant showed,
in our hands, an increase at more positive poten-
tials over the wild-type channel similar to Shin
et al. [35]. TRPV4 has been shown to participate

Figure 3. Electrophysiology of TRPV4/6 CaMBD mutants. Whole-cell patch-clamp experiments on HEK cells were performed 24 h
after transfection with TRPV6 (a) or TRPV4 (b). Current–voltage relations obtained from the TRPV6 wild type and the three mutants
(a) and for the TRPV4 wild type and mutant channels before (open symbol) and after GSK treatment (closed symbols). Each
datapoint represents the mean ± SEM.
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in osmo- and mechanotransduction and this par-
ticular site has been shown, by Shin et al., to be
implicated in the regulation of interaction with
cytoskeleton proteins [35]. Furthermore, PKA-
dependent phosphorylation of the channel at this
site is involved in sensitization of the channel by
hypotonic stimulations [41].

Discussion

In this paper, we identified mutations conferring
an invasive phenotype to the weakly invasive
SW480 cell line. This study originated from evolu-
tion theory, suggesting indeed that TRP mutations,
and not only overexpression or underexpression,
may confer deleterious invasive phenotypes.
Following a screening of different types of
TRPV4 mutations, we focused on a centrally
involved domain, CaMBD. It is interesting to
note that this domain reported to have opposite
roles (inactivation/calcium potentiation) for
TRPV4 and TRPV6 channels in the literature
[32,33], confers here identical invasion effects for
both proteins.

The mechanisms of gain of function induced by
CaMBD mutants are distinct between TRPV4 and
TRPV6. TRPV6 mutants show increased basal
activity (channel locked in open state). For this
channel, the gain in invasion observed with our
mutants is correlated with channel gain-of-
function, very likely by loss of auto-inhibitory
mechanisms previously described [27,42–44]. So
mutations in TRPV6 could explain the invasive-
ness of the cells expressing mutant channel via
increased basal activity.

For TRPV4, the gain in invasion is associated
with increased channel activity only for S824D
mutant: this consists in an increased activity in
response to GSK (greater sensitivity or facilitated
coupling between agonist binding and channel
gating), and not an increased basal activity as for
TRPV6 mutants. For this mutation, invasive
effects could be explained by an endogenous ago-
nist, such as arachidonic acid metabolite EET (or
ROS compounds) [45] which have been involved
in increasing the cancer cell migration.
Alternatively, and for CaMBD mutations that did
not lead to increased channel activity, mutations
may be gain-of-function not because of direct

modification of channel properties, but because
of another property of CaMBD like cytoskeleton
regulation [35] or control of channel density at the
plasma membrane [36].

This would be in excellent agreement with
recent published works on cytoskeleton/adhesion
regulation by TRPV4 mediating breast cancer
metastasis [20]. It was observed that WT TRPV4
overexpression led to increased breast cancer cell
invasion, through regulation of cell stiffness, bleb-
bing, and actin cortex [20]; the effects were
mediated by Ca2+-dependent activation of Akt
and E-cadherin down-regulation [31]. In light of
these elements, the gain of invasion observed with
our mutants may be due to increased actin binding
and increased TRPV4 density at plasma mem-
brane. Moreover, such mechanisms are highly sug-
gested by the literature studying the role of Ser824
phosphorylation. First, Ser824 phosphorylation
increases binding to actin [35]. Second, Ser824
phosphorylation also modulates interaction with
STIM1 (stromal interaction molecule 1 precursor),
regulating TRPV4 channel density [36]: TRPV4
S824D mutant cannot associate with STIM1,
resulting in enhanced TRPV4 density in the
plasma membrane. Given that overexpressed
TRPV4 is sufficient to generate softening of cell
cortex and an increase in invasion in breast cancer
cells [20,31], this last mechanism may play an
important role in the observed gain of invasion.
While the precise mechanisms involved with the
three CaMBD mutations studied go beyond the
scope of this paper, we hypothetize that mimicking
constitutive phosphorylation in TRPV4 CaMBD
both has effects on channel density at plasma
membrane and has direct effects of cytoskeleton
regulation and signaling pathways (like Akt), lead-
ing to cortex softening and facilitated inva-
sion [20].

Therefore, our data suggest that mutations in
TRPV CaMBD domains lead to gain-of-function
phenotypes through different pathways. They also
establish that CaMBD phosphorylation sites
appear as residues particularly sensitive to muta-
tion in TRPV channels. However, other mutations
outside the CaMBD domain or different mutations
inside the CaMDB domains are also likely to be
involved in deleterious phenotypes, as suggested
by the variety of non-synonymous mutations
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associated with TRPV4 and TRPV6 in the
COSMIC cancer database.
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