U. Forstermann and W. C. Sessa, Nitric oxide synthases: Regulation and function, Eur. Heart J, vol.33, pp.829-837, 2012.

S. Anavi and O. Tirosh, iNOS as a metabolic enzyme under stress conditions. Free Radic, Biol. Med, 2019.

J. L. Wheeler, K. C. Martin, and B. P. Lawrence, Novel cellular targets of AhR underlie alterations in neutrophilic inflammation and inducible nitric oxide synthase expression during influenza virus infection, J. Immunol, vol.190, pp.659-668, 2013.

Z. Gu, T. Nakamura, and S. A. Lipton, Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases, Mol. Neurobiol, vol.41, pp.55-72, 2010.

P. Pacher, J. S. Beckman, and L. Liaudet, Nitric oxide and peroxynitrite in health and disease, Physiol. Rev, vol.87, pp.315-424, 2007.

R. B. Silverman, Design of selective neuronal nitric oxide synthase inhibitors for the prevention and treatment of neurodegenerative diseases, Acc. Chem. Res, vol.42, pp.439-451, 2009.

J. L. Balligand, O. Feron, and C. Dessy, eNOS activation by physical forces: From short-term regulation of contraction to chronic remodeling of cardiovascular tissues, Physiol. Rev, vol.89, pp.481-534, 2009.

T. Hatakeyama, P. J. Pappas, R. W. Hobson, M. P. Boric, W. C. Sessa et al., Endothelial nitric oxide synthase regulates microvascular hyperpermeability in vivo, J. Physiol, vol.574, pp.275-281, 2006.

U. Forstermann and H. Li, Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling, Br. J. Pharmacol, vol.164, pp.213-223, 2011.

K. Sasaki, C. Heeschen, A. Aicher, T. Ziebart, J. Honold et al., Ex vivo pretreatment of bone marrow mononuclear cells with endothelial NO synthase enhancer AVE9488 enhances their functional activity for cell therapy, Proc. Natl. Acad. Sci, vol.103, pp.14537-14541, 2006.

U. Forstermann and W. C. Sessa, Nitric oxide synthases: Regulation and function, Eur. Heart J, vol.33, pp.829-837, 2012.

S. Anavi and O. Tirosh, iNOS as a metabolic enzyme under stress conditions. Free Radic, Biol. Med, 2019.

J. L. Wheeler, K. C. Martin, and B. P. Lawrence, Novel cellular targets of AhR underlie alterations in neutrophilic inflammation and inducible nitric oxide synthase expression during influenza virus infection, J. Immunol, vol.190, pp.659-668, 2013.

Z. Gu, T. Nakamura, and S. A. Lipton, Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases, Mol. Neurobiol, vol.41, pp.55-72, 2010.

P. Pacher, J. S. Beckman, and L. Liaudet, Nitric oxide and peroxynitrite in health and disease, Physiol. Rev, vol.87, pp.315-424, 2007.

R. B. Silverman, Design of selective neuronal nitric oxide synthase inhibitors for the prevention and treatment of neurodegenerative diseases, Acc. Chem. Res, vol.42, pp.439-451, 2009.

J. L. Balligand, O. Feron, and C. Dessy, eNOS activation by physical forces: From short-term regulation of contraction to chronic remodeling of cardiovascular tissues, Physiol. Rev, vol.89, pp.481-534, 2009.

T. Hatakeyama, P. J. Pappas, R. W. Hobson, M. P. Boric, W. C. Sessa et al., Endothelial nitric oxide synthase regulates microvascular hyperpermeability in vivo, J. Physiol, vol.574, pp.275-281, 2006.

U. Forstermann and H. Li, Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling, Br. J. Pharmacol, vol.164, pp.213-223, 2011.

K. Sasaki, C. Heeschen, A. Aicher, T. Ziebart, J. Honold et al., Ex vivo pretreatment of bone marrow mononuclear cells with endothelial NO synthase enhancer AVE9488 enhances their functional activity for cell therapy, Proc. Natl. Acad. Sci, vol.103, pp.14537-14541, 2006.

K. Morigaki, K. Mizutani, E. Kanemura, Y. Tatsu, N. Yumoto et al., Photoregulation of cytochrome P450 activity by using caged compound, Anal. Chem, vol.84, pp.155-160, 2012.

B. L. Stoddard, B. E. Cohen, M. Brubaker, A. D. Mesecar, D. E. Koshland et al., Millisecond Laue structures of an enzyme-product complex using photocaged substrate analogs, Nat. Struct. Biol, vol.5, pp.891-897, 1998.

J. Santolini, S. Adak, C. M. Curran, and D. J. Stuehr, A kinetic simulation model that describes catalysis and regulation in nitric-oxide synthase, J. Biol. Chem, vol.276, pp.1233-1243, 2001.

N. Volkmann, P. Martasek, L. J. Roman, X. P. Xu, C. Page et al., Holoenzyme structures of endothelial nitric oxide synthase-An allosteric role for calmodulin in pivoting the FMN domain for electron transfer, J. Struct. Biol, vol.188, pp.46-54, 2014.

E. Beaumont, J. C. Lambry, M. Blanchard-desce, P. Martasek, S. P. Panda et al., NO formation by neuronal NO-synthase can be controlled by ultrafast electron injection from a nanotrigger, ChemBioChem, vol.10, pp.690-701, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00818490

E. Beaumont, J. C. Lambry, C. Gautier, A. C. Robin, S. Gmouh et al., Synchronous photoinitiation of endothelial NO synthase activity by a nanotrigger targeted at its NADPH site, J. Am. Chem. Soc, vol.129, pp.2178-2186, 2007.

E. Beaumont, J. C. Lambry, A. C. Robin, P. Martasek, and M. Blanchard-desce, Slama-Schwok, A. Two photon-induced electron injection from a nanotrigger in native endothelial NO-synthase, ChemPhysChem, vol.9, pp.2325-2331, 2008.

N. H. Nguyen, N. Bogliotti, R. Chennoufi, E. Henry, P. Tauc et al., Convergent synthesis and properties of photoactivable NADPH mimics targeting nitric oxide synthases, Org. Biomol. Chem, vol.14, pp.9519-9532, 2016.

R. Chennoufi, A. Cabrie, N. H. Nguyen, N. Bogliotti, F. Simon et al., Light-induced formation of NO in endothelial cells by photoactivatable NADPH analogues targeting nitric-oxide synthase, Biochim. Biophys. Acta Gen. Subj, vol.1863, pp.1127-1137, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02350507

O. Carugo and P. Argos, NADP-dependent enzymes. I: Conserved stereochemistry of cofactor binding, Proteins, vol.28, pp.10-28, 1997.

O. Carugo and P. Argos, NADP-dependent enzymes. II: Evolution of the mono-and dinucleotide binding domains, Proteins, vol.28, pp.29-40, 1997.

E. D. Garcin, C. M. Bruns, S. J. Lloyd, D. J. Hosfield, M. Tiso et al., Structural basis for isozyme-specific regulation of electron transfer in nitric-oxide synthase, J. Biol. Chem, vol.279, pp.37918-37927, 2004.

J. C. Lambry, E. Beaumont, B. Tarus, M. Blanchard-desce, and A. Slama-schwok, Selective probing of a NADPH site controlled light-induced enzymatic catalysis, J. Mol. Recognit, vol.23, pp.379-388, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00807882

R. Kumari and R. Kumar, Open Source Drug Discovery Consortium

A. Lynn, A GROMACS tool for high-throughput MM-PBSA calculations, J. Chem. Inf. Model, vol.54, pp.1951-1962, 2014.

N. H. Nguyen, R. Chennoufi, N. Bogliotti, E. Deprez, A. Slama-schwok et al., Unpublished work, 2019.

C. Moali, J. L. Boucher, M. A. Sari, D. J. Stuehr, and D. Mansuy, Substrate specificity of NO synthases: Detailed comparison of L-arginine, homo-L-arginine, their N omega-hydroxy derivatives, and N omega-hydroxynor-L-arginine, Biochemistry, vol.37, pp.10453-10460, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00314483

L. J. Roman, E. A. Sheta, P. Martasek, S. S. Gross, Q. Liu et al., High-level expression of functional rat neuronal nitric oxide synthase in Escherichia coli, Proc. Natl. Acad. Sci, vol.92, pp.8428-8432, 1995.

E. Thierry, S. Lebourgeois, F. Simon, O. Delelis, and E. Deprez, Probing Resistance Mutations in Retroviral Integrases by Direct Measurement of Dolutegravir Fluorescence, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02350624

K. Carayon, H. Leh, E. Henry, F. Simon, J. F. Mouscadet et al., A cooperative and specific DNA-binding mode of HIV-1 integrase depends on the nature of the metallic cofactor and involves the zinc-containing N-terminal domain, Nucleic Acids Res, vol.38, pp.3692-3708, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02350642

S. Lazareno and N. J. Birdsall, Estimation of competitive antagonist affinity from functional inhibition curves using the Gaddum, Schild and Cheng-Prusoff equations, Br. J. Pharmacol, vol.109, pp.1110-1119, 1993.

E. E. Deprez, Unpublished work, 2019.

C. G. Bresnahan, C. R. Reinhardt, T. G. Bartholow, J. P. Rumpel, M. North et al., Effect of stacking interactions on the thermodynamics and kinetics of lumiflavin: A study with improved density functionals and density functional tight-binding protocol, J. Phys. Chem. A, vol.119, pp.172-182, 2015.

I. Baraldi, F. Momicchioli, G. Ponterinin, A. S. Tatikolov, and D. Vanossi, Photoisimerization of simple merocyanines: A theoretical and experimental comparison with polyenes and symetrical cyanines, Phys. Chem. Chem. Phys, vol.5, pp.979-987, 2003.

H. El-gezawy, W. Rettig, and R. Lapouyade, Model studies of spectral and photophysical characteristics of donor-acceptor polyenes, Chem. Phys. Lett, vol.401, pp.140-148, 2005.

J. Qian and D. Fulton, Post-translational regulation of endothelial nitric oxide synthase in vascular endothelium, Front. Physiol, 2013.

K. Ohtani, G. J. Vlachojannis, M. Koyanagi, J. N. Boeckel, C. Urbich et al., Epigenetic regulation of endothelial lineage committed genes in pro-angiogenic hematopoietic and endothelial progenitor cells, Circ. Res, vol.109, pp.1219-1229, 2011.