M. Haas, Chronic allograft nephropathy or interstitial fibrosis and tubular atrophy: what is in a name?, Curr Opin Nephrol Hypertens, vol.23, pp.245-250, 2014.

C. Roufosse, N. Simmonds, and M. Clahsen-van-groningen, Reference guide to the banff classification of renal allograft pathology, Transplantation, vol.102, issue.11, pp.1795-1814, 2018.

L. C. Racusen and H. Regele, The pathology of chronic allograft dysfunction, Kidney Int, vol.78, pp.27-32, 2010.

J. Pascual, M. J. Pérez-sáez, M. Mir, and M. Crespo, Chronic renal allograft injury: early detection, accurate diagnosis and management, Transplant Rev, vol.26, pp.280-290, 2012.

U. Heemann and J. Lutz, Pathophysiology and treatment options of chronic renal allograft damage, Nephrol Dial Transplant, vol.28, pp.2438-2446, 2013.

D. G. Maluf, C. I. Dumur, and J. L. Suh, Evaluation of molecular profiles in calcineurin inhibitor toxicity post-kidney transplant: input to chronic allograft dysfunction, Am J Transplant, vol.14, pp.1152-1163, 2014.

J. M. Venner, K. S. Famulski, J. Reeve, J. Chang, and P. F. Halloran, Relationships among injury, fibrosis, and time in human kidney transplants, JCI Insight, vol.1, p.85323, 2016.

R. M. Merion, V. B. Ashby, and R. A. Wolfe, Deceased-donor characteristics and the survival benefit of kidney transplantation, JAMA, vol.294, pp.2726-2733, 2005.

O. Aubert, N. Kamar, and D. Vernerey, Long term outcomes of transplantation using kidneys from expanded criteria donors: prospective, population based cohort study, BMJ, vol.351, p.3557, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01960106

G. Wong, A. Teixeira-pinto, and J. R. Chapman, the impact of total ischemic time, donor age and the pathway of donor death on graft outcomes after deceased donor kidney transplantation, Transplantation, vol.101, pp.1152-1158, 2017.

Z. M. El-zoghby, M. D. Stegall, and D. J. Lager, Identifying specific causes of kidney allograft loss, Am J Transplant, vol.9, pp.527-535, 2009.

J. Sellarés, D. G. De-freitas, and M. Mengel, Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence, Am J Transplant, vol.12, pp.388-399, 2012.

B. D. Myers, J. Ross, L. Newton, J. Luetscher, and M. Perlroth, Cyclosporineassociated chronic nephropathy, N Engl J Med, vol.311, pp.699-705, 1984.

A. G. Palestine, H. A. Austin, and J. E. Balow, Renal histopathologic alterations in patients treated with cyclosporine for uveitis, N Engl J Med, vol.314, pp.1293-1298, 1986.

A. Greenberg, J. W. Egel, and M. E. Thompson, Early and late forms of cyclosporine nephrotoxicity: studies in cardiac transplant recipients, Am J Kidney Dis, vol.9, pp.12-22, 1987.

A. O. Ojo, P. J. Held, and F. K. Port, Chronic renal failure after transplantation of a nonrenal organ, N Engl J Med, vol.349, pp.931-940, 2003.

H. François and C. Chatziantoniou, Renal fibrosis: recent translational aspects, Matrix Biol J, pp.318-332, 2018.

L. Lecru, C. Desterke, and S. Grassin-delyle, Cannabinoid receptor 1 is a major mediator of renal fibrosis, Kidney Int, vol.88, pp.72-84, 2015.

F. Barutta, A. Corbelli, and R. Mastrocola, Cannabinoid receptor 1 blockade ameliorates albuminuria in experimental diabetic nephropathy, Diabetes, vol.59, pp.1046-1054, 2010.

D. H. Nam, M. H. Lee, and J. E. Kim, Blockade of cannabinoid receptor 1 improves insulin resistance, lipid metabolism, and diabetic nephropathy in db/db mice, Endocrinology, vol.153, pp.1387-1396, 2012.

T. Jourdan, G. Szanda, and A. Z. Rosenberg, Overactive cannabinoid 1 receptor in podocytes drives type 2 diabetic nephropathy, Proc Natl Acad Sci, vol.111, pp.5420-5428, 2014.

S. Udi, L. Hinden, and B. Earley, Proximal tubular cannabinoid-1 receptor regulates obesity-induced CKD, J Am Soc Nephrol, vol.28, pp.3518-3532, 2017.

L. Hinden, S. Udi, and A. Drori, Modulation of renal GLUT2 by the cannabinoid-1 receptor: implications for the treatment of diabetic nephropathy, J Am Soc Nephrol, vol.29, pp.434-448, 2018.

T. Jourdan, J. K. Park, and Z. V. Varga, Cannabinoid-1 receptor deletion in podocytes mitigates both glomerular and tubular dysfunction in a mouse model of diabetic nephropathy, Diabetes Obes. Metab, vol.20, pp.698-708, 2018.

C. Ledent, O. Valverde, and G. Cossu, Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice, Science, vol.283, pp.401-404, 1999.

A. C. Howlett, L. C. Blume, and G. D. Dalton, CB1 cannabinoid receptors and their associated proteins, Curr Med Chem, vol.17, p.1382, 2010.

L. O'keefe, A. C. Simcocks, D. H. Hryciw, M. L. Mathai, and A. J. Mcainch, The cannabinoid receptor 1 and its role in influencing peripheral metabolism, Diabetes Obes Metab, vol.16, pp.294-304, 2014.

S. Munro, K. L. Thomas, and M. Abu-shaar, Molecular characterization of a peripheral receptor for cannabinoids, Nature, vol.365, pp.61-65, 1993.

Y. Koura, A. Ichihara, and Y. Tada, Anandamide decreases glomerular filtration rate through predominant vasodilation of efferent arterioles in rat kidneys, J Am Soc Nephrol, vol.15, pp.1488-1494, 2004.

G. Larrinaga, A. Varona, and I. Pérez, Expression of cannabinoid receptors in human kidney, Histol Histopathol, vol.25, pp.1133-1138, 2010.

J. C. Lim, S. K. Lim, M. J. Park, G. Y. Kim, H. J. Han et al., Cannabinoid receptor 1 mediates high glucose-induced apoptosis via endoplasmic reticulum stress in primary cultured rat mesangial cells, Am J Physiol Renal Physiol, vol.301, pp.179-188, 2011.

K. A. Jenkin, A. J. Mcainch, Y. Zhang, D. J. Kelly, and D. H. Hryciw, Elevated cannabinoid receptor 1 and G protein-coupled receptor 55 expression in proximal tubule cells and whole kidney exposed to diabetic conditions, Clin Exp Pharmacol Physiol, vol.42, pp.256-262, 2015.

H. Francois and L. Lecru, The role of cannabinoid receptors in renal diseases, Curr Med Chem, vol.25, pp.793-801, 2018.

D. Legouis, A. Bataille, and A. Hertig, Ex vivo analysis of renal proximal tubular cells, BMC Cell Biol, vol.16, p.12, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01144197

. R-core-team, A Language and Environment for Statistical Computing, 2014.

D. P. Basile, D. Donohoe, K. Roethe, and J. L. Osborn, Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function, Am J Physiol Renal Physiol, vol.281, pp.887-899, 2001.

J. V. Bonventre and J. M. Weinberg, Recent advances in the pathophysiology of ischemic acute renal failure, J Am Soc Nephrol, vol.14, pp.2199-2210, 2003.

U. Rauen and H. De-groot, New insights into the cellular and molecular mechanisms of cold storage injury, J Investig Med, vol.52, pp.299-309, 2004.

A. K. Salahudeen, Cold ischemic injury of transplanted kidneys: new insights from experimental studies, Am J Physiol Renal Physiol, vol.287, pp.181-187, 2004.

S. Tanaka, T. Tanaka, and M. Nangaku, Hypoxia as a key player in the AKI-to-CKD transition, Am J Physiol Renal Physiol, vol.307, pp.1187-1195, 2014.

Y. Hirakawa, T. Tanaka, and M. Nangaku, Renal Hypoxia in CKD; pathophysiology and detecting methods, Front Physiol, vol.8, p.99, 2017.

M. Liu, X. Ning, and R. Li, Signalling pathways involved in hypoxia-induced renal fibrosis, J Cell Mol Med, vol.21, pp.1248-1259, 2017.

D. Serón, F. Moreso, X. Fulladosa, M. Hueso, M. Carrera et al., Reliability of chronic allograft nephropathy diagnosis in sequential protocol biopsies, Kidney Int, vol.61, pp.727-733, 2002.

D. Serón, F. Moreso, and J. Bover, Early protocol renal allograft biopsies and graft outcome, Kidney Int, vol.51, pp.310-316, 1997.

L. Pape, T. Henne, and G. Offner, Computer-assisted quantification of fibrosis in chronic allograft nephropaty by picosirius red-staining: a new tool for predicting long-term graft function, Transplantation, vol.76, pp.955-958, 2003.

P. C. Grimm, P. Nickerson, and J. Gough, Computerized image analysis of Sirius Red-stained renal allograft biopsies as a surrogate marker to predict long-term allograft function, J Am Soc Nephrol, vol.14, pp.1662-1668, 2003.

P. Kavvadas, J. Dussaule, and C. Chatziantoniou, Searching novel diagnostic markers and targets for therapy of CKD, Kidney Int Suppl, vol.4, pp.53-57, 2014.

M. Naesens, D. Kuypers, and M. Sarwal, Calcineurin inhibitor nephrotoxicity, Clin J Am Soc Nephrol, vol.4, pp.481-508, 2009.

G. Wolf, P. D. Killen, and E. G. Neilson, Cyclosporin A stimulates transcription and procollagen secretion in tubulointerstitial fibroblasts and proximal tubular cells, J Am Soc Nephrol, vol.1, pp.918-922, 1990.

J. M. Vieira, I. L. Noronha, D. M. Malheiros, and E. A. Burdmann, Cyclosporineinduced interstitial fibrosis and arteriolar TGF-beta expression with preserved renal blood flow, Transplantation, vol.68, pp.1746-1753, 1999.

A. Khanna, M. Plummer, C. Bromberek, B. Bresnahan, and S. Hariharan, Expression of TGF-beta and fibrogenic genes in transplant recipients with tacrolimus and cyclosporine nephrotoxicity, Kidney Int, vol.62, pp.2257-2263, 2002.

M. C. Roos-van-groningen, E. M. Scholten, and P. M. Lelieveld, Molecular comparison of calcineurin inhibitor-induced fibrogenic responses in protocol renal transplant biopsies, J Am Soc Nephrol, vol.17, pp.881-888, 2006.