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Abstract

Autism is still diagnosed on the basis of subjective assessments of elusive notions such as

interpersonal contact and social reciprocity. We propose to decompose reciprocal social

interactions in their basic computational constituents. Specifically, we test the assumption

that autistic individuals disregard information regarding the stakes of social interactions

when adapting to others. We compared 24 adult autistic participants to 24 neurotypical (NT)

participants engaging in a repeated dyadic competitive game against artificial agents with

calibrated reciprocal adaptation capabilities. Critically, participants were framed to believe

either that they were competing against somebody else or that they were playing a gambling

game. Only the NT participants did alter their adaptation strategy when they held information

regarding others’ competitive incentives, in which case they outperformed the AS group.

Computational analyses of trial-by-trial choice sequences show that the behavioural reper-

toire of autistic people exhibits subnormal flexibility and mentalizing sophistication, espe-

cially when information regarding opponents’ incentives was available. These two

computational phenotypes yield 79% diagnosis classification accuracy and explain 62% of

the severity of social symptoms in autistic participants. Such computational decomposition

of the autistic social phenotype may prove relevant for drawing novel diagnostic boundaries

and guiding individualized clinical interventions in autism.

Author summary

Autism or AS is mostly characterized by impairments in a very specific yet intricate skill

set, namely: social intelligence. In this work, we focus on "social reciprocity", i.e. the con-

tinuous adaptation of one’s behaviour that both moulds and appropriately responds to

others’ behaviour. Our working hypothesis is that social reciprocity deficits in people with

AS derive from a basic inability to tune one’s adaptation strategy to contextual knowledge

about the stakes of social interactions (e.g., others’ cooperative or competitive incentives).

We ask participants to engage in simple interactive games with AI agents that are

endowed with calibrated reciprocal adaptation capabilities. Critically, participants are

framed to believe either that they are competing against somebody else (social framing) or

that they are playing a gambling game (non-social framing). Only in the social condition

do participants know about the (competitive) incentives of their opponents.
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Computational analyses of action sequences in the games show that, contrary to healthy

controls, people with AS do not change their strategy according to whether they hold

information regarding their opponents’ incentives or not. In addition, these analyses yield

79% diagnosis out-of-sample classification accuracy (AS versus controls) and predict 62%

of the severity of social symptoms in people with AS. This demonstrates the feasibility of

AI-based quantitative assessments of social cognition and its deficits.

Introduction

Autism spectrum (AS, or ASD in DSM-5- American Psychiatric Association, 2013; Kenny

et al., 2016) is a highly heterogeneous condition defined by altered reciprocal social interaction

and inflexible patterns of behavior. Despite refinement of diagnostic tools in the last decades,

standardized clinical assessments have limited reliability regarding milder forms of autism

seen in adults and adolescent: we still lack a solid test for autism [1]. In turn, the clinical identi-

fication of autism relies on sociopsychological constructs such as interpersonal contact and rec-
iprocity, which remain elusive and beyond the reach of objective measurement [2,3]. This

work evaluates the clinical relevance of a computational decomposition of the latter notion,

relying on the quantitative assessment of adaptation strategies in the context of simple dyadic

games.

Most recent neurocognitive work on autism, including computational modelling

approaches, offers an excellent mechanistic account of general perceptual and/or cognitive def-

icits [4–9]. They, however, cannot explain the specific issues autistic people face with social

interactions [10]. Instead, the latter are typically viewed as resulting from an underlying

impairment in Theory of Mind or ToM [11,12], i.e. the ability to understand others’ covert

mental states. ToM impairments have been repeatedly evidenced in autistic children using

tests of, e.g., false belief understanding [13–15], sarcasm/irony detection [16,17] or moral eval-

uation [18,19]. However, these tests yield quite unreliable results and have poor psychometric

properties in older individuals [20], including ceiling effects in adolescents and adults [21,22].

This is why, although theoretically relevant to autism, quantitative tests of ToM has had only

limited impact on diagnosis or intervention to date [23].

These mixed results call for a refinement of the "mind blindness" theory of social deficits in

autism [24,25]. In line with recent pleas for "second-person"—i.e. interactionist—approaches

to social cognition [26–29], we propose to reconsider how sociocognitive skills such as ToM

may contribute to reciprocity. Reciprocity is a feature of ecological social interactions, the typi-

cal intricacy of which overwhelms autistic people. Not only may subtle variations in social sig-

nals (e.g., facial expressions, speech prosody, etc . . .) reflect profoundly different mental states,

but the stakes of social exchanges may be dynamic, partially implicit, multiple and even con-

flicting (e.g., impose a deal and induce sympathy). In this context, we define reciprocity as the

continuous adaptation of one’s behaviour that both moulds and appropriately responds to oth-

ers’ behaviour [2,30]. Our working assumption is two-fold. First, we reason that reciprocity

relies on the ability to tune one’s adaptation strategy to contextual knowledge about the stakes

of social interactions (e.g., others’ cooperative or competitive incentives). In contrast to neuro-

typic controls [31], autistic people may thus not benefit from information regarding others’

incentives when adapting to them. Second, reciprocity may be decomposed into basic (social

and non-social) computational components. Arguably, it should improve with the ease with

which one switches between different cognitive modes and/or behavioural strategies, which

we term flexibility. Recent theoretical [32] and empirical [33] work on the evolution of
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mentalizing shows that it also critically relies upon ToM sophistication, as proxied by the depth

of recursive beliefs (as in "I believe that you believe that I believe . . ."). ToM sophistication and

flexibility thus provide a minimal computational basis for decomposing reciprocity, which

should explain the severity of social symptoms in autism.

We test these assumptions using simple repeated dyadic games, whereby participants play

against learning machines endowed with artificial ToM of calibrated sophistication (Baker

et al., 2011; Devaine et al., 2014b; Yoshida et al., 2008). To win, participants’ must learn to

anticipate their opponent’s next choice and/or try to influence it. Critically, participants are

not told about the algorithmic nature of their opponents. Rather, we have them believe either

that they were competing against somebody else (social framing) or that they were playing a

gambling game (non-social framing). The objective information available to the participants

on each trial is the same for both conditions (actions and feedbacks). However, only in the

social condition do participants hold information regarding their opponent’s competitive

incentives. Critical here is the notion that people may engage the game equipped with a beha-

vioural repertoire composed of many adaptation strategies. In appropriate experimental con-

texts (in particular: dyadic games), these can be disclosed from computational analyses of trial-

by-trial choice sequences. One can then measure and compare the computational properties of

people’s adaptation repertoire, in particular: its ToM-sophistication and its flexibility [31]. In

what follows, we refer to these as "computational phenotypes" of social reciprocity. As we will

see, they provide a quantitative insight into the specificity of the autistic social phenotype.

Results

We asked 24 adult participants with ASD and 24 control participants to play repeated dyadic

games against artificial "mentalizing" opponents, which differ in their ToM sophistication

(hereafter: k-ToM agents, see below). In total, each participant played 4x2x2 = 16 games (4

opponent types, 2 framing conditions, 2 repetitions), where each game consisted in 60 succes-

sive trials. To succeed, subjects had to anticipate and predict the behaviour of their opponent,

who hid himself in one out of two possible locations at each trial (see Fig 1 below).

Opponents either followed a predetermined pseudo-random sequence with a 65% bias for

one hand (RB), or were designed to deceive the participants from learned anticipations of their

behaviour (0-ToM, 1-ToM and 2-ToM). The difference between k-ToM opponents lies in how

they learn from the past history of participants’ actions, where k refers to their calibrated ToM

sophistication. In brief, 0-ToM does not try to interpret the participants’ action sequence in

terms of a strategic attempt to win. Rather, it simply assumes that abrupt changes in the partic-

ipants’ behaviour are a priori unlikely. It thus tracks the evolving frequency of participants’

actions, and chooses to hide the reward where it predicts the opponent will not seek. It is an

extension of “fictitious play” learning [34], which can exploit participants’ tendency to repeat

their recent actions. In contrast, 1-ToM is equipped with (limited) artificial mentalizing, i.e. it

attributes simple beliefs and desires to participants. More precisely, it assumes that partici-

pants’ actions originate from the strategic response of a 0-ToM agent that attempts to predict

its own actions. Note that the computational sophistication of artificial mentalizing is not triv-

ial, since 1-ToM has to explicitly represent and update its (recursive) belief about its oppo-

nents’ beliefs. Practically speaking, 1-ToM learning essentially consists in an on-line

estimation of 0-ToM’s parameters (e.g., learning rate and behavioural temperature) given the

past history of both players’ actions. This makes 1-ToM a so-called “meta-Bayesian” agent

[32,35] that can outwit strategic opponents who do not mentalize when competing in the

game (such as 0-ToM). Although 1-ToM is mentalizing, it is not capable of dealing with other

mentalizing agents. This is the critical difference between 1-ToM and 2-ToM. At this point,
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suffices to say that 2-ToM is an artificial mentalizing agent that can learn to predict how other

mentalizing agents (such as 1-ToM) will behave.

Critically, participants were not cued about opponent conditions. This implies that they

had to adapt their behaviour according to their understanding of the history of past actions

and outcomes. In addition, except in the control (RB) condition, there is no possibility to learn

the correct answer from simple reinforcement. This is because k-ToM artificial learners exhibit

no systematic preference for any particular action. Further details regarding the experimental

protocol as well as k-ToM artificial agents can be found in the Methods section below.

We first focus on peoples’ ability to alter their adaptation strategy as a function of whether

or not they hold information about their opponents’ competitive incentives. Fig 2 below sum-

marizes the performance results, in terms of the net rate of correct answers in each of 4x2 con-

ditions, for both (NT and AS) groups.

One can see that the performance patterns are markedly different between NT and AS par-

ticipants. To begin with, the performance of NT participants qualitatively reproduces previous

experiments with healthy human adults [31]. In brief, in the non-social framing condition, NT

participants eventually lose against artificial mentalizing agents (1-ToM and 2-ToM) whereas

they maintain their earnings in the social framing condition. The AS group however, seems to

show no effect of the framing manipulation, i.e. their performance pattern across opponents is

the same, irrespective of whether they know about their opponent’s competitive incentives.

Interestingly, they seem to lose against artificial mentalizing agents (as NT controls in the non-

Fig 1. Experimental protocol. Left: social framing ("hide-and-seek" game). Right: non-social framing (gambling game). At each trial,

participants have 1300 msec to pick one of the two options (social framing: wall or tree, non-social framing: left or right slot machine).

Feedback is displayed for 1 sec; and includes the trial outcome (win or loss) and the actual winning option (social framing: character

picture, non-social framing: three identical items).

https://doi.org/10.1371/journal.pcbi.1007700.g001
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social framing condition), but they outperform NT controls against non-mentalizing learning

agents (0-ToM). We performed a pooled variance ANOVA to assess the statistical significance

of these observations. We found a significant three-way interaction between group (AS vs

NT), opponent and framing (F[3,690] = 3.6, p = 0.014, R2 = 1.5%), a significant interaction

between group and opponent (F[3,690] = 9.5, p<10−4, R2 = 4.0%) and a main effect of oppo-

nent (F[3,690] = 33.7, p<10−4, R2 = 12.8%). We then looked more closely at the three-way

interaction using post-hoc tests. In the NT group, there was a main effect of opponent (F = 4.5,

p = 0.004), no main effect of framing (F = 2.6, p = 0.11) but a significant interaction opponent

x framing (F = 3.7, p = 0.011). In the AS group, there was a main effect of opponent (F = 38.7,

p<10−4) but no main effect of framing (F = 0.5, p = 0.46) nor interaction (F = 1.3, p = 0.27). In

other terms, only NT participants show the opponent x framing interaction. This is because

NT participants perform better in the social than in the non-social framing only against artifi-

cial mentalizing agents (p<10−4). Now focusing on performances against artificial mentalizing

agents, there was a significant interaction between group and framing (p = 0.001). This is

because against 1-ToM and 2-ToM, NT participants perform significantly better than AS peo-

ple against artificial mentalizing agents in the social framing (p<10−4) but not in the non-

social framing (p = 0.65). Besides, AS participants perform significantly better than NT partici-

pants against 0-ToM (p<10−4), and this effect does not depend upon the game’s framing

(p = 0.46).

One of the main differences between NT and AS participants is thus that the latter seem to

be insensitive to information regarding their opponents’ competitive incentives. This is in fact

confirmed by additional analyses showing that (i) performance variations induced by oppo-

nent types in different framing conditions are significantly correlated (see section 5 in S1

Text), and (ii) model-free decompositions of their trial-by-trial choice sequences show no

effect of framing (see section 6 in S1 Text).

At this point, we asked whether we could classify AS and NT participants based upon their

performance patterns in the task. Averaging performances over repetitions yielded a feature

space of 8 dimensions (4 opponent types, 2 framings), which was then fed to a classifier based

Fig 2. Behavioural performance results. Group average net rate of correct answers (y-axis) against the four opponent types (x-axis) for both framing conditions

(blue: social, red: non-social) in both AS (left) and control (right) participants. Note: The net rate of correct answers is defined as (nc-ni)/(nc+ni), where nc and ni

are the number of correct and incorrect responses, respectively. Hence, it is null when participants perform at chance level (50% accuracy). In this and all

subsequent figures, error bars depict the standard error around the mean.

https://doi.org/10.1371/journal.pcbi.1007700.g002
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upon logistic regression [36]. Test classification accuracy was evaluated using a simple leave-

one-out cross-validation scheme. The classifier achieved 73% of correct out-of-sample classifi-

cations, which is statistically better than chance (p = 0.001). This will serve as a reference point

for evaluating the added-value of computational phenotypes.

We now ask whether differences in computational phenotypes such as ToM sophistication

and flexibility predict social deficits. We considered a set of eight distinct adaptation strategies

that constitute peoples’ potential behavioural repertoire. Somewhere at the end of the sophisti-

cation spectrum lie social adaptation strategies that derive from recursive ToM [31,37,38]. We

also considered adaptation strategies that take simpler forms, ranging from mundane heuris-

tics, to trial-and-error learning, to cognitive shortcuts of ToM that simply care about tracking

others’ overt reaction to one’s own actions [39]. Each of these adaptation strategies corre-

sponds to a formal learning/decision model that provides a probabilistic prediction of

observed peoples’ trial-by-trial choice sequences. We then performed a subject-specific bayes-

ian model comparison of these models. Note that, in contrast to the NT group which shows

strong inter-individual variability in terms of behavioural strategies, trial-by-trial choice

sequences of most AS players, in both framing conditions, are captured by a single model,

namely: "influence learning" (see section 7 in the Supplementary Text). We then evaluated

both the flexibility (f̂ , rate of strategy switching) and the ToM-sophistication (k̂, recursive

depth of beliefs) of peoples’ behavioural repertoire. We refer the interested reader to the Meth-

ods section.

We first asked whether control and AS participants would show differences in their reper-

toire’s ToM-sophistication. Fig 3 below shows the repertoire’s ToM-sophistication k̂ averaged

across repetitions, across opponent conditions and across participants, for each group and for

both framing conditions.

A simple ANOVA shows no evidence for an interaction between group and framing (F

[1,46] = 0.6, p = 0.42, R2 = 1.4%), no main effect of framing (F[1,46] = 1.8, p = 0.18, R2 = 3.8%),

but a significant group effect (t[46] = 1.9, p = 0.03, R2 = 7.3%). Post-hoc tests show that this

group difference is mostly driven by the social framing condition (t[46] = 1.9, p = 0.03, R2 =

7.5%), whereas there is no significant group difference in the non-social condition (t[46] = 1.1,

Fig 3. Model-based analysis of trial-by-trial choice sequences: ToM sophistication scores. ToM sophistication scores are shown as a function of

framing conditions (left: social, right: non-social) for both control (gray) and AS participants (back).

https://doi.org/10.1371/journal.pcbi.1007700.g003
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p = 0.13, R2 = 2.7%). In other words, only in the social framing do control participants exhibit

higher ToM-sophistication than AS participants.

We then investigated whether control and AS participants show differences in their reper-

toire’s flexibility. Fig 4 below shows the repertoire’s flexibility f̂ , both across framings and

across repetitions. The former measures peoples’ tendency to change their adaptation strategy

in response to information regarding others’ incentives. The latter can be thought of as a base

rate of strategy switching, across identical situations. Note that, when evaluating flexibility

between repetitions separately in both framing conditions, only in the NT group is it signifi-

cantly increased when participants know about others’ incentives (see section 8 in S1 Text).

Here again, there is no significant interaction between group and flexibility type (F[1,46] =

0.55, p = 0.46, R2 = 1.2%), but there is a significant main effect of flexibility type (F[1,46] =

5.54, p = 0.02, R2 = 10.7%) and a main effect of group (t[46] = 3.4, p = 0.001, R2 = 20.4). Post-

hoc tests show that this group difference in repertoire’s flexibility is strong both across fram-

ings (t[46] = 3.4, p = 0.001, R2 = 20.7%) and across repetitions (t[46] = 2.8, p = 0.004, R2 =

14.4%). Also, AS participants show no "flexibility gap", i.e. no difference between flexibility

across framings and flexibility across conditions (p = 0.26). This contrasts with control partici-

pants, who exhibit a significant flexibility gap (p = 0.03).

If only, this computational analysis confirms that AS participants exhibit a distinct pattern

of social computational phenotypes (when compared with NT controls). But do the latter pro-

vide diagnosis-relevant information, above and beyond performance scores in the task? When

augmenting the previous classifier with social computational phenotypes, classification accu-

racy reaches 79% of correct out-of-sample classifications (p<10−4). This matches the diagnosis

reliability of trained psychologists, as measured in terms of the inter-rater agreement rate in

the use of the standard Autism Diagnosis Observation Schedule [40]. Note that the probability

that a (yet unseen) individual will be better classified with than without computational pheno-

types is 0.79, and that inter-individual variability in flexibility does not correlate with ToM

sophistication (see section 9 in the Supplementary Text). This is important, since it means that

all computational phenotypes bring additional, diagnosis-relevant, information.

Fig 4. Model-based analysis of trial-by-trial choice sequences: Repertoire’s flexibility. The repertoire’s flexibility is shown across framing conditions

(left) and across repetitions (right) for both control (gray) and AS participants (back).

https://doi.org/10.1371/journal.pcbi.1007700.g004
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Finally, we asked whether we could predict, from estimated computational phenotypes,

inter-individual variations in symptom severity among AS participants. More precisely, we

focused on the ’social’ and ‘stereotyped behavior’ subscores of the ADOS scale, which quantify

social and non-social deficits, respectively. We found that inter-individual differences in

computational phenotypes predict social deficits with high accuracy (F[4,15] = 6.1, p = 0.004,

R2 = 62.1%), but do not predict non-social deficits (F[4,15] = 1.5, p = 0.25, R2 = 28.8%). Post-

hoc univariate tests actually show that social deficits significantly decrease with ToM sophisti-

cation improvement Dk̂ ¼ k̂soc � k̂NS (t[18] = -1.8, p = 0.04, R2 = 15.9%) and with the flexibility

gap Df̂ ¼ f̂ framing � f̂ repetitions (t[18] = -2.6, p = 0.009, R2 = 27.5%). This concludes our computa-

tional decomposition of social reciprocity and its alteration in AS.

Discussion

Maybe the most striking result of our work is that autistic people are insensitive to the task

framing, i.e. they do not adjust their adaptation strategy in response to information about oth-

ers’ incentives. Recall that we demonstrated this in three different ways: (i) AS participants

show no difference between performance or ToM-sophistication scores between framing con-

ditions (cf. Fig 2), (ii) model-free decompositions of their trial-by-trial choice sequences show

no effect of framing (see section 6 in S1 Text), and (iii) their behavioural repertoire exhibits

very low flexibility across framing conditions (cf. Fig 4). Importantly, participants’ debriefing

showed that the framing manipulation was similarly credible in both groups of subjects (see

section 2 in S1 Text). In line with social motivational theories of autism [41], one may argue

that, in contrast to control participants, AS participants may not have been interested enough

to invest the cognitive effort required for improving their performance in the social framing

condition. Such global motivational and/or attentional interpretations are unlikely however,

because AS participants actually outperform controls against 0-ToM in the social framing con-

dition. In addition, financial incentive manipulations have no effect on performance in the

game, for both AS and NT groups. This is despite the fact that both groups are consistently

and equally sensitive to monetary incentives in the context of cognitive control tasks (see sec-

tion 3 in S1 Text). Taken together, our results support the idea that adults with AS are not

unwilling, but rather unable to exploit knowledge about the stakes of social interactions when

adapting to others. However, it remains possible that social motivation might account for

other aspects of autism, for example in altering the normal scaffolding of social cognition dur-

ing development.

Of particular interest is the finding that autistics outperform controls in certain conditions

of the game. In particular: they win against non-mentalizing learning opponents, irrespective

of the task framing. Given that control participants merely achieve null earnings in the same

condition, this result is a striking demonstration of the efficiency of autistics’ behavioural strat-

egy. Although strengths and peaks of ability have been reported since the first descriptions of

autism as core features, they have been largely ignored in the more recent scientific literature,

with few exceptions (Ostrolenk, Forgeot d’Arc, Jelenic, Samson, & Mottron, 2017). In fact, a

possible explanation for such success is that non-mentalizing agents are somehow more "autis-

tic", i.e. more similar to patients’ expectations (see below). This is reminiscent to the so-called

"social interaction mismatch" hypothesis, which suggests that autistic persons find it easier to

relate to other autistic persons [42,43]. In any case, future studies including measures of every-

day functioning might test whether such performance peaks in the task relate to autistic

strengths in real-life situations.

One may ask whether the performance pattern we report here may not be due to the fact

that AS individuals are typically slower than neurotypic people. This would be because in the
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task, participants have only 1.3 second to respond, which would potentially be too short for AS

individuals to reach the correct decision. The ensuing "behindhand errors" could then con-

found analyses of performance data. In particular, this would explain performance differences

in situations where strategic thinking is (in principle) most needed, i.e. against mentalizing

agents in the social framing condition. We find that this is an unlikely confound however,

because the pattern of behindhand responses (i.e. responses whose RT reaches the decision

time limit) and performance are globally inconsistent with each other (cf. section 4 of the S1

Text). Nevertheless, we acknowledge that dual analyses of concurrent performance/RT data

(such as those based upon accumulation-to-bound models that generate both choice and RT

data) may indeed provide insights into the neural implementational processes underlying our

behavioural results. This may be addressed in future work.

One may also question the nature of the social cognitive processes that the task assesses.

Although our original intention was to address the elusive notions of contact and reciprocity,

the task itself falls short of a few important features of real-life social interactions. For example,

it ignores the diversity of social signals (e.g., verbal/body language, facial expressions) and

modulatory factors (e.g., in-group/out-group context, familiarity) that are relevant for estab-

lishing contact with others. It also does not involve changes in others’ intentions (e.g., competi-

tive/cooperative) and/or attitudes (e.g., friendly/aggressive, dominant/submissive), which

would be necessary to assess certain aspects of social reciprocity. Instead, it focuses on peoples’

ability to respond and/or influence others’ actions in a simplified competitive setting. Clearly,

this cannot account for the breadth of social cognitive processes that underlie contact and reci-

procity. One might even think that task performance may not load very heavily on social cog-

nitive processes, when compared with other instrumental processes (e.g., working memory or

reasoning). This is unlikely, however, given that we have shown, in a very large online popula-

tion sample, that a very small amount of inter-individual variance in the game’s performance

can be predicted from cognitive control skills [44]. In any case, we think the simplicity of our

task design also has its virtues. This is because it eventually enables us to construct a non-social

control condition that is matched with the social condition in terms of goal-relevant informa-

tion (cf. trial-by-trial feedbacks). This turns out to be critical to discriminate between AS and

NT participants.

Now is our approach really useful for clinical purposes? That it can achieve 79% of accuracy

in diagnostic prediction is only relevant for comparing this test with other tests of the same

kind, or as a proof-of-concept demonstration. In fact, the long-term goal of approaches of this

kind is not to reflect the diagnosis per se (which is irrelevant), but rather to guide clinical deci-

sions. Ideally, a useful approach should reflect a pathological mechanism and predict outcome

and/or treatment response. Diagnosis is just a proxy for such prediction, and one has to admit

that current psychiatric categorical diagnoses are not quite satisfactory in this regard [45]. In

turn, evaluating the clinical utility of our approach would require assessing how it relates to

genetic variants, brain metrics, specific outcomes or response to intervention. This is beyond

the scope of the current work, but we intend to pursue these issues in forthcoming publica-

tions. That our approach predicts 62% of inter-individual variance in social symptoms may be

more interesting at first sight. This is because explaining variability beyond categorical diagno-

sis may be relevant for identifying clinical subcategories. But here again, establishing the clini-

cal utility of such findings can only be done on the basis of, e.g. treatment outcome prediction.

In addition, such significant but modest explanatory power is a reminder that social symptoms

in AS are not solely due to mentalizing deficits. For example, they could be driven by some

other issues in social cognition, including, but not limited to, social anxiety [46] or the misper-

ception/misunderstanding of social norms [47,48]. Evaluating the relative contribution of
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these processes to social symptoms is clearly a promising research avenue for the computa-

tional psychiatric approach to AS.

Let us now discuss the main qualitative difference between adaptation strategies in people

with and without autism. If anything, the adaptation strategies of NT control participants exhibit

strong intra- and inter-individual variability. In contrast, trial-by-trial choice sequences of most

AS players, in both framing conditions, are captured by a single model, namely: "influence learn-

ing" [39]. From a computational standpoint, this model possesses broad adaptive fitness because

it essentially is a generic way of dealing with environments that react to one’s actions [33]. In

other words, influence learning can be seen as an all-purpose cognitive toolkit that would be

expected to perform well in a wide range of contexts, excluding competitive interactions with

mentalizing agents (cf. pattern of performances against RB, 0-ToM, 1-ToM and 2-ToM in section

9 in the S1 Text). Note that this explains why AS participants perform better than NT controls

against non-mentalizing agents (in both framing conditions), and why they show worse perfor-

mance against mentalizing agents (in the social framing condition). That they rely on influence

learning in both framings also explains their lower flexibility score, as well as the absence of a

framing effect on raw performance. Strictly speaking, an agent capable of influence learning is

thus not "mind blind", but it cannot adjust its behavioural strategy to the intentions of mentaliz-

ing agents. In other words, even if equipped with a sophisticated perceptual apparatus (that

would enable the recognition of ecological social signals), an influence learner would show lim-

ited social reciprocity. Reliance on this -or similar- adaptation strategy thus provides a computa-

tional explanation for an important aspect of the autistic social phenotype, which would not

depend upon motivational factors and/or cognizance of the social context.

Obviously, our experimental claim does not go as far as to assert that the behavioural reper-

toire of autistic people is generally limited to influence learning. Nevertheless, it clearly exhibits

subnormal flexibility, which corroborates previous reports of executive dysfunction in autism

[5,49,50]. Note that, together with ToM sophistication, our computational measure of flexibility

contributes to predict social symptoms and AS diagnosis. It does not, however, relate to the

ADOS’ index of repetitive behaviours. This may be because repetitive behaviours in autism tend

to decrease with age [51] and might not be consistently accessible through direct observation dur-

ing the administration of the ADOS [3]. Interestingly, only in the NT group is flexibility (between

repetitions) significantly higher in the social than in the non-social framing condition (see section

7 in S1 Text). And inter-individual variability in flexibility does not correlate with ToM sophisti-

cation (see section 8 in the Supplementary Text). This suggests that impairments in flexibility

may contribute to social deficits, independently of mentalizing skills [52–54]. This is important,

because inter-individual differences in flexibility and ToM sophistication may separately contrib-

ute to diversity in the autism spectrum. Thus, these computational phenotypes may serve to draw

novel diagnostic boundaries and guide individualized clinical interventions [6].

Methods

Ethics statement

Behavioural assessments were performed in accordance with institutional ethical guidelines,

which comply with the guidelines of the declaration of Helsinki. The research protocol was

approved by the Ethical Committee of the Hôpital Rivière-des-Prairies, Montréal, where the

tests were performed.

Experimental methods

Participants: n = 24 adults with ASD without mental nor language deficiency and n = 24 NT

control subjects participated in the study. All subjects were French speakers (Québec), and
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both groups were matched in terms of gender balance (AS: 21 males, NT: 21 males), age (AS:

25.5 y.o. ± 5.7; NT: 27.9 y.o. ± 8.6) and IQ (AS: 104 ± 17; NT: 106 ± 14). AS participants were

assessed with ADOS-G and met DSM-5 criteria for ASD. NT participants went through a

semi-structured interview to screen for any psychiatric treatment history, learning disorders,

personal or family history (2 degrees) for mood disorder, ASD or schizophrenia. No included

participant reported strong depressive symptoms (Beck depression Inventory score<20). All

participants gave their informed consent, were fully debriefed at the end of the experiment,

and received a financial compensation for their participation.

The behavioural task consists of a computerized game (60 trials each) with two framing

conditions. In the social condition, the task was framed as an online competitive game with

someone else. In the non-social condition, it was framed as a gambling game. In fact, both

games were played against four different learning algorithms with different artificial mentaliz-

ing sophistication (ranging from a random sequence with a bias to so-called 2-ToM agents: see

below). Note that, on top of framing and opponent factors, we also varied the financial payoff

attached to a correct answer in the games. More precisely, the maximal payoff that participants

could earn over one game session was either 10$ (high reward condition) or 1 cent (low

reward condition). This manipulation, however, did not induce any effect (cf. section 3 of the

S1 Text). In what follows, we thus refer to this experimental factor as a repetition of the task

conditions. At each trial, subjects had 1300 ms to make a binary choice (the place to hide or

the slot machine to try), which was fed to the learning algorithms to compute online predic-

tions of the participant’s action at the next trial. In total, each participant performed

2×4×2 = 16 games (2 framings, 4 opponent types, 2 repetitions) in a pseudo-randomized

order. We refer the interested reader to the S1 Text for more details regarding the experimental

protocol.

Computational modelling of adaptation strategies

In this section, we give a brief overview of the set of candidate learning/decision models, with

a particular emphasis on k-ToM models (because these are also used as on-line algorithms dur-

ing the experimental phase). We will consider repeated dyadic (two-players) games, in which

only two actions are available for each player (the participant and his opponent). Hereafter,

the action of a given agent (resp., his opponent) is denoted by aself (resp., aop). By convention,

actions aop and aself take binary values encoding the first (a = 1) and the second (a = 0) avail-

able options. A game is defined in terms of its payoff table, whose entries are the player-specific

utility U(aself,aop) of any combination of players’ actions at each trial. In particular, competitive

social interactions simply reduce to anti-symmetric players’ payoff tables (see Table 1 below).

According to Bayesian decision theory, agents aim at maximising expected payoff V = E[U
(aself,aop)], where the expectation is defined in relation to the agent’s uncertain predictions

about his opponent’s next move. This implies that the form of the decision policy is the same

for all agents, irrespective of their ToM sophistication. Here, we consider that choices may

exhibit small deviations from the rational decision rule, i.e. we assume agents employ the so-

Table 1. Competitive payoff table (hider’s payoff, seeker’s payoff). Participants play the role of the seeker, the oppo-

nent is the hider.

Hider

Seeker

a = 1 a = 0

a = 1 1,0 0,1

a = 0 0,1 1,0

https://doi.org/10.1371/journal.pcbi.1007700.t001
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called "softmax" probabilistic policy:

Pðaself ¼ 1Þ ¼
1

1þ exp � DV
b

� � ð1Þ

where P(aself = 1) is the probability that the agent chooses the action aself = 1, ΔV is the expected

payoff difference (between actions aself = 1 and aself = 0), and β is the so-called behavioural

"temperature" (which controls the magnitude of deviations from rationality). The sigmoidal

form of Eq 1 simply says that the probability of choosing the action aself = 1 increases with the

expected payoff difference ΔV, which is given by:

DV ¼ popðUð1; 1Þ � Uð0; 1ÞÞ þ ð1 � popÞðUð1; 0Þ � Uð0; 0ÞÞ

¼ 2pop � 1
ð2Þ

where pop is the probability that the opponent will choose the action aop = 1, and the second

line derives from inserting the above payoff matrix (Table 1). In brief, Eq 2 simply says that

participants are rewarded for correctly guessing where their opponent is hiding.

Let us now summarize the mathematical derivation of k-ToM models, which essentially dif-

fer in how they estimate pop from the repeated observation of their opponent’s behaviour. We

will see that k indexes a specific form of ToM sophistication, namely: the recursive depth of

learners’ beliefs (as in "I believe that you believe that I believe . . ."). Note that k-ToM’s learning

rule can be obtained recursively, starting with 0-ToM [32].

By convention, a 0-ToM agent does not attribute mental states to his opponent, but rather

tracks his overt behavioural tendency without mentalizing. More precisely, 0-ToM agents sim-

ply assume that their opponents choose the action aop = 1 with probability pop = s(xt), where

the unknown log-odds xt varies across trials t with a certain volatility σ0 (and s is the sigmoid

function). Observing his opponent’s choices gives 0-ToM information about the hidden state

x, which can be updated trial after trial using Bayes rule, as follows:

m0
t � m

0
t� 1
þ S0

t ða
op
t � sðm0

t� 1
ÞÞ

S0

t �
1

1

S0

t� 1
þ s0

þ sðm0

t� 1
Þð1 � sðm0

t� 1
ÞÞ

ð3Þ

where m0
t (resp. S0

t ) is the approximate mean (resp. variance) of 0-ToM’s posterior distribution

pðx0
t ja

op
1:tÞ. Inserting p̂op

tþ1 ¼ E½sðxtþ1Þja
op
1:t� into Eq 1 now yields 0-ToM’s decision rule. Here, the

effective learning rate is the subjective uncertainty ∑0, which is controlled by the volatility σ0.

At the limit σ0!0, Eq 3 converges towards the (stationary) opponent’s choice frequency and

0-ToM essentially reproduce "fictitious play" strategies [34].

0-ToM’s learning rule is the starting point for a 1-ToM agent, who considers that she is fac-

ing a 0-ToM agent. This means that 1-ToM has to predict 0-ToM’s next move, given his beliefs

and the choices’ payoffs. The issue here is that 0-ToM’s parameters (volatility σ0 and explora-

tion temperature β) are unknown to 1-ToM and have to be learned, through their non-trivial

effect on 0-ToM's choices. At trial t+1, a 1-ToM agent predicts that 0-ToM will chose the action

aop = 1 with probability pop;0
tþ1 ¼ s � v0ðx0

t ; a1:tÞ, where the hidden states x0
t lumps σ0 and β

together and the mapping v0 is derived from inserting 0-ToM’s learning rule (Eq 3) into Eqs 1

and 2. Similarly to 0-ToM agents, 1-ToM assumes that the hidden states x0
t vary across trials

with a certain volatility σ1, which yields a meta-Bayesian learning rule similar in form to

0-ToM’s, but relying on first-order meta-beliefs (i.e. beliefs about beliefs). In brief, 1-ToM
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eventually learns how her (0-ToM) opponent learns about herself, and acts accordingly (cf. Eqs

1 and 2).

1-ToM agents are well equipped to deal with situations of observational learning. However,

when it comes to reciprocal social interactions, one may benefit from considering that others

are also using ToM. This calls for learning strategies that rely upon higher-order meta-beliefs.

By construction, k-ToM agents (k�2) consider that their opponent is a κ-ToM agent with a

lower ToM sophistication level (i.e.: κ<k). Importantly, the sophistication level κ of k-ToM’s

opponent has to be learned, in addition to the hidden states xκ that control the opponent’s

learning and decision making. The difficulty for a k-ToM agent is that she needs to consider

different scenarios: each of her opponent’s possible sophistication level κ yields a specific prob-

ability pop;k
tþ1 ¼ s � vkðxkt ; a1:tÞ that she will choose action aop = 1. The ensuing meta-Bayesian

learning rule entails updating k-ToM’s uncertain belief about her opponent’s sophistication

level κ and hidden states xκ:

l
k;k
t �

l
k;k
t� 1

pop;k
tX

k0<k

l
k;k0

t� 1
pop;k0
t

2

6
6
4

3

7
7
5

aopt

l
k;k
t� 1
ð1 � pop;k

t ÞX

k0<k

l
k;k0

t� 1
ð1 � pop;k0

t Þ

2

6
6
4

3

7
7
5

1� aopt

mk;k
t � m

k;k
t� 1 þ l

k

t S
k;k
t Wk

t� 1
ðaop

t � s � vkðmk;k
t� 1ÞÞ

Sk;k
t � ½ðS

k;k
t� 1
þ skÞ

� 1
þ s0 � vkðmk;k

t� 1Þl
k

t W
k
t� 1

TWk
t� 1
�
� 1

ð4Þ

where l
k;k
t is k-ToM’s posterior probability that her opponent is κ-ToM, and Wκ is the gradient

of vκ with respect to the hidden states xκ. Eq 4 also captures 1-ToM’s learning rule, when set-

ting l
1;0

t ≜1. Note that although the dimensionality of k-ToM’s beliefs increases with k, k-ToM
models do not differ in terms of the number of their free parameters. More precisely, k-ToM’s

learning and decision rules are entirely specified by their prior volatility σk and behavioural

temperature β.

Formally speaking, only k-ToM agents with k�1 are mentalizing about others’ covert men-

tal states, i.e. represent and update others’ beliefs. They can do this because they adopt the

intentional stance [55], i.e. they assume that pop is driven by their opponent’s hidden beliefs

and desires. More precisely, they consider that the opponent is himself a Bayesian agent,

whose decision policy pop = P(aop = 1) is formally similar to Eq 1. This makes k-ToM meta-

Bayesian learners [35] that relies upon recursive belief updating ("I believe that you believe

that I believe . . ."). Critically, the recursion depth k induces distinct ToM sophistication levels,

whose differ in terms of how they react to the history of players’ actions in the game.

With the exception of 0-ToM, we so far only described sophisticated learning models that

are capable of (artificial) ToM. But clearly 0-ToM is not the only way people may learn in social

contexts without mentalizing. We thus consider below other adaptation strategies that may

populate peoples’ behavioural repertoire.

First, let us consider a heuristic learning model, whose sophistication somehow lies in

between 0-ToM and 1-ToM. In brief, "influence learning" adjusts a 0-ToM-like learning rule to

account for how her own actions may influence her opponent’s behaviour [39]:

pop
tþ1 ¼ pop

t þ Zða
op
t � pop

t Þ

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
prediction error

þlpop
t ð1 � pop

t Þð1 � 2aself
t � b s

� 1ðpop
t ÞÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
}influence} adjustment term

ð5Þ

where η (resp. λ) controls the relative weight of its prediction error (resp. the “influence”

adjustment term). Numerical simulations show that, in a competitive game setting, Inf wins
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over 0-ToM but loses against k-ToM players with k�1. In other terms, although it is in princi-

ple able to adapt to reactive environments, Inf cannot successfully compete with learners

endowed with mentalizing [33].

Second, participants may learn by trial and error, eventually reinforcing the actions that led

to a reward. Such adaptation strategy is the essence of classical conditioning, which is typically

modelled using reinforcement learning or RL [56]. In this perspective, participants would

directly learn the value of alternative actions, which bypasses Eq 2. More precisely, an RL agent

would update the value of the chosen option in proportion to the reward prediction error, as

follows:

Vi
tþ1
¼ Vi

t þ aðRt � Vi
tÞ if action aself

t ¼ i was chosen

Vi
tþ1
¼ Vi

t otherwise
ð6Þ

(

where Rt ¼ Uðaself
t ; aop

t Þ is the last reward outcome and α is the (unknown) learning rate. At

the time of choice, RL agents simply tend to pick the most valuable option (cf. Eq 1).

Third, an even simpler way of adapting one’s behaviour in operant contexts such as this

one is to repeat one’s last choice if it was successful and alternate otherwise. This can be mod-

eled by the following update in action values:

Vi
tþ1
¼ Rt if action aself

t ¼ i was chosen

Vi
tþ1
¼ � Rt otherwise

ð7Þ

(

This strategy is called win-stay/lose-switch (WS), and is almost identical to the above RL
model when the learning rate is α = 1. Despite its simplicity, WS can be shown to have remark-

able adaptive properties [57].

Last, the agent may simply act randomly, which can be modeled by fixing the value differ-

ence to zero (ΔV = 0). Although embarrassingly simple, this probabilistic policy eventually pre-

vents one’s opponent from controlling one’s expected earnings. It thus minimizes the risk of

being exploited at the cost of providing chance-level expected earnings. It is the so-called

"Nash equilibrium" of our "hide and seek" game. Since we augment this model with a potential

bias for one of the two alternative options (as all the above learning models), we refer to it as

biased Nash or BN.

Empirical estimates of computational phenotypes

Our working hypothesis is that people may not always rely on the same adaptation strategy

across different game sessions or conditions. Rather, they select a strategy from among a reper-

toire, whose flexibility and ToM sophistication define our computational phenotypes. The

empirical estimation of these thus consists of three steps. First, we perform a statistical (Bayes-

ian) comparison of learning models [58]. For each subject, we fit trial-by-trial actions

sequences a1:60 with each learning model (m2{BN, WSLS, RL, 0-ToM, Inf, 1-ToM, 2-ToM,

3-ToM}) using a variational Bayesian approach [59,60]. This eventually yields 8x48x4x2x2 =

6144 model evidences p(a1:60|m) (8 models, 48 participants, 4 opponent conditions, 2 framing

conditions, 2 repetitions).

Second, we define the repertoire's flexibility f̂ ð1;2Þ (between conditions 1 and 2) in terms of

the posterior probability that a given participant employs different adaptation strategies across

two conditions:

f̂ ð1;2Þ ¼ pðmð1Þ 6¼ mð2Þjað1Þ1:60; a
ð2Þ

1:60Þ ¼ 1 �
X

m

pðmð1Þ ¼ mjað1Þ1:60Þpðmð2Þ ¼ mjað2Þ1:60Þ ð8Þ
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where m(1) (resp. m(1)) is the participants’ adaptation strategy in the first (resp. second) condi-

tion, pðmð1Þ ¼ mjað1Þ1:60Þ (resp. pðmð2Þ ¼ mjað2Þ1:60Þ) is the probability that the participant had an

adaptation strategy m given his trial-by-trial choice sequence að1Þ1:60 (resp. að2Þ1:60) in condition 1

(resp. condition 2). Note that we measure the repertoire's flexibility f̂ both across framings and

across repetitions.

Third, we define the repertoire's ToM-sophistication k̂ in terms of the expected depth of

recursive belief update:

k̂ ¼ E½kja1:60� ¼
X

k

k pðkja1:60Þ ð9Þ

where p(k|a1:60) = p(m = "k−ToM"|a1:60) is the posterior probability of model k-ToM given the

participant’s trial-by-trial choice sequence a1:60. Note that we restrict the summation in Eq 9 to

k-ToM models, because the depth k of recursive beliefs is not defined for the other learning

models. Note that we measure the repertoire's ToM-sophistication k̂ in both framing conditions

(social and non-social).

All statistical analyses were performed using the VBA toolbox [36], which contains the

above eight learning/decision models as well as the bayesian statistical machinery required for

model inversion.

Supporting information

S1 Text. This document provides supplementary information regarding: the experimental

protocol (section 1), the credibility of the framing manipulation (section 2), the effect of

motivational manipulations on the game’s performance (section 3), differences in reaction

times (section 4), model-free Volterra decompositions of trial-by-trial choice sequences

(section 5), differences in adaptation strategies between AS and NT participants (section

6), the impact of the framing manipulation on the repertoire’s flexibility (section 7), the

statistical relationships between computational phenotypes (section 8), and their relation-

ship with performance in the game (section 9).
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13. Frith U, Happé F. Autism: beyond “theory of mind.” Cognition. 1994; 50: 115–132. https://doi.org/10.

1016/0010-0277(94)90024-8 PMID: 8039356

14. Girli A, Tekin D. Investigating false belief levels of typically developed children and children with autism.

Procedia—Soc Behav Sci. 2010; 2: 1944–1950. https://doi.org/10.1016/j.sbspro.2010.03.261

15. Grant CM, Grayson A, Boucher J. Using Tests of False Belief with Children with Autism: How Valid and

Reliable are they? Autism. 2001; 5: 135–145. https://doi.org/10.1177/1362361301005002004 PMID:

11706862

16. Wang AT, Lee SS, Sigman M, Dapretto M. Neural basis of irony comprehension in children with autism:

the role of prosody and context. Brain J Neurol. 2006; 129: 932–943. https://doi.org/10.1093/brain/

awl032 PMID: 16481375

17. Zalla T, Amsellem F, Chaste P, Ervas F, Leboyer M, Champagne-Lavau M. Individuals with Autism

Spectrum Disorders Do Not Use Social Stereotypes in Irony Comprehension. PLOS ONE. 2014; 9:

e95568. https://doi.org/10.1371/journal.pone.0095568 PMID: 24748103

18. Fadda R, Parisi M, Ferretti L, Saba G, Foscoliano M, Salvago A, et al. Exploring the Role of Theory of

Mind in Moral Judgment: The Case of Children with Autism Spectrum Disorder. Front Psychol. 2016;7.

https://doi.org/10.3389/fpsyg.2016.00007

PLOS COMPUTATIONAL BIOLOGY Social behavioural adaptation in Autism

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007700 March 16, 2020 16 / 18

https://doi.org/10.1111/j.1475-3588.2012.00664.x
http://www.ncbi.nlm.nih.gov/pubmed/23539140
http://www.ncbi.nlm.nih.gov/pubmed/25598865
https://doi.org/10.1007/s10803-012-1719-1
https://doi.org/10.1007/s10803-012-1719-1
http://www.ncbi.nlm.nih.gov/pubmed/23143131
https://doi.org/10.1016/j.tics.2012.10.005
http://www.ncbi.nlm.nih.gov/pubmed/23123383
https://doi.org/10.2147/NDT.S104620
http://www.ncbi.nlm.nih.gov/pubmed/27274255
https://doi.org/10.3389/fpsyt.2016.00107
http://www.ncbi.nlm.nih.gov/pubmed/27378955
https://doi.org/10.1038/nn.4615
http://www.ncbi.nlm.nih.gov/pubmed/28758996
https://doi.org/10.1037/bul0000097
http://www.ncbi.nlm.nih.gov/pubmed/28333493
https://doi.org/10.1016/j.tics.2012.08.009
http://www.ncbi.nlm.nih.gov/pubmed/22959875
https://doi.org/10.1038/nn1770
http://www.ncbi.nlm.nih.gov/pubmed/17001340
https://doi.org/10.1016/0010-0277(85)90022-8
http://www.ncbi.nlm.nih.gov/pubmed/2934210
https://doi.org/10.1016/0010-0277(94)90024-8
https://doi.org/10.1016/0010-0277(94)90024-8
http://www.ncbi.nlm.nih.gov/pubmed/8039356
https://doi.org/10.1016/j.sbspro.2010.03.261
https://doi.org/10.1177/1362361301005002004
http://www.ncbi.nlm.nih.gov/pubmed/11706862
https://doi.org/10.1093/brain/awl032
https://doi.org/10.1093/brain/awl032
http://www.ncbi.nlm.nih.gov/pubmed/16481375
https://doi.org/10.1371/journal.pone.0095568
http://www.ncbi.nlm.nih.gov/pubmed/24748103
https://doi.org/10.3389/fpsyg.2016.00007
https://doi.org/10.1371/journal.pcbi.1007700


19. Margoni F, Surian L. Mental State Understanding and Moral Judgment in Children with Autistic Spec-

trum Disorder. Front Psychol. 2016;7. https://doi.org/10.3389/fpsyg.2016.00007

20. Pinkham AE, Harvey PD, Penn DL. Social Cognition Psychometric Evaluation: Results of the Final Vali-

dation Study. Schizophr Bull. 2018; 44: 737–748. https://doi.org/10.1093/schbul/sbx117 PMID:

28981848
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