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Abstract

Background: With the growth in use of biotherapic drugs in various medical fields, the occurrence of anti-drug
antibodies represents nowadays a serious issue. This immune response against a drug can be due either to
pre-existing antibodies or to the novel production of antibodies from B-cell clones by a fraction of the exposed
subjects. Identifying genetic markers associated with the immunogenicity of biotherapeutic drugs may provide new
opportunities for risk stratification before the introduction of the drug. However, real-world investigations should take
into account that the population under study is a mixture of pre-immune, immune-reactive and immune-tolerant
subjects.

Method: In this work, we propose a novel test for assessing the effect of genetic markers on drug immunogenicity
taking into account that the population under study is a mixed one. This test statistic is derived from a novel two-part
semiparametric improper survival model which relies on immunological mechanistic considerations.

Results: Simulation results show the good behavior of the proposed statistic as compared to a two-part logrank test.
In a study on drug immunogenicity, our results highlighted findings that would have been discarded when
considering classical tests.

Conclusion: We propose a novel test that can be used for analyzing drug immunogenicity and is easy to implement
with standard softwares. This test is also applicable for situations where one wants to test the equality of improper
survival distributions of semi-continuous outcomes between two or more independent groups.
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Semi-parametric
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Background
Biopharmaceuticals products (BP) such as therapeutic
monoclonal antibodies are nowadays a fast-growing class
of drugs whose recent use in clinic has represented a
critical step forward in the treatment of many severe auto-
immune diseases. Nevertheless, for some patients these
BP induce an activation of the immune system, lead-
ing to the formation of antibodies against the drug. The
consequences range from transient appearance of anti-
drug antibodies (ADA) without any clinical significance
to severe loss of efficiency by either blocking the drug or
enhancing the clearance [1].
The mechanisms leading to biotherapy immunogenic-

ity can either be patient-related (e.g: genetic background,
immunological status) or treatment-related (e.g: drug
characteristics and formulations) but their relative con-
tributions to the development of ADA is currently not
fully understood and still remain to be deciphered. If
major achievements for minimizing product-related fac-
tors involved in immunogenicity have been recently made,
thanks to the remarkable progress in biopharmaceuti-
cal engineering, there is still an urgent need for iden-
tifying non-modifiable patient-related factors that may
provide a basis for stratified or personalized therapeutic
approaches. However, if an extensive research has been
conducted to study the immunogenic potential of the bio-
therapies, less has been done to identify patients who are
either at high or low risk for ADA development. In this
search for patient-related predictive factors of immuno-
genicity, the genetic diversity in immune regulatory genes,
is supposed to play a major role in the development of
ADA [1, 2]. If early studies about drug immunogenicity
assessment have mainly relied upon response-based end-
points, time-to-event analyses are more and more often
recommended for taking into account the dynamic of
ADA production. For such studies, subjects that have not
been previously exposed to a particular BP are followed up
for a certain period of time after the first BP administra-
tion. The main outcome is the first time of ADA detection
after the initial drug administration and the objective is to
identify factors that are related to these time-to-events [3, 4].
The motivation behind this work is that such time-

to-event analysis is not straightforward as it should take
into account that the population under study is usually a
mixture of pre-immune, immune-reactive and immune-
tolerant subjects. Here, the so-called pre-immune subjects
are those with preexisting antibodies. These preexist-
ing ADA have been observed mainly among patients
with auto-immune diseases and can originate either
from the innate immune system or from the adaptive
immune responses to homologous ingredients [5]. The
pre-immune status of a subject can be known by doing
a screening test before the first administration of the
drug. In contrast, the so-called immune-tolerant subjects

are those whose immune system is in a state of unre-
sponsiveness to the exposure of the drug and thus will
not produce ADA. Finally, the so-called immune-reactive
subjects are those who have no pre-existing ADA and
who are able to produce detectable levels of antibodies.
Their time to ADA detection depends on the dynamic of
the B cell clones production. However, for subjects who
are not pre-immune and are censored during the study,
we cannot determine their status as immune-reactive or
immune-tolerant subjects.
Thus, for such analysis, we have to deal with a par-

ticular kind of semicontinous data [6, 7] with non-null
proportions of zero and of infinite values coming from the
pre-immune and immune-tolerant subjects, respectively.
As a result, we have to use specific models that belong to
the class of two-part models [6] but need to be rethought
to incorporate a defective (or improper) distribution. Such
defective distributions have been mainly considered in
oncology for analyzing early stage of cancer. In the lit-
erature, there are two main approaches, the oldest one
assumes that the population under study is composed of
two subpopulations of patients: those who will not expe-
rience the event of interest and those who are likely to
experience the event of interest during the follow-up. This
kind of two-component mixture model incorporates the
defect fraction in a parametric or semi-parametric frame-
work (for a review seeMaller and Zhou [8]). An alternative
approach relies upon defining the cumulative hazard as a
bounded increasing positive function [9]. This modeling
which has a meaningful biological interpretation in clini-
cal oncology belongs to the class of promotion time cure
models [10].
In this work, we propose to consider a novel two-part

semiparametric improper survival model that can cope
with semi-continuous time to event data and from which
we can derive an efficient test statistic. Here, the time-
to-event is zero for pre-immune subjects with a discrete
probability mass, whereas its non-zero values (immune-
reactive or immune-tolerant subjects) have an improper
survival distribution. This latter improper survival distri-
bution relies upon some biological understanding of the
ADA production
The paper is organized as follows. We first present

the proposed two-part survival model with its interpre-
tation. Then, we derive a general score test for the null
hypothesis of a same time-to-event distribution across
the different genotypes. Next, we present the results of
simulation experiments comparing the behavior of our
proposed score test to a two-part logrank test. Then, the
clinical relevance of using the proposed test is exemplified
by the analysis of the association between genetic markers
and the occurrence of ADA among a cohort of treatment-
naive patients suffering from auto-immune diseases and
treated by biotherapies [11].
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Methods
Modeling background
Notation
Let G denote the genotype for a biallelic marker. Here,
being homozygous for the common variant is noted as
G =[AA] and corresponds to the reference group. Being
heterozygous and homozygous for the alternative allele
are noted as G =[Aa] and G =[ aa], respectively.
As the underlying genetic model is unknown, two

dummy variables G1 and G2 are created for investigat-
ing various genetic models, including : dominant, additive,
recessive and overdominant. In practice, G1 = 0, 1, 2
whenG =[AA] , [Aa] , [ aa] respectively andG2 = 1 when
G =[Aa] and 0 otherwise.
Thus, if we denote ξ1 and ξ2 the effects associated with

G1 and G2 respectively (see Table 1), we have a dominant
genetic model when ξ1 = ξ2, an additive genetic model
when ξ1 �= 0 and ξ2 = 0, a recessive genetic model when
ξ2 = −ξ1, and an overdominant genetic model when ξ1 =
0 and ξ2 �= 0.
In the following, we assume that the status for being

a pre-immune subject can be determined before the
first administration of the biotherapy. Let Z be the pre-
immune status variable such as Z = 1 if the subject is
pre-immune and 0 otherwise.
Let denote T the time-to-ADA detection and C the cen-

soring time. We assume that T and C satisfy the condition
of independent and non informative censoring [12]. For
each subject i (i = 1, ...n), Xi = min(Ti,Ci) denotes the
observed time of follow-up and δi = 1(Xi=Ti) the indica-
tor of ADA detection. We also denote Yi(t) = 1(t≤Xi) the
indicator of being at risk for the event at time t. Here, for
Z = 1 then T = 0 and for Z = 0 then T > 0. For each
patient i, the observed data consist of (Xi, δi,Zi,G1i ,G2i).

Two-part improper survival model
We define the survival distribution S�(t) for these semi-
continuous data such as:
S�(t; z) = π z × [

(1 − π)S(t)1−z]

where S(t) is the conditional survival function for the
non-zero values of the time-to-event and π is the proba-
bility for the zero values. Here, the survival function S(t) is
improper and its limiting value S(∞) = a with 0 < a < 1
is called the tail defect and represents the probability of
not experiencing the event of interest.

Table 1 Effects associated to a genetic variant

[AA] [Aa] [aa]

G1 0 1ξ1 2ξ1

G2 0 1ξ2 0

G1 and G2 are dummy variables representing a genetic bi-allelic variant. [AA], [Aa]
and [aa] are genotypes, with ‘A’ being the reference allele. ξ1 and ξ2 are the effects
associated with G1 and G2 respectively.

In this work, we assume that Z follows a logistic regres-
sion model that depends upon the genotype. For the sake
of simplicity and without loss of generality, we assume a
simple additive genetic model. Thus we have:

π(G1,G2) = e(θ+βG1)

1+e(θ+βG1)

where β is the unknown regression coefficient and θ is
the intercept.
For the reference group, π(G[AA]) = π0 = eθ

1+eθ .
When β = 0, the proportions of pre-immune subjects are
identical across the different genotypes.
For the conditional improper survival distribution S(t)

we introduce a new semiparametric model which is based
on immunological mechanistic considerations and is pre-
sented in the next section.

Conditional improper survival distribution
We propose to model the distribution of the time to ADA
detection through a simplified mechanistic immunolog-
ical model whereby each non pre-immune subject may
or may not be able to produce ADA in response to the
introduction of the biotherapy. From a biological per-
spective, it arises from the activation of unobservable
BP-specific (T-dependent) B-cell clones that emerge and
become immune-reactive ADA-producing clones. At the
cellular level, each B-cell clone produces antibodies with
a unique antigen-binding site with various levels of ADA
affinities. Antibody affinity describes the strength of inter-
action between the antibody combining site and the rele-
vant antigenic determinants in the drug. It represents an
important qualitative parameter of the immune response.
Positivity occurs as soon as any one of the B-cell clones is
able to produce levels of ADA of sufficient amount and/or
affinity for being detected by the assay.
Since B-cell clones are not directly observed, we assume

a latent discrete probability distribution for the number
of B-cell clones and a continuous distribution for their
time-to-detection. From those latent distributions, we can
deduce the marginal (or population) survival distribution
of the time to ADA detection.
More precisely, let K (K = 0, . . . ,∞+) denote a latent

random variable that represents the number of (unob-
servable) B-cell clones. Let the random variable Tj,
associated to the jth latent B-cell clones, be the time-
to-detection with corresponding time-to-event survival
function Aj(t) = A0(t)Uj . Here, A0(t) is a baseline
decreasing function such as 1 ≥ A0(t) ≥ 0 and Uj is a
random variable that represents ADA affinity for the jth
clone.
Here, we suppose that K is distributed with probabil-

ity mass function � and is supposed to be independent
of Tj. We also supposed that the Uj are independent
and identically distributed with density function 	 and
independent from K.
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For patient i with k latent B-cell clone, let denote Ti =
min0≤j≤k(Tj) the time-to-detection of the earliest B-cell
clone. The conditional (patient-specific) survival function
is expressed as:
S(t | K = k, (U1 = u1, ...,Uk = uk)) = Pr (Ti > t) =

Pr
(
T1 > t, . . . ,Tk > t

) = A0(t)1{k �=0}
∑l=k

l=1 ul =
A0(t)1{k �=0}wk

where wk = ∑l=k
l=1 ul is a realization of the random

variable Wk which is the randomly stopped sum of inde-
pendent random variables [13] Ul and 1{k �=0} = 1 when
k �= 0 and 0 otherwise. This can be interpreted as a
first-activation scheme model [14].
In the following, we assume a Katz distribution for the

distribution of the number of latent B-cell clones (�) and
a Gamma distribution 
(1, τ) with shape parameter unity
and scale parameter τ (τ ≥ 0) for the clonal ADA affinity
(	). As a consequence, the variable Wk has a gamma dis-
tribution 
(k, τ) (denoted in the following as 	(k,τ)). We
also introduceH0(t) a positive non-decreasing function so
that A0(t) = exp {−H0(t)}.
Based upon these latter assumptions, themarginal (pop-

ulation) survival function is given by:
S(t) = ∑∞+

k=0
{ ∫ ∞+

0 A0(t)s	(k,τ)(s)ds
}
�(k)

We recall that the Katz family [13] is the set of counting
distributions for non-negative integers whose probability
mass function satisfies the following first-order recur-
rence formula such as: Pr(x + 1) = Pr(x) ×

(
ω+γ x
1+x

)
; x =

0, . . . ,∞+ where ω > 0 and γ < 1. If ω + γ x < 0, then
Pr(x + j) is equal to zero for all j > 0. The mean and vari-
ance are μ = ω

1−γ
and σ 2 = ω

(1−γ )2
. Moreover, it is worth

noting that ω = μ2

σ 2 and γ is linked to the dispersion index
such as σ 2

μ
= (1 − γ )−1.

The probability generating function can be written such
as [13]:

g(s;μ, γ ) = [
(1 − γ )−1 (1 − γ s)

]−ω
γ for γ �= 0, and

g(s;ω, γ ) = exp [−ω (1 − s)] for γ = 0 with|s| ≤ 1

This family of distribution covers a wide spectrum of
discrete distributions that encompasses the binomial, the
negative binomial and the Poisson distributions. If γ =
0, we have a Poisson distribution (equidispersion) with
S(t = ∞+) = e−ω. When γ < 0, we have underdisper-
sion with S(t = ∞+) > e−ω. When γ ∈[ 0, 1], we have
overdispersion with S(t = ∞+) < e−ω.
In the following, we assume that the distributions� and

	 depend upon the genotype. In practice, we assume that
for the reference group [AA] the latent distribution � is
the Poisson distribution (γ = 0) and 	 is the Gamma dis-
tribution 
(1, τ). In the following, the alternative genetic
variant, acting in a dominant, overdominant, additive or
recessive way, is associated with changes either to the dis-
tribution of the number of clones (over/underdispersion)

or to the dispersion in ADA affinity (increase/decrease
of τ ).
Thus, the marginal survival function for the non pre-

immune subjects depends upon the genotype such as, for
the reference group:
S(t;G1 = 0∩G2 = 0) = exp

{−ω
[
1 − (1 + H0(t)τ )−1]}

with ω > 0. For the other genotypes, we have:

S(t;G1 �= 0 ∪ G2 �= 0)

=
⎡

⎢
⎣
1 − (γ1G1 + γ2G2)

(
1 + H0(t)τe(α1G1+α2G2)

)−1

1 − (γ1G1 + γ2G2)

⎤

⎥
⎦

−ω
(γ1G1+γ2G2)

where α1,α2, γ1, γ2 are the unknown regression coeffi-
cients. The parameters γ1, γ2 are linked to the distribution
of the number of the B-cell clones and α1,α2 are linked to
the dispersion in ADA affinity.
When γ1 = γ2 = 0 the improper survival distri-

butions for each genotypes have a same defect such as
S(t = ∞+;G1,G2) = e−ω. The biological interpretation
is that the alternative allele has no effect on the propor-
tion of immune-tolerant. When γ1 �= 0 or γ2 �= 0, the
improper survival distribution varies between genotypes.
The biological interpretation is that the alternative allele is
associated with changes in the distribution of the number
of clones and consequently with changes in the proportion
of immune-tolerant.
We write the improper survival model in terms of the

hazard functions and take its first-order Taylor expansion
of γ1 = γ2 = 0.

λ(t | G1,G2) = k0(t) × eαG−2 log
[
1+H0(t)τeαG

]

+γG
[
1 + H0(t)τeαG

]−1 = k0(t)eϒ(t)

where αG = α1G1 + α2G2, γG = γ1G1 + γ2G2, k0(t) =
ωτh0(t) is a baseline hazard function with h0(t) = ∂H0(t)

∂t
and ϒ(t) is a function of γ1; γ2;α1;α2;G1;G2. This multi-
plicative hazard formulation will be used in the following.

The proposed statistic
In this work, the general null hypothesis to be tested is
defined by H0 : β = γ1 = γ2 = α1 = α2 = 0 and
corresponds to a same survival distribution across geno-
types against differences that can be associated to changes
linked either to the pre-immune fraction (β �= 0) or to the
improper survival distribution for the non pre-immune
subjects. From our mechanistic model, these differences
are related either to the dispersion of the latent distribu-
tion for the B-cell clones (γ1 �= 0 or γ2 �= 0) or to the ADA
affinity (α1 �= 0 or α2 �= 0).
In the following, we derive under the null hypothesis a

score statistic for testing H0.
The log-likelihood LL0

(
β , γ1, γ2,α1,α2;G1i ,G2i ,Zi

)

derived under the working model can be expressed as the



Duhazé et al. BMCMedical ResearchMethodology           (2020) 20:69 Page 5 of 10

sum of two terms LL0 = LL1 + LL2 where the first term
involves only the parameter β whereas the second term
involves the parameters γ1, γ2,α1;α2.

LL1 = ∑n
i=1 Zi

{
θ + βG1i − log

(
1 + e(θ+βG1i )

)}
+(1−

Zi)
{
−log

(
1 + e(θ+βG1i )

)}

LL2 = ∑n
i=1(1 − Zi)δi

[
log(k0(t)) + ϒ(t)

] − (1 −
Zi)

∫ ∞
0 k0(s)eϒ(s)ds

If we consider the non-parametric form for k0(t) that
puts point mass k0j at the J ordered failure times t(j), then
K0(t) = ∑J

j=1 k0j(t(j) ≤ t), as our improper survival model
is a multiplicative model, the profile likelihood (LL2) (pro-
file out K0) leads to the classical log partial likelihood
function from which a score test can be derived under the
null hypothesis [15, 16]. Here the log-partial likelihood is:
LPL2 = ∑n

i=1(1 − Zi)δiϒ(ti) − ∑n
j=1 Yj(ti)(1 − Zi)eϒ(ti).

Thus, one can obtain two score statistics by separately
computing the components of the score statistics derived
from the first derivatives of LL1 and the log partial like-
lihood LPL2 with respect to β and α1,α2, γ1, γ2 evaluated
under H0, respectively.
The first score statistic is as follows:
V̂H0,β = ∂LL1

∂β
=

n∑

i=1
G1i {Zi − π0}

with π0 = eθ
1+eθ the probability of being a pre-immune

under the null hypothesis H0.
The components of the second score statistic are such

as:

ÛH0,α1 = ∂LPL2
∂α1

=
n∑

i=1
δiW1(t)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G1i −

n∑

k=1
Yk (ti)G1k

n∑

k=1
Yk (ti)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

ÛH0,α2 = ∂LPL2
∂α2

=
n∑

i=1
δiW1(t)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G2i −

n∑

k=1
Yk (ti)G2k

n∑

k=1
Yk ((ti)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

ÛH0,γ1 = ∂LPL2
∂γ1

=
n∑

i=1
δiW2(t)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G1i −

n∑

k=1
Yk (ti)G1k

n∑

k=1
Yk (ti)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

ÛH0,γ2 = ∂LPL2
∂γ2

=
n∑

i=1
δiW2(t)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G2i −

n∑

k=1
Yk (ti)G2k

n∑

k=1
Yk (ti)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

where W1(t) = 1 − 2
(

�(t)
ω

)
and W2(t) = 1 − (

�(t)
ω

)
with

�(t) as the bounded cumulative hazard function under
the null hypothesis H0.

For computing these two score statistics, we should
substitute �(t), ω and π0 by efficient estimators com-
puted under the null hypothesis. Here π̂0 is the
observed proportion of pre-immune subjects computed
under the null hypothesis. The quantity �̂(t) =∑n

i=1
∫ t
0 {∑n

k=1 Yk(s)}−1dNi(s), where Ni(t) = 1{Xi≤t,δi=1}
is the left-continuous version of the Nelson-Aalen estima-
tor for the cumulative hazard [15, 17] obtained by using
the pooled sample, and ω̂ = �̂(tmax) is the maximum
value of this estimator computed at the last observed
failure time tmax. Here, ω̂ is an efficient estimator of ω

since we assume that the immune-reactive patients should
experience the event within the one-year follow-up.
For the two scores, their corresponding information

scalar and matrix, respectively ĴH0 and ÎH0 , are obtained
as presented in the Supplementary material. They are
are computed by using efficient estimators of W1(t) and
W2(t) as given above. Then,
S1 = V̂H0 Ĵ

−1
H0

V̂H0 and
S2 =

(
ÛH0,α1 , ÛH0,α2 , ÛH0,γ1 , ÛH0,γ2

)
Î−1
H0

(
ÛH0,α1 , ÛH0,α2 , ÛH0,γ1 , ÛH0,γ2

)′
.

Thus, the statistic : SH0 = S1 + S2 is asymptotically
distributed under H0 as a chi-square with five degrees
of freedom. This test statistic is referred as TWIST, for
TWo-part Improper Survival Test in the following

Statistical test comparison
We compared our proposed test to a Two-part LogRank
Test, hereafter referred as TLRT. Here, the TLRT is
derived in the same spirit as proposed by Lachenbruch
(2001)[7] where the first part is the score test under the
logistic model and the second part is a k-sample logrank
test. Here, k = 3 for the three genotype groups.

Results
Data generation
Monte Carlo simulations were performed in order to eval-
uate the behavior of the TWIST. We reported the size
of the proposed test, as well as its power properties with
those obtained with a TLRT. Individual’s genotype infor-
mation was generated by summing the values of two
Bernoulli variables independently drawn, with mean: 0.1,
0.2 and 0.3. This value corresponds to a pseudo-minor
allele frequency (MAF), that is to say the proportion of [ a]
allele in the simulated population.
The status for being pre-immune was sampled from a

Bernoulli variable, with mean of 0.05, 0.1 or 0.2. The val-
ues for β are chosen so that the pre-immune fractions are
equal across the different groups (then β = 0), or different
according to the group (β = log(2), log( 12 )).
For the non pre-immune and to evaluate the impact of

departures from the reference latent distribution, we have
considered scenarii with equi, under or overdispersed
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latent distributions corresponding to Poisson, Binomial
and Negative binomial distributions, respectively.
Data were generated such as, for the reference group

with [AA] genotype, SAA(t) = exp
[−ω

(
1 − (1 + t)−1)]

and for the two other genotypes [ aa] and [Aa],

S(t) =
[
1−(γ1G1+γ2G2)

(
1+teα1G1+α2G2

)−1

1−(γ1G1+γ2G2)

] −ω
γ1G1+γ2G2

.

The tail defect for the reference group was chosen such
as: SAA(∞+) = e−ω = 0.50. We also investigated the case
where SAA(∞+) = e−ω = 0.30.
The values for γ1 and γ2 were chosen accordingly to

have over, equi or underdispersion, under an additive,
dominant, recessive or overdominant genetic model. The
values for α1 and α2 were chosen in such a way as to the
risk eα1G1+α2G2 = 2. Thus, when the genetic model is
dominant, α1 = 0.5 × log(2) and α2 = 0.5 × log(2); when
the geneticmodel is additive, α1 = 0.5×log(2) and α2 = 0;
when the genetic model is recessive, α1 = 0.5 × log(2)
and α2 = −0.5 × log(2) and when the genetic model is
overdominant, α1 = 0 and α2 = log(2).
According to the model, α and γ have the same direc-

tional effects when they are of opposite signs. Thereby,
when γ < 0 and eα > 1 there is a global underdispersion,
and the reverse for γ ∈] 0 − 1] and eα < 1.
The censoring time C was generated from a uniform

distribution with parameter value computed from the
chosen percentage of censoring. The percentage of cen-
soring refers only to the percentage of censored observa-
tions without the tail defect fraction. We investigated no
censoring and 20% censoring.
The total number of subjects was chosen to be 1,000 and

for each configuration of parameters, 1,000 replications
were performed. The levels and powers of the TWIST and
the TLRT were estimated with a 0.05 significance level.

Simulation results
The estimated level of the TWIST under its proper null
hypothesis fell within the binomial range [ 0.036 − 0.064]
(see the underlined values in Table 2b and in Tables S1 to
S6 in the Supplementary material).
Just below, we comment the results of Table 2. It dis-

plays the estimated power gains in the TWIST and the
TLRT for different values of the parameters α, β and
γ , for a 10% proportion of pre-immune subjects and a
minor allele frequency of 20%. In Table 2, both α and
γ have additive effects, hence, α2 = 0 and γ2 = 0.
The results for other genetic models are available in the
Supplementary material.
We first comment the configurations where α has no

effect (eα = 1, Table 2b). In this case, the TWIST’s power
is higher than the TLRT’s when γ1 = −0.35 (underdis-
persion). The TWIST’s power is very close to the TLRT’s
when γ1 = 0 or γ1 = 0.10. In these cases, the difference

between the TWIST’s power and the TLRT’s vary from
0 to 0.02. When only β has an effect, the TWIST has a
very low power. For example, when eβ = 0.5, the TWIST’s
power is 0.04.
We will now comment the configurations where α has a

non-null effect (Table 2a and c).
When parameters α and γ have the same directional

effect, the TWIST’s power is always higher than the
TLRT’s, with a difference varying from 0.18 to 0.57. As
an example, when both α and γ increase the risk and
eβ = 2, the TWIST’s and TLRT’s powers are 0.95 and 0.56
respectively.
When γ has no effect, the TWIST’s power is higher than

the TLRT’s, with a difference varying from 0.26 to 0.34.
When α and γ have opposite directional effect, the

TWIST’s power values are close to the TLRT’s. The dif-
ference between the powers of the two tests varies from
−0.10 to 0.10. As an example, when γ1 = 0.10, eα > 1 and
eβ = 2, the TWIST’s and TLRT’s powers are 0.49 and 0.42
respectively.
As expected, when eβ = 1, the power of the TWIST is

inferior to the one obtained with eβ �= 1.
The results of simulations with α and γ acting under

a same genetic model other than additive are not dis-
played in this section but are joined in the Supplementary
material (Table S6). The TWIST’s power values obtained
with α and γ both dominant, overdominant or recessive
are different from what we described above but follow the
same global trends. Moreover, according to the genetic
model, the power values are different. When both α and
γ are dominant or overdominant, the TWIST’s power
values are higher than the ones obtained under an addi-
tive genetic model. When both α and γ are recessive, the
TWIST’s power values are lower than what is obtained
under an additive genetic model.
We performed simulations with the same parameters as

described above but with 20% censoring (see Table S1 in
the Supplementary material). As expected, the TWIST’s
power values when there is 20% censoring are lower than
when there is no censoring. Moreover, the difference
between the TWIST’s power and the TLRT’s is lower with
20% censoring compared to no censoring.
Tables S2 to S6 in the Supplementary material display

the results of simulations performed with all parameters
equal to those of Table 2, unless otherwise specified. For
all these configurations, the trends are similar to what we
detailed above about Table 2, with changes in power val-
ues and gains. We describe briefly just below the results
displayed in those additional tables.
With a minor allele frequency of 10%, as expected, the

TWIST’s power is lower than when the MAF is 20%, and
with a 30% MAF, it is higher (see Tables S4 and S5).
With a proportion of pre-immune subjects in the refer-

ence group of 5% or 20%, the TWIST’s power is similar
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Table 2 Power of the TWIST compared to the TLRT when α and γ are additive

Underdispersion Equidispersion Overdispersion

(γ 1= −0.35 and γ 2= 0) (γ 1= 0 and γ 2= 0) (γ 1= 0.10 and γ 2= 0)

eβ TWIST TLRT TWIST TLRT TWIST TLRT

(a) α has an additive effect and eα > 1

2 0.95 0.56 0.42 0.08 0.49 0.42

1 0.93 0.36 0.29 0.02 0.37 0.28

0.50 0.95 0.47 0.32 0.03 0.42 0.32

(b) α has no effect, eα = 1

2 0.50 0.44 0.09 0.10 0.59 0.60

1 0.36 0.25 0.04 0.02 0.50 0.48

0.50 0.45 0.34 0.04 0.04 0.53 0.53

(c) α has an additive effect and eα < 1

2 0.22 0.32 0.41 0.12 0.95 0.77

1 0.11 0.14 0.30 0.04 0.91 0.65

0.50 0.14 0.18 0.35 0.05 0.96 0.74

(b) The underlined values show the estimated level of the type I error.
(c) The tail defects for the [AA], [Aa] and [aa] groups are respectively : 0.50, 0.55 and 0.59 for γ1 = -0.35, and 0.50, 0.44 and 0.37 for γ1 = 0.10. The proportion of pre-immune
subjects is 10% and the MAF is 20%.

to what we obtain when this proportion is 10%, with
slight variations according to the configuration of the
parameters (see Additional file 1: Tables S4 and S5).
When the tail defect is 30%, the TWIST’s power is

higher than when the tail defect is 50% (see Table S6).
We also performed simulations with α having a different

genetic model than γ , those results are displayed in Tables
S7 and S8 of the Supplementary material and display sim-
ilar trends than what is described above, with different
power values according to the genetic model.

Biotherapeutic immunogenicity study
We used our novel test to look for association between
genetic variants and occurrence of ADA. The population
study consists of 469 patients from the ABIRISK consor-
tium cohort [11] suffering from auto-immune diseases
and treated by biotherapies. These patients were naive for
the biotherapies before the study and were followed dur-
ing twelve months. The outcome was the time between
the date of the first dose of biotherapy and the first detec-
tion of anti-drug antibodies (ADA). Patients without ADA
occurrence were censored at the date of their last clinic
visit. Among the 469 subjects, 17 (3.6%) had pre-existing
ADA and 129 (27.5%) developedADA during the one-year
follow-up.
Exploratory analyses were performed on a list of 1,697

genes linked to immunity. We selected the genetic vari-
ants with a minor allele frequency greater than 0.15, for
a total of 19,745 variants. At a 10% false discovery rate
level [18], five genetic variants were significantly associ-
ated with ADA occurrence with the TWIST, and none
with the TLRT. Among these five variants, we highlight

one from the fibroblast growth factor signaling pathway
which test statistic is 28.96 (q-value = 0.093) with the
TWIST and 21.87 with the TLRT (q-value = 0.34). Taken
separately, the first and second components of the TWIST
statistic have values of 8.02 and 20.94 respectively. It’s
worth noting that if we restricted the analyses to the 452
non pre-immune subjects with the same 10% false dis-
covery rate, this genetic variant was not selected (q-value
= 0.39).
This latter finding emphasizes the use of the TWIST

and the inclusion of the pre-immune subjects for the anal-
yses. Figure 1 shows the survival curves for the three
genotypic groups of the highlighted variant. We found
that the rare variant is associated with a higher occur-
rence of ADA in both pre-immune and non pre-immune
subjects.

Discussion
In this paper, we proposed a test for assessing the effect
of genetic markers on drug imunogenicity. This test is
based on a score statistic derived from a two-part semi-
parametric improper survival model which allows to test
the effect of genetic markers on the time-to-detection
of ADA. It extends classical two-part models for semi-
continuous data to the case where we can expect a mass
at infinity. This model has a mechanistic interpretation of
the ADA production by the B-cell clones. It allows dif-
ferent types of departures from equality of the two-part
improper survival distributions. The biological interpre-
tation of these departures are linked either to the propor-
tion of pre-immune subjects or to the dynamic of ADA
production. In this latter case, genetic variants can be
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Fig. 1 Survival curve of the fibroblast growth factor signaling pathway variant. We named ‘A’ the reference allele and ‘a’ the alternative allele

associated with changes in the number of clones or to
their ADA affinities. As seen from our simulations, under
the null hypothesis, our proposed test maintains a correct
type I error in all the investigated configurations. Looking
at the simulation results under the alternative hypothe-
ses, we see that power gains of the proposed test are
better than that of the two-part logrank test in most sit-
uations. In particular, we see that striking gains in power
can be achieved by the TWIST as compared to the two-
part logrank test when the parameters have the same
directional effect, which is the case that we could expect
the most in applications on real data. Since for complex
diseases the underlying model is unknown, we have not
restricted our test to one of the common genetic models.
For various combinations of the classical genetic models,
we obtain good performances with the proposed test.
Moreover, it is worth noting that a straightforward exten-
sion of this test statistic can be done to investigate specific
genetic models. Power gains decrease when the plateau or
the percentage of censoring increase, which is not surpris-
ing since there are less events. Likewise, when the groups
are too unbalanced, for example when the minor allele
frequency is low or when the underlying genetic model
is recessive, power gains decrease. The simulation results
also show that our test performs well when there is a non
negligible proportion of pre-immune subjects.
Notwithstanding the good behavior of the proposed

test, some limitations should be mentioned. In this work,
we have considered a proportional effect of the studied

variable on the time-to-detection associated with the B-
cell clones. However, if this hypothesis is not true (e.g.
in case of accelerated failure time), the power of the test
will be reduced. Here, we have considered a Katz family
for the distribution of the number of latent B-cell clones.
This modelisation provides a flexible probabilistic model-
ing approach but at the expense of increasing the number
of parameters to be tested. Moreover, it is worth keeping
in mind that this test performs best in situations where
a sufficient length of follow-up is provided. It means that
we need a window of observation long enough for the last
potential event among immune reactive to occur within it.
In other words, we should provide a follow-up adequate
for detecting the presence of immune-tolerant subjects in
the study population. If this condition is unmet, the power
of the test is reduced.
We used the proposed test for analyzing the relationship

between some genetics loci and drug immunogenicity
among a cohort of patient with auto-immune diseases
and naive for the tested drugs. In this study, 3.6% of the
patients were pre-immune subjects. We found that the
alternative alleles of five variants on immunity genes are
significantly associated with an increased risk of develop-
ing ADA. The result for one variant from the fibroblast
growth factor signaling pathway is interesting since it has
an effect on both the fraction of pre-immune subjects and
the time of ADA occurrence. For this case, the inclusion of
the pre-immune subjects in the analyses allows to detect
the association of the variant with ADA occurrence.
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Thus, we think that our test provides a new way of
assessing the effect of genetic markers on drug immuno-
genicity, while incorporating some biological understand-
ing of the ADA production. Our model-based approach
can be considered as a convenient representation of com-
plex patterns of genetic effects which allows detection of
departure from the null hypothesis model.
It is worth noting that since the proposed test statis-

tic gives equal weights to its two parts, its global power
can be reduced when one of them has a smaller effect
size (e.g. pre-immune subjects). Following the idea intro-
duced in the paper of Hu and Proschan [19], it could be
interesting to consider a linear combination of the two
components of our proposed test statistic. As in the work
of Hu and Proschan, we could assign a lesser weight to
the component with the smaller a priori effect than to
the other. However, it requires additional work for deriv-
ing the probability density function of the optimal linear
combination of the two components of the test statistic.
Moreover, further works should also be done for deriving
simple test statistics for testing separately each compo-
nent for the non pre-immune subjects.
In view of the gains in power obtained by the proposed

test, its use can be recommended in many clinical situa-
tions where unwanted drug immunogenicity occurs such
as in oncology and clinical immunology. It can also be
used to evaluate response to vaccination for populations
where pre-immune and non pre-immune patients exist.
Moreover, the proposed test can also be extended to take
other factors into account such as different treatments, by
developing a stratified version with strata defined by the
levels of the factors.
It can also be used to evaluate response to vaccination

for populations where pre-immune and non pre-immune
patients exist. Moreover, the proposed test can also be
extended to take other factors into account such as dif-
ferent treatments, by developing a stratified version with
strata defined by the levels of the factors.

Conclusion
In this study, we proposed a novel test statistic for assess-
ing the effect of genetic markers on drug immunogenicity
taking into account that the population under study is a
mixed one. This test statistic, which is easy to implement
with standard softwares, is also applicable in situations
where one wants to test the equality of improper survival
distributions of semi-continuous outcomes between two
or more independent groups.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12874-020-00941-z.

Additional file 1: Supplementary material.
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