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Abstract: The current tsunami of deep learning (the hyper-vitamined return of artificial neural networks)
applies not only to traditional statistical machine learning tasks: prediction and classification (e.g., for weather
prediction and pattern recognition), but has already conquered other areas, such as translation. A growing area
of application is the generation of creative content: in particular the case of music, the topic of this paper. The
motivation is in using the capacity of modern deep learning techniques to automatically learn musical styles
from arbitrary musical corpora and then to generate musical samples from the estimated distribution, with some
degree of control over the generation. This article provides a survey of music generation based on deep learning
techniques. After a short introduction to the topic illustrated by a recent exemple, the article analyses some
early works from the late 1980s using artificial neural networks for music generation and how their pioneering
contributions foreshadowed current techniques. Then, we introduce some conceptual framework to analyze the
various concepts and dimensions involved. Various examples of recent systems are introduced and analyzed to
illustrate the variety of concerns and of techniques.

1 Introduction

Since the mid 2010s1, deep learning has been producing striking successes and is now used routinely for classifi-
cation and prediction tasks, such as image recognition, voice recognition or translation. It continues conquering
new domains, for instance source separation2 [8] and text-to-speech synthesis [44].

A growing area of application of deep learning techniques is the generation of content. Content can be of
various kinds: images, text and music, which is the focus of this article. The motivation is in using now widely
available various corpora to automatically learn musical styles and to generate new musical content based on
this. Since a few years, there is a large number of scientific papers about deep learning architectures and
experiments to generate music, as witnessed in [2]. The objective of this article is to explain some fundamentals
as well as various achievements of this stream of research.

1.1 Related Work and Organization

This article takes some inspiration from the recent comprehensive survey and analysis in [2], but has a quite
different organization and material and includes an original historical retrospective analysis. Article [3] is
an analysis focusing on and driven only by challenges. In [19], Herremans et al. propose a function-oriented
taxonomy for various kinds of music generation systems. Some more general surveys about of AI-based methods
for algorithmic music composition are by Papadopoulos and Wiggins [46] and by Fernández and Vico [9], as
well as books by Cope [5] and by Nierhaus [43]. In [15], Graves analyses the application of recurrent neural
networks architectures to generate sequences (text and music). In [10], Fiebrink and Caramiaux address the
issue of using machine learning to generate creative music. In [47], Pons presents a short historical analysis of
the use of neural networks for various types of music applications (that we expand in depth).

∗Invited and under evaluation for a Special Issue on Arts in a Neural networks journal.
1In 2012, an image recognition competition (the ImageNet Large Scale Visual Recognition Challenge) was won by a deep neural

network algorithm named AlexNet [29], with a stunning margin over the other algorithms which were using handcrafted features.
This striking victory was the event which ended the prevalent opinion that neural networks with many hidden layers could not be
efficiently trained and which started the deep learning wave.

2Audio source separation, often coined as the cocktail party effect, has been known for a long time to be a very difficult problem,
see the original article in [4].
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This article is organized as follows. Section 1 (this section) introduces the general context of deep learning-
based music generation and includes a comparison to some related work. Section 2 introduces the principles and
the various ways of generating music from models. Section 3 presents a recent example to illustrate the domain
of study. Section 4 analyzes in depth some pioneering works from the late 1980s in neural networks-based
music generation and their recent impact. Section 5 presents some conceptual framework, in order to organize
the various types of current deep learning-based music generation systems, following the model introduced in
[2]. We analyze possibles types of representation in Section 6. Then, we analyze successively, basic types of
architectures and strategies in Section 7, various ways to construct compound architectures in Section 8 and
some more refined architectures and strategies in Section 9, before concluding this article.

2 Music Generation

In this article, we will focus on computer-based music composition and not on computer-based sound generation.
This is often also named algorithmic music composition [43, 5], in other words, using a formal process, including
steps (algorithm) and components, to compose music.

2.1 Brief History

One of the first documented case of algorithmic composition, long before computers, is the Musikalisches Wur-
felspiel (Dice Music), attributed to Mozart. A musical piece is generated by concatenating randomly selected
(by throwing dices) predefined music segments composed in a given style (Austrian waltz in a given key).

The first musics generated by computer appeared in the late 1950s, shortly after the invention of the first
computers. The Illiac Suite is the first score composed by a computer [20] and was an early example of
algorithmic music composition, making use of stochastic models (Markov chains) for generation, as well as rules
to filter generated material according to desired properties. Note that, as opposed to the previous case which
consists in rearranging predefined material, abstract models (transitions and constraints) are used to guide the
generation.

One important limitation is that the specification of such abstract models, being rules, grammar, or au-
tomata, is difficult (reserved to experts) and error prone. With the advent of machine learning techniques,
it became natural to apply them to learn models from a corpus of existing music. In addition, the method
becomes, in principle, independent of a specific musical style3 (e.g., classical, jazz, blues, serial).

2.2 Human Participation and Evaluation

We may consider two main approaches regarding human participation to a computer-based music composition
process:

• autonomous generation – Some recent examples are Amper, AIVA or Jukedeck systems/companies, based
on various techniques (e.g., rules, reinforcement learning, deep learning) aimed at the creation of original
music for commercials and documentaries. In such systems, generation is automated with the user being
restricted to a role of parametrization of the system though a set of characteristics (style, emotion targeted,
tempo, etc.).

• composition assistance – An example is the FlowComposer environment4 [45]. In such highly interactive
systems, the user is composing incrementally with the help (suggestion, completion, complementation,
etc.) of the environment.

Most current works using deep learning to generate music are autonomous and the way to evaluate them is
a musical Turing test, i.e. presenting to various human evaluators (beginners or experts) original music (of a
given style of a known compositor, e.g., Bach5) mixed with music generated after having learnt that style. As
we will see in the following, deep learning techniques turn out to be very efficient at succeeding in such tests,
due to their capacity to learn very well musical style from a given corpus and to generate new music that fits
into this style.

As pointed out, e.g., in [3], most current neural networks/deep learning-based systems are black-box au-
tonomous generators, with low capacity for incrementality and interactivity6. However, expert users may use
them as generators of primary components (e.g., melodies, chord sequences, or/and rhythm loops) and assemble

3Actually, the style is defined extensively by (and learnt from) the various examples of music selected as the training examples.
4Using various techniques such as Markov models, constraints and rules, and not (yet) deep learning techniques.
5The fact that Bach music is often used for such experiments may not be only because of his wide availability, but also because

his music is actually easier to automate, as Bach himself was somehow an algorithmic music composer. An example is the way he
was composing chorales by designing and applying (with talent) counterpoint rules to existing melodies.

6Two exceptions will be introduced in Section 9.5.
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Figure 1: Example of chorale generation by Bach Doodle. The original soprano melody is in black and the
generated counterpoint melodies in color (alto in red, tenor in green and bass in blue). c©2019 Google LLC,
used with permission

and orchestrate them by hand. An example is the experiment conducted by the YACHT dance music band
with the MusicVAE architecture7 from the Google Magenta Project [36].

3 A First Example

On the 21st of March of 2019, for the anniversary of Bach’s birthday, Google presented an interactive Doodle
generating some Bach’s style counterpoint for a melody entered interactively by the user. In practice the
system generated three matching parts, corresponding to alto, tenor and bass voices, as shown in Figure 1. The
underlying architecture, named Coconet [24], has been trained on a dataset of 306 Bach chorales. It will be
analyzed in Section 9.5, but as it is too much sophisticated for an introduction, we will at first consider a more
straightforward architecture, named MiniBach8 [2, Section 6.2.2].

As a further simplification, we consider only 4 measures long excerpts from the corpus. Therefore, the dataset
is constructed by extracting all possible 4 measures long excerpts from the original 352 chorales, also transposed
in all possible keys. Once trained on this dataset, the system may be used to generate three counterpoint voices
corresponding to an arbitrary 4 measures long melody provided as an input. Somehow, it does capture the
practice of Bach, who chose various melodies for a soprano and composed the three additional voices melodies
(for alto, tenor and bass) in a counterpoint manner.

The input as well output representations are symbolic, of the piano roll type, with a direct encoding into
one-hot vectors9. Time quantization (the value of the time step) is set at the sixteenth note, which is the
minimal note duration used in the corpus, i.e., there are 16 time steps for each 4/4 measure. The resulting
input representation, which corresponds to the soprano melody, has as its size: 21 possible notes × 16 time
steps × 4 measures = 1,344. The output representation, which corresponds to the concatenation of the three
generated counterpoint melodies, has as its size: (21 + 21 + 28) × 16 × 4 = 4,480.

The architecture, shown in Figure 2, is feedforward (the vanilla type of artificial neural network architecture)
for a multiple classification task: to find out the most likely note for each time slice of the three counterpoint
melodies There is a single hidden layer with 200 units10. Successive melody time slices are encoded into
successive one-hot vectors which are concatenated and directly mapped to the input nodes. In Figure 2, each
blackened vector element, as well as each corresponding blackened input node element, illustrate the specific
encoding (one-hot vector index) of a specific note time slice, depending on its actual pitch (or a note hold in
the case of a longer note, shown with a bracket). The dual process happens at the output. Each grey output
node element illustrates the chosen note (the one with the highest probability), leading to a corresponding
one-hot index, leading ultimately to a sequence of notes for each counterpoint voice. (For more details, see [2,
Section 6.2.2].)

After training on several examples, generation can take place, with an example of chorale counterpoint
generated from a soprano melody shown in Figure 3.

7To be introduced in Section 9.3.
8MiniBach is an over simplification of DeepBach [18], to be analyzed in Section 9.5.
9Piano roll format and one-hot encoding will be explained in Section 6.

10This is an arbitrary choice.
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Figure 2: MiniBach architecture and encoding

Figure 3: Example of a chorale counterpoint generated from a soprano melody by MiniBach
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Figure 4: Time-Windowed architecture. Inspired from [55]

4 Pioneering Works and their Offsprings

As pointed out by Pons in [47], a first wave of applications of artificial neural networks to music appeared in the
late 1980s11. This corresponds to the second wave of the artificial neural networks movement12 [13, Section 1.2],
with the innovation of hidden layers and backpropagation [51, 37].

4.1 Todd’s Time-Windowed and Conditioned Recurrent Architectures

The experiments by Todd in [55] were one of the very first attempts at exploring how to use artificial neural
networks to generate music. Although the architectures he proposed are not directly used nowadays, his
experiments and discussion were pioneering and are still an important source of information.

Todd’s objective was to generate a monophonic melody in some iterative way. He named his first design the
Time-Windowed architecture, shown in Figure 4, where a sliding window of successive time-periods of fixed size
is considered (in practice, one measure long). Generation is conducted iteratively melody segment by segment
(and recursively, as current output segment is entered as the next input segment and so on). Note that, although
the network will learn the pairwise correlations between two successive melody segments13, there is no explicit
memory for learning long term correlations.

His third design is named Sequential and is shown in Figure 5. The input layer is divided in two parts,
named the context and the plan. The context is the actual memory (of the melody generated so far) and
consists in units corresponding to each note (D4 to C6), plus a unit about the note begin information (notated
as “nb” in Figure 5)14. Therefore, it receives information from the output layer which produces next note, with
a reentering connexion corresponding to each unit15. In addition, as Todd explains it: “A memory of more than
just the single previous output (note) is kept by having a self-feedback connection on each individual context

11A collection of such early papers is [57].
12After the early stop of the first wave due to the critique of the limitation of the Perceptron [39].
13In that respect, the Time-Windowed model is analog to an order 1 Markov model (considering only the previous state) at the

level of a melody measure.
14As a way to distinguish a longer note from a repeated note.
15Note that the output layer is isomorphic to the context layer.
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Figure 5: Sequential architecture. Inspired from [55]

unit.”16 The plan is a way to name17 a particular melody (among many) that the network has learnt.
Training is done by selecting a plan (melody) to be learnt. The activations of the context units are initialized

to 0 in order to begin with a clean empty context. The network is then feedforwarded and its output, corre-
sponding to the first time step note, is compared to the first time step note of the melody to be learnt, resulting
in the adjustment of the weights. The output values18 are passed back to the current context. And then, the
network is feedforwarded again, leading to the next time step note, again compared to the melody target, and
so on until the last time step of the melody. This process is then repeated for various plans (melodies).

Generation of new melodies is conducted by feedforwarding the network with a new plan, corresponding to
a new melody (not part of the training plans/melodies). The activations of the context units are initialized to 0
in order to begin with a clean empty context. The generation takes place iteratively, time step after time step.
Note that, as opposed to the now more common recursive generation strategy (to be detailed in Section 7.2.1),
in which the output is explicitly reentered (recursively) into the input of the architecture, in Todd’s Sequential
architecture the reentrance is implicit because of the specific nature of the recurrent connexions: the output is
reentered into the context units while the input – the plan melody – is constant.

After having trained the network on a plan melody, various melodies may be generated by extrapolation by
inputing new plans, or by interpolation between several (two or more) plans melodies that have been learnt.
An example of interpolation is shown in Figure 6.

4.1.1 Influence

Todd’s Sequential architecture is one of the first examples of using a recurrent architecture and an iterative
strategy19 for music generation. Moreover, note that introducing an extra input, named plan, which represents
a melody that the network has learnt, could be seen as a precursor of conditioning architectures, where a specific
input is used to condition (parametrize) the training of the architecture20.

Furthermore, in the added Addendum of the republication of his initial paper [56, 190–194], Todd mentions
some issues and directions:

16This is a peculiar characteristic of this architecture, as in recent standard recurrent network architecture recurrent connexions
are encapsulated within the hidden layer (as we will see in Section 7.2). The argument by Todd in [55] is that context units are
more interpretable than hidden units: “Since the hidden units typically compute some complicated, often uninterpretable function
of their inputs, the memory kept in the context units will likely also be uninterpretable. This is in contrast to [this] design, where,
as described earlier, each context unit keeps a memory of its corresponding output unit, which is interpretable.”

17In practice, it is a scalar real value, e.g., 0.7, but Todd discusses his experiments with other possible encodings [55].
18Actually, as an optimization, Todd proposes in the following of his description to pass back the target values and not the output

values.
19These and other types of architectures and generation strategies will be more systematically analyzed in Sections 5 and 7.
20An example is to condition the generation of a melody on a chord progression, in the MidiNet architecture [61] to be described

in Section 9.4.
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oA)

oB)

i1)

Figure 6: Examples of melodies generated by the Sequential architecture. (oA and oB) Original plan melodies
learnt. (i1) Melody generated by interpolating between oA plan and oB plan melodies. Inspired from [55]

Figure 7: MusicVAE architecture. Reproduced from [49] with permission of the authors

• structure and hierarchy – “One of the largest problems with this sequential network approach is the
limited length of sequences that can be learned and the corresponding lack of global structure that new
compositions exhibit. Hierarchically organized and connected sets of sequential networks hold promise
for addressing these difficulties. (. . . ) One solution to these problems is first to take the sequence to be
learned and divide it up intro appropriate chunks (. . . ).”

• multiple time/clocks – “Of course, one way to present this subsequence-generating network with the
appropriate sequence of plans is to generate those by another sequential network, operating at a slower
time scale.”

Thus, these early designs may be seen as precursors of some recent proposals:

• hierarchical architectures, such as MusicVAE [49] (shown in Figure 7 and analyzed in Section 9.3); and

• architectures with multiple time/clocks, such as Clockwork RNN [28] (shown in Figure 8) and SampleRNN
[38].

4.2 Lewis’ Creation by Refinement

In [32], Lewis introduced a novel way of creating melodies, that he named creation by refinement (CBR),
by “reverting” the standard way of using gradient descent for standard task – adjust the connexion weights to
minimize the classification error –, into a very different task – adjust the input in order to make the classification
value turn positive.

In his described initial experiment [32], the architecture is a conventional feedforward neural network archi-
tecture used for binary classification, to classify “well-formed” melodies. The input is a 5-note melody, each
note being among the 7 notes (from C to B, without alteration).

For the training phase, Lewis manually constructed 30 examples of what he meant by “well-formed” melodies:
using only the following intervals between notes: unison, 3rd and 5th; and also following some scale degree

7



Figure 8: Clockwork RNN architecture. The RNN-like hidden layer is partitioned into several modules each
with its own clock rate. Neurons in faster module i are connected to neurons in a slower module j only if a
clock period Ti < Tj . Reproduced from [28] with permission of the authors

Figure 9: Creation by refinement. (left) Some “well formed” training examples. (right) Some examples of
melodies generated Reproduced from [32] with permission of the author c©1988 IEEE

stepwise motion (some training examples are shown in the left part of the Figure 9). He also constructed
examples of poorly-formed melodies, not respecting the principles above. The training phase of the network
is therefore conventional, by training it with the positive (well-formed) and negative examples that have been
constructed.

For the creation by refinement phase, a vector of random values is produced, as values of the input nodes
of the network. Then, a gradient descent optimization is applied iteratively to refine these values21 in order to
maximize a positive classification (as shown in Figure 10). This will create a new melody which is classified
as well-formed. The process may be done again, generating a new set of random values, and controlling
their adjustment in order to create a new well-formed melody. Right part of Figure 9 shows some examples
of generated melodies. Lewis interpretes the resulting creations as the fact that the network learned some
preference for stepwise and triadic motion.

4.2.1 Influence

The approach of creation by refinement by Lewis in 1988 can be seen as the precursor of various approaches for
controlling the creation of a content by maximizing some target property. Examples of target properties are:

• maximizing a positive classification (as a well-formed melody), in Lewis’ original creation by refinement
proposal [32];

• maximizing the similarity to a given target, in order to create a consonant melody, as in DeepHear [54];

• maximizing the activation of a specific unit, to amplify some visual element associated to this unit, as in
Deep Dream [42];

• maximizing the content similarity to some initial image and the style similarity to a reference style image,
to perform style transfer [12];

21Actually, in his article, Lewis does not detail the exact representation he uses (if he is using a one-hot encoding for each note)
and the exact nature of refinement, i.e., adjustment of the values.
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Figure 10: Creation by refinement – Architecture and strategy

• maximizing the similarity of the structure to some reference music, to perform style imposition [31], as
will be detailed in Section 9.6.

Interestingly, this is done by reusing standard training mechanisms, namely backpropagation to compute the
gradients, as well as gradient descent (or ascent) to minimize the cost (or to maximize the objective).

Furthermore, in his extended article [33], Lewis proposed a mechanism of attention and also of hierarchy:
“In order to partition a large problem into manageable subproblems, we need to provide both an attention
mechanism to select subproblems to present to the network and a context mechanism to tie the resulting
subpatterns together into a coherent whole.” and “The author’s experiments have employed hierarchical CBR.
In this approach, a developing pattern is recursively filled in using a scheme somewhat analogous to a formal
grammar rule such as ABC → AxByC. which expands the string without modifying existing tokens.”

The idea of an attention mechanism, although not yet very developed, may be seen as a precursor of
attention mechanisms in deep learning architectures: at first as an additional mechanism to focus on elements
of an input sequence during the training phase [13, Section 12.4.5.1], notably for translation applications; until
being proposed as the fundamental and unique mechanism (as a full alternative to recurrence or convolution)
in the Transformer architecture [58], with its application to music generation, named MusicTransformer [25].

4.3 From Neural Networks to Deep Learning

With the third wave of artificial neural networks, named deep learning, experiments on music generation bene-
fited from huge processing power, highly optimized implementations and availability of data, therefore allowing
experiments at large or even very large scale. But, as we will see in Section 9, novel types of architectures
have also been proposed. Before that, we will introduce a conceptual framework in order to help at organizing,
analyzing and classifying the various types of architectures, as well as the various usages of artificial neural
networks for music generation.
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5 Conceptual Framework

This conceptual framework (initially proposed in [2]) is aimed at helping the analysis of the various perspectives
(and elements) leading to the design of different deep learning-based music generation systems22. It includes:
five main dimensions (and their facets) to characterize different ways of applying deep learning techniques to
generate musical content, and the associated typologies for each dimension. In this article, we will simplify the
presentation and focus on the most important aspects.

5.1 The 5 Dimensions

• Objective: the nature of the musical content to be generated, as well at its destination and use. Examples
are: melody, polyphony, accompaniment; in the form of a musical score to be performed by some human
musician(s) or an audio file to be played.

• Representation: the nature, format and encoding of the information (examples of music) used to train
and to generate musical content. Examples are: signal, transformed signal (e.g., a spectrum, via a Fourier
transform), piano roll, MIDI, text; encoded in scalar variables or/and in one-hot vectors.

• Architecture: the nature of the assemblage of processing units (the artificial neurons) and their connexions.
Examples are: feedforward, recurrent, autoencoder, generative adversarial networks.

• Requirement: one of the qualities that may be desired for music generation. Some are easier to achieve,
e.g., content or length variability, and some other ones are deeper challenges [3], e.g., control, creativity
or structure.

• Strategy: the way the architecture will process representations in order to generate23 the objective while
matching desired requirements. Examples are: single-step feedforward, iterative feedforward, decoder
feedforward, sampling, input manipulation.

Note that these five dimensions are not orthogonal. The exploration of these five different dimensions and
of their interplay is actually at the core of our analysis.

5.2 The Basic Generation Steps

The basic steps for generating music, according to the objective, are as follows:

1. select (curate) a corpus (a set of training examples, representative of the style to be learnt);

2. select a type of representation and a type(s) of encoding and apply them to the examples;

3. select a type(s) of architecture and configurate it;

4. train the architecture with the examples;

5. select a type(s) of strategy for generation and apply it to generate one or various musical contents, and
decode them into music;

6. select the preferred one(s) among the musics generated.

6 Representation

The choice of representation and its encoding is tightly connected to the configuration of the input and the
output of the architecture, i.e. the number of input and output nodes (variables). Although a deep learning
architecture can automatically extract significant features from the data, the choice of representation may be
significant for the accuracy of the learning and for the quality of the generated content.

22Systems refers to the various proposals (architectures, systems and experiments) about deep learning-based music generation
surveyed from the literature in [2].

23It is important to highlight that, in this conceptual framework, by strategy we only consider the generation strategy, i.e., the
strategy to generate musical content. A strategy for training an architecture could be quite different and is out of direct concern
in this classification.
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6.1 Phases and Types of Data

Before getting into the choices of representation to be processed by a deep learning architecture, it is important
to identify the main types of data to be considered, depending on the phase (training or generation):

• training data, the examples used as input for the training;

• generation (input) data, used as input for the generation (e.g., a melody for which an accompaniment will
be generated, as in the first example in Section 3); and

• generated (output) data, produced by the generation (e.g., the accompaniment generated), as specified by
the objective.

Depending on the objective, these two types of data may be equal or different, e.g., in Section 3, the
generation data is a melody and the generated data is a set of (3) melodies.

6.2 Format

The format is the nature of the representation of a piece of music to be interpreted by a computer. A big
divide in terms of the choice of representation is audio versus symbolic. This corresponds to the divide between
continuous and discrete variables. Their respective raw material is very different in nature, as are the types
of techniques for possible processing and transformation of the initial representation24. However, the actual
processing of these two main types of representation by a deep learning architecture is basically the same25.

6.2.1 Audio

The main audio formats used are:

• signal waveform,

• spectrum, obtained via a Fourier transform26.

The advantage of waveform is in considering the raw material untransformed, with its full initial resolution.
Architectures that process the raw signal are sometimes named end-to-end architectures. The disadvantage is
in the computational load: low level raw signal is demanding in terms of both memory and processing. The
WaveNet architecture [44], used for speech generation for the Google assistants, was the first to prove the
feasibility of such architectures.

6.2.2 Symbolic

The main symbolic formats used are:

• MIDI27 – It it is a technical standard that describes a protocol based on events, a digital interface and
connectors for interoperability between various electronic musical instruments, softwares and devices [40].
Two types of MIDI event messages are considered for expressing note occurrence: Note on and Note off,
to indicate, respectively, the start and the end of a note played. The MIDI note number, indicates the
note pitch, specified by an integer within 0 and 127. Each note event is embedded into a data structure
containing a delta-time value which also specifies the timing information, specified as a relative time
(number of periodic ticks from the beginning – for musical scores) or as an absolute time (in the case of
real performances28).

• Piano roll – It is inspired from automated mechanical pianos with a continuous roll of paper with perfo-
rations (holes) punched into it. It is a two dimensional table with the x axis representing the successive
time steps and the y axis the pitch, as shown in Figure 11.

24In fact, they correspond to different scientific and technical communities, namely signal processing and knowledge representation.
25Indeed, at the level of processing by a deep network architecture, the initial distinction between audio and symbolic represen-

tation boils down, as only numerical values and operations are considered.
26The objective of the Fourier transform (which could be continuous or discrete) is the decomposition of an arbitrary signal into

its elementary components (sinusoidal waveforms). As well as compressing the information, its role is fundamental for musical
purposes as it reveals the harmonic components of the signal.

27Acronym of Musical Instrument Digital Interface.
28The volume may also be specified.
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Figure 11: Example of piano roll and corresponding one-hot encoding

X: 1

T: A Cup Of Tea

R: reel

M: 4/4

L: 1/8

K: Amix

|:eA (3AAA g2 fg|eA (3AAA BGGf|eA (3AAA g2 fg|1afge d2 gf:

|2afge d2 cd|| |:eaag efgf|eaag edBd|eaag efge|afge dgfg:|

Figure 12: ABC notation of “A Cup of Tea”. The first six lines are the header and represent metadata: T(itle),
M(eter), default note L(ength), K(ey), etc. Reproduced from The Session [26] with permission of the manager

• Text – A significant example is the ABC notation [59], a de facto standard for folk and traditional music29.
Each note is encoded as a token, the pitch class of a note being encoded as the letter corresponding to
its English notation (e.g., A for A or La), with extra notations for the octave (e.g., a’ means two octaves
up) and for the duration (e.g., A2 means a double duration). Measures are separated by “|” (bars), as in
conventional scores. An example of ABC score is shown in Figure 12.

Note that in these three cases, except for the case of real performances recorded in MIDI, a global time
step has to be fixed and usually corresponds, as stated by Todd in [55], to the greatest common factor of the
durations of all the notes to be learned.

Note that each format has its pros and cons. The ABC notation is very compact but can only represent
monophonic melodies. In [86], Huang and Hu claim that one drawback of encoding MIDI messages directly
is that it does not effectively preserve the notion of multiple notes being played at once through the use of
multiple tracks. In practice, the piano roll is one of the most commonly used representations, although it has
some limitations. An important one, compared to MIDI representation, is that there is no note off information.
As a result, there is no way to distinguish between a long note and a repeated short note30. Main possible
approaches for resolving this are:

• to introduce a hold/replay representation, as a dual representation of the sequence of notes (used in the
DeepJ system [34]);

• to divide the size of the time step by two and always mark a note ending with a special tag (used in [7]);

• to divide the size of the time step as before but instead mark a new note beginning (used by Todd in [55],
see Section 4.1); and

• to use a special hold symbol “ ” in place of a note to specify when the previous note is held (used in
DeepBach [18], see Section 9.5).

The last solution, considering the hold symbol as a note, is simple and uniform but it only applies to the
case of a monophonic melody.

29Note that the ABC notation has been designed independently of computer music and machine learning concerns.
30Actually, in the original mechanical paper piano roll, the distinction is made: two holes are different from a longer single hole.

The end of the hole is the encoding of the end of the note.
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6.3 Encoding

Once the format of a representation has been chosen, the issue still remains of how to encode this representation.
The encoding of a representation (of a musical content) consists in the mapping of the representation (composed
of a set of variables, e.g., pitch or dynamics) into a set of inputs (also named input nodes or input variables) for
the neural network architecture.

There are two basic approaches:

• value-encoding – A continuous, discrete or boolean variable is directly encoded as a scalar; and

• one-hot-encoding – A discrete or a categorical variable is encoded as a categorical variable through a
vector with the number of all possible elements as its length. Then, to represent a given element, the
corresponding element of the one-hot vector31 is set to 1 and all other elements to 0.

For instance, the pitch of a note could be represented as a real number (its frequency in Hertz), an integer
number (its MIDI note number), or a one-hot vector (actually the most common strategy), as shown in the right
part of Figure 1132. The advantage of value encoding is its compact representation, at the cost of sensibility
because of numerical operations (approximations). The advantage of one-hot encoding is its robustness against
numerical operations approximations (discrete versus analog), at the cost of a high cardinality and therefore a
potentially large number of nodes for the architecture.

7 Main Basic Architectures and Strategies

For reasons of space limitation, we will now jointly introduce architectures and strategies33. For an alternative
analysis guided by requirements (challenges), please see [3].

7.1 Feedforward Architecture

The feedforward architecture34 is the vanilla type (most basic and very common) of artificial neural networks
architectures.

7.1.1 Feedforward Strategy

An example of use has been detailed in Section 3. The generation strategy used in this example is also the
vanilla type of strategy, as it consists in feedforwarding within a single step the input data into the input layer,
through successive hidden layers, until the output layer. Therefore we name it the single-step feedforward
strategy, abbreviated as feedforward strategy.

7.1.2 Iterative Strategy

Although feedforward architecture and single-step feedforward strategy are naturally associated, in Todd’s Time-
Windowed architecture in Section 4.1, generation is processed iteratively by feedforwarding current melody
segment in order to obtain next one, and so on. Therefore we name it the iterative feedforward strategy,
abbreviated as iterative strategy.

7.2 Recurrent Architecture

A recurrent neural network (RNN) is a feedforward neural network extended with recurrent connexions in order
to learn series of items (e.g., a melody as a sequence of notes). Todd’s Sequential architecture in Section 4.1 is
an example although not of a common type. As pointed out in Section 4.1, in modern recurrent architectures,
recurrent connexions are encapsulated within the hidden layer, which allows an arbitrary number of recurrent
layers (as shown in Figure 13).

31The name comes from digital circuits, one-hot referring to a group of bits among which the only legal (possible) combinations
of values are those with a single high (hot!) (1) bit, all the others being low (0).

32The Figure also illustrates that a piano roll could be straightforwardly encoded as a sequence of one-hot vectors to construct
the input representation of an architecture, as, e.g., has been shown in Figure 2.

33As a reminder from Section 5.1, we only consider here generation strategies.
34Also named multilayer neural network (MLP).
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Figure 13: Recurrent neural network. Each successive layer (along the flow of computation) is represented as
an oblong design (hiding the detail of its nodes). The diagonal axis represents the time dimension, with the
previous step value of each layer in thinner and lighter color

7.2.1 Recursive Strategy

The first music generation experiment using current state of the art of recurrent architectures, the LSTM (Long
Short-Term Memory [22]) architecture, is the generation of blues chord (and melody) sequences by Eck and
Schmidhuber in [7]. Another interesting example is the architecture by Sturm et al. to generate Celtic melodies
[53]. It is trained on examples selected from the folk music repository named The Session [26] and uses text
(the ABC notation [59], see Section 6.2.2) as the representation format. Generation (an example is shown in
Figure 14) is done using a recursive strategy, a special case of iterative strategy, for generating a sequence of
notes (or/and chords), as initially described for text generation by Graves in [15]:

• select some seed information as the first item (e.g., the first note of a melody);

• feedforward it into the recurrent network in order to produce the next item (e.g., next note);

• use this next item as the next input to produce the next next item; and

• repeat this process iteratively until a sequence (e.g., of notes, i.e. a melody) of the desired length is
produced35.

7.2.2 Sample Strategy

A limitation of applying straightforwardly the iterative feedforward strategy on a recurrent network is that
generation is deterministic36. As a consequence, feedforwarding the same input will always produce the same
output. As the generation of the next note, the next next note, etc., is deterministic, the same seed note will
lead to the same generated series of notes37. Moreover, as there are only 12 possible input values (the 12 pitch
classes, disregarding the possible octaves), there are only 12 possible melodies.

Fortunately, the solution is quite simple. The assumption is that generation is modeled as a classification
task, i.e., the output representation of the melody is one-hot encoded and the output layer activation function
is softmax. See an example in Figure 15, where P (xt = C|x<t) represents the conditional probability for the
element (pitch of the note) xt at step t to be a C given the previous elements x<t (the melody generated
so far). The default deterministic strategy consists in choosing the pitch with the highest probability, i.e.
argmaxxt

P (xt|x<t) (that is G] in Figure 15). We can then easily switch to a nondeterministic strategy, by
sampling38 the output which corresponds (through the softmax function) to a probability distribution between
possible pitches. By sampling a pitch following the distribution generated recursively by the architecture39, we
introduce stochasticity in the process of generation and thus content variability in the generation.

35Note that, as opposed to feedforward strategy (and decoder feedforward strategy, to be introduced in Section 9.1.1), iterative
and recursive strategies allow the generation of musical content of arbitrary length.

36Indeed, most artificial neural networks are deterministic. There are stochastic versions of artificial neural networks – the
Restricted Boltzmann Machine (RBM) [21] is an example – but they are not mainstream. An example of use of RBM will be
introduced in Section 9.6.

37The actual length of the melody generated depending on the number of iterations.
38Sampling is the action of generating an element (a sample) from a stochastic model according to a probability distribution.
39The chance of sampling a given pitch is its corresponding probability. In the example shown in Figure 15, G] has around one

chance in two of being selected and A] one chance in four.
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Figure 14: Score of “The Mal’s Copporim” automatically generated. Reproduced from [53] with permission of
the authors

Figure 15: A softmax output layer computes the probability for each pitch
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8 Compound Architectures

For more sophisticated objectives and requirements, compound architectures may be used. We will see that,
from an architectural point of view, various types of composition40 may be used:

8.1 Composition

Several architectures, of the same type or of different types, are combined, e.g.:

• a bidirectional RNN, combining two RNNs, forward and backward in time, e.g., as used in the C-RNN-
GAN [41] (see Figure 16) and the MusicVAE [49] (see Figure 7 and Section 9.3) architectures; and

• the RNN-RBM architecture [1], combining an RNN architecture and an RBM architecture.

8.2 Refinement

One architecture is refined and specialized through some additional constraint(s), e.g.:

• an autoencoder architecture (to be introduced in Section 9.1), which is a feedforward architecture with
one hidden layer with the same cardinality (number of nodes) for the input layer and the output layer;
and

• a variational autoencoder (VAE) architecture, which is an autoencoder with an additional constraint on
the distribution of the variables of the hidden layer (see Section 9.2), e.g., the GLSR-VAE architecture
[17].

8.3 Nesting

An architecture is nested into the other one, e.g.:

• a stacked autoencoder architecture41, e.g., the DeepHear architecture [54]; and

• a recurrent autoencoder architecture (Section 9.3), where an RNN architecture is nested within an au-
toencoder42, e.g., the MusicVAE architecture [49] (see Section 9.3).

8.4 Pattern

An architectural pattern is instantiated onto a given architecture(s)43, e.g.:

• the Anticipation-RNN architecture [16], that instantiates the conditioning pattern44 onto an RNN with
the output of another RNN as the conditioning input; and

• the C-RNN-GAN architecture [41], where the GAN (Generative Adversarial Networks) pattern (to be
introduced in Section 9.4) is instantiated onto two RNN architectures, the second one (discriminator)
being bidirectional (see Figure 16); and

• the MidiNet architecture [61] (see Section 9.4), where the GAN pattern is instantiated onto two convolu-
tional45 feedforward architectures, on which a conditional pattern is instantiated.

8.5 Classification

Figure 17 illustrates various examples of compound architectures46 and of actual music generation systems.

40We are taking inspiration from concepts and terminology in programming languages and software architectures [52], such as
refinement, instantiation, nesting and pattern [11].

41A stacked autoencoder is a hierarchical nesting of autoencoders with decreasing number of hidden layer units, as shown in right
part of Figure 18.

42More precisely, an RNN is nested within the encoder and another RNN within the decoder. Therefore, it is also named an
RNN Encoder-Decoder architecture.

43Note that we limit here the scope of a pattern to the external enfolding of an existing architecture. Additionally, we could have
considered convolutional, autoencoder and even recurrent architectures as an internal architectural pattern.

44Such as introduced by Todd in his Sequential architecture conditioned by a plan in Section 4.1.
45Convolutional architectures are actually an important component of the current success of deep learning and they recently

emerged as an alternative, more efficient to train, to recurrent architectures [2, Section 8.2]. A convolutional architecture is
composed of a succession of feature maps and pooling layers [13, Section 9][2, Section 5.9]. (We could have considered convolutional
as an internal architectural pattern, as has just been remarked in a previous footnote.) However, we do not detail convolutional
architectures here, because of space limitation and of non specificity to music generation applications.

46GAN (Generative Adversarial Networks) pattern and VRAE (Variational Recurrent Autoencoder) architecture will be intro-
duced in Sections 9.4 and 9.3, respectively.
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Figure 16: C-RNN-GAN architecture with the D(iscriminator) GAN component being a bidirectional RNN
(LSTM). Reproduced from [41] with permission of the authors

Figure 17: A tentative illustration of various examples of compound architectures and systems (actual music
generation systems are in italics)
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Figure 18: (left) Autoencoder architecture. (right) Stacked autoencoder (order-2) architecture

Figure 19: Example of melody generated by an autoencoder trained on a Celtic melodies corpus

8.6 Combined Strategies

Note that the strategies for generation can be combined too, although not in the same way as the architectures:
they are actually used simultaneously on different components of the architecture. In the examples discussed
in Section 7.2.2, the recursive strategy is used by recursively feedforwarding current note into the architecture
in order to produce next note and so on, while the sampling strategy is used at the output of the architecture
to sample the actual note (pitch) from the possible notes with their respective probabilities.

9 Examples of Refined Architectures and Strategies

9.1 Autoencoder Architecture

An autoencoder is a feedforward neural network with one hidden layer and with an additional constraint: the
number of output nodes is equal to the number of input nodes. The output layer actually mirrors the input layer,
creating its peculiar symmetric diabolo (or sand-timer) shape aspect, as shown in the left part of Figure 18.

An autoencoder is trained with each of the examples as the input and as the output. Thus, the autoencoder
tries to learn the identity function. As the hidden layer usually has fewer nodes than the input layer, the encoder
component must compress information47, while the decoder has to reconstruct, as accurately as possible, the
initial information. This forces the autoencoder to discover significant (discriminating) features to encode useful
information into the hidden layer nodes (also named the latent variables).

9.1.1 Decoder Feedforward Strategy

The latent variables of an autoencoder constitute a compact representation of the common features of the learnt
examples. By instantiating these latent variables and decoding them (by feedforwarding them into the decoder),
we can generate a new musical content corresponding to the values of the latent variables, in the same format
as the training examples. We name this strategy the decoder feedforward strategy. An example generated after
training an autoencoder on a set of Celtic melodies (selected from the folk music repository The Session [26],
introduced in Section 7.2.1) is shown in Figure 19. An early example of this strategy is the use of the DeepHear
nested (stacked) autoencoder architecture to generate ragtime music according to the style learnt [54].

9.2 Variational Autoencoder Architecture

A variational autoencoder (VAE) [27] is a refinement of an autoencoder, with the added constraint that the
encoded representation (the latent variables) follow some prior probability distribution, usually a Gaussian
distribution. This constraint is implemented by adding a specific term to the cost function, by computing the
cross-entropy between the values of the latent variables and the prior distribution48.

47Compared to traditional dimension reduction algorithms, such as principal component analysis (PCA), feature extraction is
nonlinear, but it does not ensure orthogonality of the dimensions, as we will see in Section 9.2.2.

48The actual implementation is more refined: the encoder actually generates a mean vector and a standard deviation vector,
from which latent variables are sampled [27].
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As with an autoencoder, a VAE will learn the identity function, but furthermore the decoder will learn
the relation between the prior (Gaussian) distribution of the latent variables and the learnt examples. A very
interesting characteristic for generation purposes is in the meaningful exploration of the latent space, as a
variational autoencoder is able to learn a “smooth”49 latent space mapping to realistic examples.

9.2.1 Variational Generation

Examples of possible dimensions captured by latent variables learnt by the VAE are the note duration range
(the distance between shortest and longest note) and the note pitch range (the distance between lowest and
highest pitch). This latent representation (vector of latent variables) can be used to explore the latent space
with various operations to control/vary the generation of content. Some examples of operations on the latent
space (as summarized in [49]) are:

• translation;

• interpolation50;

• averaging;

• attribute vector arithmetics, by addition or subtraction of an attribute vector capturing a given charac-
teristic51.

9.2.2 Disentanglement

One limitation of using a variational autoencoder is that the dimensions (captured by latent variables) are not
independent (orthogonal), as in the case of Principal component analysis (PCA). However, various techniques
are being recently proposed to improve the disentanglement of the dimensions (see, e.g., [35]).

Another issue is that the semantics (meaning) of the dimensions captured by the latent variables is auto-
matically “chosen” by the VAE architecture in function of the training examples and the configuration and thus
can only be interpreted a posteriori. However, some recent approaches propose to “force” the meaning of latent
variables, by splitting the decoder into various components and training them onto a specific dimension (e.g.,
rhythm or pitch melody) [62].

9.3 Variational Recurrent Autoencoder (VRAE) Architecture

An interesting example of nested architecture (see Section 8.3) is a variational recurrent autoencoder (VRAE).
The motivation is to combine:

• the variational property of the VAE architecture for controlling the generation; and

• the arbitrary length property of the RNN architecture used with the recursive strategy.

An example (also hierarchical) is the MusicVAE architecture [49] (shown in Figure 7, with an example of
controlled generation in Figure 21).

9.4 Generative Adversarial Networks (GAN) Architecture

An interesting example of architectural pattern is the concept of Generative Adversarial Networks (GAN) [14],
as illustrated in Figure 22. The idea is to simultaneously train two neural networks:

• a generative model (or generator) G, whose objective is to transform a random noise vector into a syn-
thetic (faked) sample, which resembles real samples drawn from a distribution of real content (images,
melodies. . . ); and

• a discriminative model (or discriminator) D, which estimates the probability that a sample came from the
real data rather than from the generator G.

The generator is then able to produce user-appealing synthetic samples from noise vectors.
An example of the use of GAN for generating music is the MidiNet system [61] aimed at generation of single

or multitrack pop music melodies. The architecture, illustrated in Figure 23, follows two patterns: adversarial
(GAN) and conditional (on history and on chords to condition melody generation)52. It is also convolutional

49That is, a small change in the latent space will correspond to a small change in the generated examples, without any discontinuity
or jump (see more details in [60]).

50The interpolation in the latent space produces more meaningful and interesting melodies than the interpolation in the data
space (which basically just varies the ratio of notes from the two melodies) [50], as shown in Figure 20.

51This attribute vector is computed as the average latent vector for a collection of examples sharing that attribute (characteristic),
e.g., high density of notes (see an example in Figure 21), rapid change, high register, etc.

52Please refer to [61] or [2, Section 6.10.3.3] for more details about this sophisticated architecture.
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Figure 20: Comparison of interpolations between the top and the bottom melodies by (left) interpolating in the
data (melody) space and (right) interpolating in the latent space and decoding it into melodies. Reproduced
from [50] with permission of the authors

Figure 21: Example of a melody generated (bottom) by MusicVAE by adding a “high note density” attribute
vector to the latent space of an existing melody (top). Reproduced from [50] with permission of the authors
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Figure 22: Generative adversarial networks (GAN) architecture. Reproduced from [48] with permission of
O’Reilly Media

Figure 23: MidiNet architecture. Reproduced from [61] with permission of the authors

(both the generator and the discriminator are convolutional networks). The representation chosen is obtained
by transforming each channel of MIDI files into a one-hot encoding of 8 measures long piano roll representations.
Generation takes place following an iterative strategy, by sampling one measure after one measure until reaching
8 measures. An example of generation is shown in Figure 24.

9.5 Sampling Strategy

We have discussed in the Section 7.2.2 the use of sampling at the output of a recurrent network in order to
ensure content variability. But sampling could also be used as the principal strategy for generation, as we will
see in the two following examples. The idea is to consider incremental variable instantiation, where a global
representation is incrementally instantiated by progressively refining values of variables (e.g., pitch and duration
of notes). The main advantage is that it is possible to generate or to regenerate only an arbitrary part of the
musical content, for a specific time interval and/or for a specific subset of tracks/voices, without regenerating
the whole content.

This incremental instantiation strategy has been used in the DeepBach architecture [18] for generation of
Bach chorales. The compound architecture53, shown at Figure 25, combines two recurrent and two feedforward
networks. As opposed to standard use of recurrent networks, where a single time direction is considered,
DeepBach architecture considers the two directions forward in time and backwards in time. Therefore, two

53Actually this architecture is replicated 4 times, one for each voice (4 in a chorale).

Figure 24: Example of melody and chords generated by MidiNet. Reproduced from [61] with permission of the
authors
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Figure 25: DeepBach architecture for the soprano voice prediction

Figure 26: DeepBach user interface. Selecting an interval and two voices (alto and tenor, to be the only ones)
to be regenerated

recurrent networks (more precisely, LSTM) are used, one summing up past information and another summing
up information coming from the future, together with a non recurrent network for notes occurring at the same
time. Their three outputs are merged and passed as the input of a final feedforward neural network whose
output is the estimated distribution for all notes time slices for a given voice. The first 4 lines54 of the example
data on top of the Figure 25 correspond to the 4 voices.

Training, as well as generation, is not done in the conventional way for neural networks. The objective is to
predict the value of current note for a a given voice (shown with a red ? on top center of Figure 25), using as
information surrounding contextual notes. The training set is formed on-line by repeatedly randomly selecting
a note in a voice from an example of the corpus and its surrounding context. Generation is done by sampling,
using a pseudo-Gibbs sampling incremental and iterative algorithm (see details in [18]) to produce a set of
values (each note) of a polyphony, following the distribution that the network has learnt.

The advantage of this method is that generation may be tailored. For example, if the user changes only one
or two measures of the soprano voice, he can resample only some corresponding counterpoint voices for these
measures, as shown in Figure 26.

Coconet [24], the architecture used for implementing the Bach Doodle (introduced in Section 3), is another
example of this approach. It uses a Block Gibbs sampling algorithm for generation and a different architecture
(using masks to indicate for each time slice whether the pitch for that voice is known, see Figure 27). Please
refer to [24] and [23] for details. An example of counterpoint accompaniment generation has been shown in

54The two bottom lines correspond to metadata (fermata and beat information), not detailed here.
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Figure 27: Coconet Architecture. Reproduced from [23] with permission of the authors

Figure 1.

9.6 Creation by Refinement Strategy

Lewis’ creation by refinement strategy has been introduced in Section 4.2. It has been reinvented by various
systems such as Deep Dream and DeepHear, as discussed in Section 4.2.1.

An example of application to music is the generation algorithm for the C-RBM architecture [30]. The
architecture is a refined (convolutional55) restricted Boltzmann machine (RBM56). It is trained to learn the
local structure (musical texture/style) of a corpus of music (in this case, Mozart sonatas). The main idea is to
impose onto a generated musical content some global structure seen as a structural template from an existing
reference musical piece57. The global structure is expressed through three types of constraints:

• self-similarity, to specify a global structure (e.g., AABA) in the generated music piece. This is modeled by
minimizing the distance between the self-similarity matrices of the reference target and of the intermediate
solution;

• tonality constraint, to specify a key (tonality). To estimate the key in a given temporal window, the
distribution of pitch classes is compared with the key profiles of the reference; and

• meter constraint, to impose a specific meter (also named a time signature, e.g., 4/4) and its related
rhythmic pattern (e.g., accent on the third beat). The relative occurrence of note onsets within a measure
is constrained to follow that of the reference.

Generation is performed via constrained sampling, a mechanism to restrict the set of possible solutions
in the sampling process according to some pre-defined constraints. The principle of the process (illustrated at
Figure 28) is as follows. At first, a sample is randomly initialized, following the standard uniform distribution. A
step of constrained sampling is composed of n runs of gradient descent (GD) to impose the high-level structure,
followed by p runs of selective Gibbs sampling (GS) to selectively realign the sample onto the learnt distribution.
A simulated annealing algorithm is applied in order to decrease exploration in relation to a decrease of variance
over solutions. Figure 29 shows an example of a generated sample in piano roll format.

9.7 Other Architectures and Strategies

Researchers in the domain of deep learning techniques for music generation are designing and experimenting with
various architectures and strategies58, in most cases combinations or refinements of existing ones, or sometimes
with novel types, as, e.g., in the case of MusicTransformer [25]. However, there is no guarantee that combining
a maximal variety of types will make a sound and accurate architecture59. Therefore, it is important to continue

55The architecture is convolutional (only) on the time dimension, in order to model temporally invariant motives, but not pitch
invariant motives which would break the notion of tonality.

56Because of space limitation, and the fact that RBMs are not mainstream, we do not detail here the characteristics of RBM
(see, e.g., [13, Section 20.2] or [2, Section 5.7] for details). In a first approximation for this article, we may consider an RBM as
analog to an autoencoder, except with two differences: the input and output layers are merged (and named the visible layer) and
the model is stochastic.

57This is named structure imposition, with the same basic approach that of style transfer [6], except that of a high-level structure.
58This article is obviously not exhaustive. Interested readers may refer, e.g., to [2] for additional examples and details.
59As in the case of a good cook, whose aim is not to simply mix all possible ingredients but to discover original successful

combinations.
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Figure 28: C-RBM Architecture generation algorithm

Figure 29: Illustration of constrained sampling. Piano roll representation of: (top) Template piece, (middle)
Intermediate sample after the GD phase, (bottom) Sample after the GS phase. Reproduced with permission of
the authors
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to deepen our understanding and to explore solutions as well as their possible articulations and combinations.
We hope that this survey could contribute to that objective.

10 Conclusion

The use of artificial neural networks and deep learning architectures and techniques for the generation of music
(as well as other artistic contents) is a very active area of research. In this article, we have introduced the domain,
analyzed early and pioneering proposals, introduced a conceptual framework to help at analyzing and classifying
the large diversity of systems and experiments described in the literature, illustrated by various examples. We
hope that this survey will help in better understanding the domain and trends of deep learning-based music
generation.
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