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A B S T R A C T

What if the next generation of successful treatments was hidden in the current pharmacopoeia? Identifying new
indications for existing drugs, also called the drug repurposing or drug rediscovery process, is a highly efficient
and low-cost strategy. First reported almost a century ago, drug repurposing has emerged as a valuable ther-
apeutic option for diseases that do not have specific treatments and rare diseases, in particular. This review
focuses on Hutchinson-Gilford progeria syndrome (HGPS), a rare genetic disorder that induces accelerated and
precocious aging, for which drug repurposing has led to the discovery of several potential treatments over the
past decade.

1. Hutchinson-Gilford progeria syndrome

1.1. A premature aging disease

With a prevalence of 1 in 20 million births, Hutchinson-Gilford
progeria syndrome (HGPS) is an extremely rare and consistently fatal
genetic disorder characterized by accelerated aging. Clinical symptoms
usually appear in the first 18 months after birth, and include growth
retardation, facial dysmorphic changes (long narrow nose, prominent
outer ears, wrinkled skin), alopecia, loss of subcutaneous fat, bone and
joint abnormalities and cardiovascular pathology. Death occurs at a
median age of 14.6 years, mainly due to atherosclerosis, cardiovascular
failure and stroke [1,2] (Fig. 1).

The genetic origin of HGPS was identified in 2003 by two in-
dependent research groups led by Nicolas Lévy and Francis S. Collins,
respectively [3,4]. This autosomal dominant disease is caused by a de
novo mutation in the LMNA gene which encodes A-type lamins, inner
nuclear membrane proteins represented mainly by lamins A and C. A-
type lamins play crucial roles in nuclear structure and shape, as well as
in chromatin organization, nuclear pore and cytoskeleton organization

[5], and mutations in LMNA were reported to cause various genetic
disorders known as laminopathies. They include a wide spectrum of
diseases, with or without overlapping symptoms, such as lipodystro-
phies, Emery-Dreifuss muscular dystrophy, Charcot-Marie-Tooth dis-
ease, dilated cardiomyopathies and progeroid syndromes, including
HGPS [6].

Over the past decade, several groups have explored the molecular
causes of HGPS, ultimately leading to the identification of the first
therapeutic strategies. In physiological conditions, lamin A is produced
from its prelamin A precursor, which undergoes complex post-transla-
tional modifications (Fig. 2). A cysteine in the C-terminal of prelamin A
is first farnesylated, cleaved and finally carboxymethylated by the
metalloprotease STE24 (ZMPSTE24) and isoprenylcysteine carboxy-
transferase (ICTM). The farnesyl group is then removed through clea-
vage of the 15C-terminal amino acids, leading to the production of the
mature lamin A. The most common mutation in HGPS (c.1824C>T),
although apparently silent (LMNA p.G608G), activates an alternative
splice site, leading to the deletion of 150 nucleotides at the end of exon
11, which encode the endoprotease cleavage site. As a result, a pre-
lamin A variant lacking 50 aa residues is produced in a permanently
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farnesylated form, and the resultant protein, called progerin, exerts
toxic effects in HGPS cells [7,8].

1.2. Phenotypic characteristics of HGPS

Due to the structural role of lamins in the nucleus, accumulation of
progerin is accompanied by dramatic changes in nuclear structure and
function (Fig. 1). In contrast to the mature lamin A, progerin remains
anchored to the inner nuclear membrane, leading to shape abnormal-
ities with the appearance of “blebs”, disorganization of the hetero-
chromatin (e.g. tri-methylation on lysine 47 of histone (H3K27)) [7–9],
as well as abnormal chromosome segregation and telomere degradation
[10–12]. Among the cellular phenotypes reported in HGPS, premature
senescence as a result of genomic instability [10,13,14] and accumu-
lation of DNA double-strand breaks, notably through the decrease in
recruitment of major DNA repair factors [7,15–17], have been widely
described. Cells expressing progerin also exhibit mitochondrial defects

[18], increased oxidative stress [19–21], decreased stress tolerance [9],
stem cell exhaustion [22], alteration of proteolysis [23–25] and in-
flammation [26,27]. Since these phenotypes are commonly observed in
physiological ageing [28], HGPS is considered a genetically induced
model of accelerated ageing. First evidence came from the observation
that progerin was expressed at low levels in physiologically aged-cells
[29–32], but its possible role in tissue dysfunction during physiological
aging has not been demonstrated and its role or its contribution toward
tissue dysfunction remains unanswered.

1.3. In vitro models to study HGPS

For almost a decade, the main biological material available for the
in vitro study of HGPS were fibroblasts isolated from skin biopsies or
generated following progerin overexpression [7,29,33,34]. Even
though skin fibroblasts were useful to assess pathological phenotypes,
their limited proliferation capacities and lack of clinical relevance have

Fig. 1. Hallmarks of HGPS. In light blue, the principal clinical features of HGPS are recapitulated whereas in dark blue, the major in vitro pathological phenotypes are
represented.

Fig. 2. Defective processing of prelamin A in HGPS and associated nuclear shape disorganization. Lamin A protein is obtained after several post-translational
modifications, including the addition of a farnesyl group at the C-terminal and further cleavage by ZMPSTE24 endonuclease. The mutation on the LMNA gene that
causes HGPS is responsible for the activation of an alternative splicing site that results in the deletion of 50 amino acids from a lamin A protein, including the
cleavage site for ZMPSTE24. Consequently, the resulting mutant protein, called progerin, remains permanently farnesylated and thus induces nuclear shape ab-
normalities and disorganization.
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delayed the identification of the tissue-specific mechanism of action
and specific treatments. The discovery of human embryonic stem cells
(hES) and, more recently, the possibility of reprogramming somatic
cells into pluripotent stem cells (iPS) [35], have opened up the possi-
bility of studying some of the phenotypes associated with diseases “in a
dish”. Pluripotent stem cells have the unique properties of being able to
self-renew and to differentiate into any cell type, allowing the pro-
duction of an “unlimited” quantity of cells for disease modeling and
drug screening [36]. In 2011, the groups led by J.C Belmonte and A.
Colman pioneerly reported the derivation of the first HGPS iPS cell lines
[15,37]. Interestingly, in agreement with previous studies conducted
with human embryonic stem cells [38], these two groups reported that
neither lamin A nor progerin were expressed in undifferentiated HGPS
iPS cells, making it possible to expand and differentiate these cells with
no bias relating to the disease. Through a mechanism that remains
unknown, these two groups have also reported that lamin A and pro-
gerin were re-expressed upon differentiation into different cell types,
inducing pathological features such as nuclear abnormalities, reduced
telomere length and premature senescence [15,37]. In addition to these
findings, Zhang et al. also demonstrated that progerin was mainly ex-
pressed in mesenchymal stem cells (MSC) and vascular smooth muscle
cells (VSMC), two cell types of particular relevance for the disease, but
was absent in neuronal cells [37]. In 2012, our group discovered the
origin of this specificity, identifying that miR-9, a miRNA pre-
dominantly expressed in neural cells, was capable to target the 3’UTR of
progerin and decrease its expression in neurons [39]. Later, several
other studies have subsequently elucidated some pathological me-
chanisms occurring in progerin-expressing cells in different cell types
using iPS cells [15,17,27,37,40,41]. For example, Zhang et al. proposed
in 2014 that the loss of proliferation in VSMCs could be attributed to a
decrease in PARP-1 expression through an increase in chromosomal
aberrations [17] and Xiong et al. demonstrated in 2013 a role of pro-
gerin in the deregulation of PPARγ2 and C/EBPα expression, two fac-
tors implicated in the differentiation in adipocytes [41].

1.4. In vivo models of HGPS

Several animal models have been developed to elucidate the pa-
thological mechanisms of HGPS and to evaluate potential therapeutic
strategies. The first living HGPS model was developed in 2002 through
the depletion of ZMPSTE24 (FACE-1), which encodes the enzyme re-
sponsible for the cleavage of the prelamin A farnesylated residue.
Zmpste24-/- mice display several progeroid features, such as growth
retardation, alopecia, cardiomyopathy, lipodystrophy, muscular dys-
trophy and premature death [42,43]. This model was used as the gold
standard for HGPS and related disorders for almost a decade, demon-
strating that the accumulation of the farnesylated protein induces nu-
clear abnormalities in vascular and osteogenic tissues, as well as p53
hyperactivation, defective DNA repair, cellular senescence and stem
cell dysfunction [14,16,44]. Since this model expresses the full-length
version of farnesylated prelamin A, 2nd generation models were based
on the knock-in of a mutant allele of LMNA using selective or ubiqui-
tous promoters, leading to the specific expression of progerin with or
without lamin A and C [45,46]. More recently, Osorio et al. generated a
knock-in mouse strain carrying the HGPS mutation in LMNA. This
mouse model produces progerin through aberrant splicing of its en-
dogenous LMNA mRNA and recapitulates the main features of HGPS
disease at both molecular and clinical levels, including reduced life-
span, as well as vascular calcification, and cardiovascular and bone
defects [47,48]. Even though mouse models are essential and widely
used to depict molecular mechanisms of the disease and to test different
therapeutic strategies, some key differences remain between these
models and humans. To bridge the gap between mice and humans, and
thanks to new gene editing methodologies, the group led by Vicente
Andrès has recently reported the generation of a minipig model of
HGPS carrying, by knock-in, the heterozygous LMNA c1824C > T

mutation. This model has the advantage of having a cardiovascular
system with strong similarities to that in humans and is therefore par-
ticularly relevant to HGPS [49].

2. Repurposing of old drugs for HGPS

2.1. Why we should consider repositioning drugs for ultra-rare diseases

HGPS is one of the rare or orphan diseases, defined as disorders
affecting less than 5/100,000 people in Europe or fewer than 200,000
Americans at any point in time (around 650 in 1 million people). Mostly
genetic in origin, more than 7,000 disorders were classified as rare,
with no available treatment for most of them. In this context, “drug
repurposing” represents a valuable strategy for bridging the gap be-
tween the need for treatment for patients with HGPS and the limited
profits expected by pharmaceutical companies from developing new
chemical entities. Drug repurposing – also called repositioning - consists
of identifying new indications for existing or abandoned pharmacolo-
gical drugs. This strategy takes advantage of previous data collected for
a compound during clinical trials, notably on its bioavailability and
safety, thus reducing the risks linked to the development of an entirely
new product, which consequently accelerates access to the market.
While these strategies present clear advantages, some challenges re-
main. The principle of repurposing depends not only on knowledge of
the nature of the drugs, but also on knowledge on the disease, with the
latter condition that is not always fulfilled in rare diseases.

2.2. Different strategies for pharmacological repositioning

The principle of drug repurposing is not novel. First successes were
historically due to serendipity, as described with sildenafil, that was
initially indicated as an anti-hypertensive drug before its successful use
in erectile dysfunction, or with thalidomide, initially developed for
insomnia or morning sickness treatment and then repurposed for mul-
tiple myeloma, other forms of cancer or leprosy [50]. One of the most
striking example of successful repurposing based on drugs’ side effects
observations was recently described when french physicians located in
Bordeaux observed the unexpected effect of Propanolol on the he-
mangioma present in the patient’s face [51] whereas it was initially
used to treat his heart condition. Ever since, other approaches have led
to the development of more systematic strategies of drug repurposing,
which can be classified into two groups: experimental and computa-
tional approaches. Experimental approaches mainly comprise two kinds
of assays, binding assays to identify target interactions (not described
here) or assays to rescue a phenotype.

In computational approaches, knowledge about the drug and dis-
eases, and the analysis of data from a variety of origins, form the basis
for the discovery of potential new drug-disease associations [52]. First,
a “target-centric approach” could be envisaged in repurposing a drug,
by focusing on the biological role that a specific component plays in
disease. This requires the identification of potential genes implicated in
the pathological phenotypes and searching in the pharmacopeia for
existing drugs known to target them. Another relevant strategy is
“pathway or network mapping”, which consists of targeting a pathway
upstream or downstream from the causative gene, but with strong re-
levance for the disease. The identification of such pathways could arise
from the study of in vitro or in vivo models, with the development of
“omics” data and transcriptomic analysis, in particular, being of great
interest to the discovery of new deregulated genes. Transcriptomic data
generated to identify misregulated pathways in the context of disease or
drug treatment might also be useful for another approach called “sig-
nature mapping”. Other methods exist and rely mostly on similarities
between drugs to identify new possible indications. For example, a
comparable chemical structure in different drugs suggests a shared
biological activity and therefore the possibility to be repurposed. The
search for similarities in side effects has also been reported as a possible
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approach to drug repurposing, based on the hypothesis that similar side
effects result from shared target or protein pathways and could thus
lead to the discovery of new drug indications. These various strategies
are not exhaustive, but reflect the major in silico methods that are
currently being used in repurposing. Because several of these strategies
have been successfully applied to HGPS, we will discuss the main
findings of these reports below.

2.3. Repurposing old drugs in HGPS: From the first “success” with
farnesylation inhibitors to promising compounds targeting progerin

Farnesylation, and more generally prenylation, is a common cellular
mechanism that concerns a large number of proteins, including small
GTPases, proteins implicated in the regulation of important cellular
events like proliferation or cell motility. Targeting of the farnesylation
process, which is required for the malignant activities of the RAS on-
cogenic family, has led to the development of farnesyl-transferase in-
hibitors (FTIs) as anti-cancer drugs [53]. Since 2000, several clinical
trials using FTIs (lonafarnib, tipifarnib, BMS-214662 and L-778123)
have evaluated their toxicity and efficacy in various cancer indications
and revealed acceptable tolerance in humans [54–56]. Based on this
knowledge, several FTIs were tested in vitro for HGPS, where an im-
provement in the nuclear shape was demonstrated [57–60], and also in
vivo, revealing an improvement in the symptoms of the disease, in ad-
dition to a decrease in nuclear blebbing, [46,61–63] and an extension to
lifespan [62] (Figs. 3 and 4).

In 2008, a similar pharmacological approach targeting the entire

prenylation pathway was employed in repurposing for HGPS using the
combination of zoledronate, a member of the amino-bisphosphonates
class mainly used to treat osteoporosis [64], and pravastatin, that be-
longs to a class of inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A
reductase (HMGCR) used to reduce cholesterol levels and prevent car-
diovascular disease [65]. Treatment of the Zmpste24-/- mouse model
with this combination led to an improvement in several hallmarks of
HGPS, including lifespan [66].

These pioneering preclinical studies have successfully led to the
design of several clinical trials, highlighting the efficiency of the re-
purposing of these drugs. The first ever clinical trial was launched in
2007 (ClinicalTrials.gov, NCT00425607) using the FTI lonafarnib on a
cohort of 25 patients for a minimum period of 2 years, showing en-
couraging results with an improvement in weight gain, vascular stiff-
ness and bone density [67]. In 2008, following the identification of the
zoledronate and pravastatin effect, a second clinical trial was initiated
using these two drugs in 12 patients (ClinicalTrials.gov, NCT00731016)
followed by a tri-therapy clinical trial combining lonafarnib, zole-
dronate and pravastatin in 37 patients (ClinicalTrials.gov,
NCT00879034). Results of this last clinical trial was reported describing
no additional improvement of the tri-therapy as compared to lonafarnib
alone [68]. More recently, in late 2015, another phase I/II clinical trial
combining the existing drugs lonafarnib and everolimus (Clinical-
Trials.gov, NCT02579044) was started in 60 patients, for which results
are expected in October 2020 (https://www.progeriaresearch.org/
clinical-trials/). Everolimus is an analog of the antibiotic macrolide
drug rapamycin, an mTOR inhibitor, already used against cancer or for
immunosuppression and implicated in the regulation of several cellular
functions such as cell proliferation, protein synthesis, transcription,
cytoskeleton rearrangement and autophagy [69]. Previous studies had
suggested that rapamycin improved lifespan, notably in aged mice,
through activation of autophagy, a process that is down-regulated
during ageing [70–74]. This led to the hypothesis that autophagy in-
duction could decrease the accumulation of the toxic progerin through
a complementary mechanism to lonafarnib and improve cell pheno-
types in progeria. Indeed, in HGPS fibroblasts treated with rapamycin
or with temsirolimus, a decrease was observed in progerin through
autophagy activation, accompanied by an improvement in abnormal
nuclear shape, a decrease in senescence [75] and a reduction in DNA
damage [76]. More recently, Neuropeptide Y (NPY), a neuronal peptide
evaluated in Humans to treat feeding difficulties, acute stress disorders
or posttraumatic stress disorders, was also shown to decrease progerin
expression and alleviate several in vitro hallmarks of HGPS through
autophagy induction [77]. In parallel to the evaluation of autophagy
activators, several other studies have investigated the possibility to
induce progerin clearance by modulating other degradation processes.
To date, the most advanced and promising strategy to target this pro-
cess is the use of proteasome inhibition. First evidence was described in
2017 by the group led by Nicolas Lévy, showing that MG132 treatment
could lead to progerin clearance by an indirect induction of autophagy
[78]. Finally, modulating alternative splicing regulation was also de-
scribed to be a valuable strategy to target progerin content. Successfully
applied to HGPS, the main target of these studies is the splicing factor
serine/arginine-rich splicing factor 1 (SRFS1), previously shown to
enhance the aberrant splicing of lamin A pre-mRNA involved in the
production of progerin [79]. The first results were reported in 2016,
when our group demonstrated that treatment with metformin, an an-
tidiabetic drug with a good safety profile, could lead to a decrease in
SRSF1 and progerin in both iPS cell-derived MSCs and HGPS fibro-
blasts. In this study, we also reported that metformin treatment was
associated with a reduction in several defects, such as a decrease in
nuclear shape abnormalities, in premature osteoblastic differentiation
and in DNA damage [80]. Interestingly, MG-132 was also reported to
induce the downregulation of SRSF1, suggesting a second additive level
of regulation of progerin expression [78].
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RETINOIC ACID
VITAMIN A 

METFORMIN

TIPIFARNIB

LONAFARNIB
PRAVASTATIN
ZOLEDRONATE

EVEROLIMUS

RAPAMYCIN
TEMSIROLIMUS 

NEUROPEPTIDE Y

OLTIPRAZ

P
r
o

g
e

r
i
n

RESVERATROL

TUDCA
QUERCETIN
BARICITINIB

GENE EDITING 
AONs

MG132

MONO-APs
GGTI-2147

shRNAs against ICMT 

MG FAMILY 

AI-1, TAT-14
Y-27632 METHYLENE BLUE 

NAC 
TERT mRNA

1 ,2 -DIHYDRO YVITAMIN D3
CHLOROQUINE

PPi
REMODELINJH4

SODIUM SALICYLATE 

tASOs

THERAPEUTICAL STRATEGIES TO TREAT HGPS

EMA / FDA APPROVED
MOLECULES

EMA / FDA UNAPPROVED
MOLECULES

Fig. 3. Therapeutic strategies in HGPS. Several therapeutic strategies to treat
HGPS has been proposed targeting either the production of the mutant protein
progerin, its degradation or its pathological consequences. Here are represented
all the therapeutical strategies, FDA or EMA approved or not, that have been
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2.4. Rescue of progerin-downstream pathological phenotypes

Among repurposing strategies, targeting the phenotypic con-
sequences of progerin expression is another possibility that could in-
directly reduce the burden caused by the aberrant protein in HGPS
cells. The recent development of a mouse model for HGPS and of more
relevant cellular models, such as based on iPS-derived cells, has allowed
the identification of such pathological phenotypes and pathways and
thus led to the identification of other possible drugs for repurposing
(Figs. 3, 4).

First evidences came from the identification of the beneficial effect
of resveratrol in HGPS, an anti-ageing polyphenol compound reported
to have antioxidant properties [81–83]. Resveratrol is an activator of
the NAD+-dependent sirtuin 1 (SIRT1), a histone deacetylase protein
with implied involvement in several cell processes, such as antioxidant
and stress responses, mitochondrial biogenesis and metabolism [84]
that was initially tested for the treatment of cancer, diabetes, obesity,
neurological or cardiovascular disorders [85]. Using the Zmpste24-/-

mouse model treated with resveratrol, Liu et al demonstrated a decrease
in the abnormal lamin A-SIRT1 association observed in HGPS, which
was thus accompanied by a restoration of HGPS defects, including a
decrease in stem cell loss and an extension to lifespan [86]. Whereas the

clinical use of resveratrol is currently limited because of its poor
bioavailability, a micronized form with a good safety profile was de-
veloped (SRT501) [87] opening new perspectives for HGPS.

In 2015, another example was reported by Gabriel et al [23]. With
the goal of restoring proteolytic machinery activity in HGPS cells
[24,25] and consequently inducing progerin degradation, authors has
evaluated the effect of sulforaphane, an antioxidant molecule found in
cruciferous vegetables clinically used for its capability to improve
symptoms of chronic inflammatory diseases and for the treatment of
cancer [88]. Sulforaphane’s mechanism of action was reported to be
mediated by an improvement in proteostasis, including an increase in
heat shock protein (HSP) and components of the proteasome and au-
tophagy machineries [89,90], and through the targeting of Keap1/Nrf2
pathways [91]. As described in this study, treatment of HGPS cells with
this compound was accompanied by an increase in proteolytic activity,
a reduction in progerin, a decrease in DNA damage, and an increase in
cell proliferation, suggesting its possible use as a therapy for HGPS
[23,92].

Attempts to target the reactive oxygen species (ROS) accumulation
were also made with several compounds, such as methylene blue [93],
that improve mitochondrial dysfunction, and oltipraz, an antiparasitic
drug that targets the antioxidant Nrf2 pathways and was also evaluated

Fig. 4. Recapitulation of the therapeutic compounds described in HGPS. This scheme recapitulates the therapeutic approaches for the treatment of HGPS depending
on their target. Non-repurposable strategies are represented in white, whereas repurposable drugs are highlighted in bold or underlined for the one used in clinical
trials for HGPS. Progerin expression was decreased directly at gene level through gene therapy (CRISPR Cas 9 and AON) or through small molecules like retinoids and
metformin. Strategies targeting progerin at a protein level or its prenylation have also been evaluated, among them small molecules that have reached the clinic, such
as FTIs like lonafarnib, and rapamycin analogs like everolimus. Finally, targeting the downstream effects of progerin has been described as a valuable strategy for
HGPS, with some repurposable drugs that have proven effective in correcting the disease-associated phenotypes in cellular and/or animal models. (See above-
mentioned references for further information.)
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for its effect against cancer cells [19]. Interestingly, in relation to this
second compound, both sulforaphane and resveratrol, mentioned
above, also depend at least partially on Nrf2 for their beneficial anti-
oxidant effects, suggesting a common mechanism of action.

Senolytics represents a promising anti-ageing therapeutic strategy
that targets senescent cells. Recently, a study performed in the context
of Werner syndrome, another premature ageing disease, identified the
benefits of quercetin, a polyphenol derived from plants and known for
its anti-inflammatory and antioxidant properties. Authors of this study
reported that quercetin treatment was able to rescue the replicative
senescence in Werner syndrome MSCs through the transcriptional
regulation of several cellular processes, such as cell cycle and anti-
oxidation pathways. Interestingly, a similar effect on senescence were
observed in HGPS cells, suggesting a common geroprotective effect of
quercetin that could be relevant for premature and physiological aging
[94].

In the past decade, several other pharmacological compounds have
been reported to decrease progerin-induced pathological phenotypes
(see review [95]) by several ways, such as a decrease in ROS production
through N-acetyl cysteine drugs [96], decreasing vascular calcification
through pyrophosphate treatment [48], targeting telomere dysfunction
[97,98] or the restoration of nuclear organization through SUN1-asso-
ciated acetyl transferase protein NAT10 inhibition with Remodelin [99]
(Figs. 3 and 4). Recently, a promising strategy was reported by
Hamczyk et al [21] showing that the treatment with a chemical cha-
perone tauroursodeoxycholic acid (TUDCA), successfully used in hu-
mans to treat cholestatic liver disease [100–103], was able to alleviate
endoplasmic reticulum stress delaying medial VSMC loss and extending
lifespan of progeroid mice.

3. Drug repurposing by drug screening

Even if previous research has led to the identification of a large
number of potential therapeutic interventions by small molecules to
correct HGPS defects, there is still a need for the discovery of new drugs
that are suitable for trials in humans. To this end, another approach is
to use high throughput screening (HTS) to evaluate the effect of old
drugs on new phenotypes. This drug discovery strategy corresponds to
the unbiased experimental testing of a compound library in order to
find positive “hits” capable of correcting a defective mechanism of ac-
tion or phenotype. This strategy will be discussed below in the light of
three different studies reported in recent years.

3.1. Challenges in drug screening for HGPS

The first and most obvious challenge in high-throughput drug
screening is the need for a robust and relevant assay that can be used to
test the compounds. Such strategies could be developed based on sev-
eral ways, with either “target-based”, also called “mechanism-based”,
or “phenotypic-based” screening. A second challenge that has to be
taken into consideration in drug screening is the choice of the cellular
model. High-throughput screening requires a large quantity of stable
cells that are relevant to the disease in order to work in reproducible
conditions. In the case of HGPS, the use of primary cells from patients is
challenging, firstly, because their growth, and thus the production of
large quantities of cells, is limited by premature senescence and, sec-
ondly, because they are also associated with a phenotypic heterogeneity
that could interfere with the identification of drugs of interest.
Consequently, immortalized fibroblasts are generally preferred for HTS
to bypass the use of primary cells. However, as it has been demon-
strated in HGPS, progerin expression is progressively lost following
immortalization, thus limiting its use for pharmacological interventions
in HGPS [104]. Alternative strategies have been described to overcome
this obstacle, involving inducing progerin in non-HGPS cell lines by
overexpression [105] or using antisense oligonucleotides (AON)
[106,107]. Finally, in this context, iPS cell derivatives have emerged as

a model of choice for drug screening, in addition to their role in disease
modeling. Their high capacity for proliferation and the possibility of
differentiating iPS cells into different cell types allows the generation of
large banks of cells that recapitulate the main phenotypes of HGPS. To
date, only three drug screening processes have been performed to
identify new drugs using different cell models in the case of HGPS.
These are described in more detailed in the following section.

3.2. Use of HTS to repurpose old drugs for HGPS

In 2016, our group reported the first high-throughput screening
conducted on HGPS cells using MSCs derived from iPS cells. This
screening led to the identification of a new class of compounds that
decreases the farnesylation of prelamin A [108]. In this study, HGPS
iPS-derived MSCs were used to evaluate the effects of 21,608 com-
pounds on the subcellular localization of prelamin A by immuno-
fluorescence, assuming that this would reflect a decrease in its farne-
sylation. From an initial list of 59 hits, 11 were ultimately validated
regarding their efficacy in relation to increasing prelamin A staining in
the nuclear membrane, their safety and the correction of HGPS phe-
notypic defects, as assessed in a secondary assay. Among these, a statin
was identified, which highlights the relevance of screening as this class
of compounds was previously shown to target progerin prenylation
[66]. Most importantly, a new class of compounds with a common
mono-aminopyrimidine group (Mono-AP) was found to improve os-
teogenic differentiation and nuclear shape organization. Thanks to
docking experiments, it was later proposed that Mono-AP decreases
farnesylation by simultaneously inhibiting farnesyl pyrophosphate
synthase (FPPS) and FTs. Therefore, even if this class of drugs is not
directly repurposable, it could represent an advantageous form of
treatment for HGPS by targeting farnesylation at different stages.

In 2016, Tom Misteli’s group reported on further high-throughput
screening conducted on HGPS, using immortalized skin fibroblasts that
overexpressed progerin in an inducible manner [105]. Several pheno-
types of HGPS, such as reduced levels of the nuclear protein lamin B1,
and LAP2, disorganization of the heterochromatin and an increase in
DNA damage, were assessed at different points in time. Detection of
lamin B1 and of γH2AX foci, a DNA damage marker, was selected to
develop a multi-parametric assay and screen 2,816 FDA-approved drugs
and bioactives. Among these, 27 compounds were identified as poten-
tial hits, including two members of the retinoids, previously used for
the treatment of acne or psoriasis, which exhibited strong and sig-
nificant effects on all parameters that were tested.

Retinoids were also identified independently by our group in a third
high-throughput screening performed on HGPS iPS-derived MSCs
[109]. In this study, the premature osteogenic differentiation observed
in HGPS iPS-derived MSCs [110] was used as a readout to screen a
chemical library of 2800 drugs. 10 compounds were identified and,
ultimately, the retinoids emerged as potential drug candidates. Results
of this screening also confirmed the anti-progeroid effect of this class of
drugs that was previously identified by Kubben et al. using another
cellular model [105], also demonstrating its efficiency in reducing
other pathological defects in HGPS MSCs. Furthermore, this work has
added a proof of concept, showing that drug screening using iPSC-de-
rived cells could be helpful in the discovery of drugs that target cell-
types specific to phenotypes in HGPS.

4. Conclusions

Since the discovery of the genetic origin of HGPS in 2003, much
progress has been made, leading to greater in-depth knowledge on the
disease, its mechanisms of action and the cellular consequences that
ultimately drive the disease phenotypes. Given this short period of time,
it is very surprising to see that several successful clinical translations of
drug repurposing have already been reported, as shown for lonafarnib,
zoledronate and pravastatin. Drug repurposing allowed researchers to
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progress rapidly to phase II clinical trials and to evaluate the efficacy of
a limited number of drugs in a time and cost-effective manner. As
discussed in this review, identification of these treatments was mainly
based on hypothesis-driven approaches and unbiased high-throughput
screening. To date, around 35 molecules have been reported to have a
positive effect on HGPS by either limiting progerin expression, mod-
ulating alternative splicing, decreasing progerin accumulation or its
pathological consequences. This situation is almost unique making
impossible to evaluate the clinical benefit of all these individual drugs
because of a limited number of patients. In the future, the systematic
evaluation of the combination of drugs targeting in one hand progerin
and in the other hand its downstream consequences appears to be a
valuable strategy to identify an efficient treatment for this disease that
remains uncured.
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