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Inbreeding depression resulting from partially recessive deleterious alleles is thought to be the main genetic factor preventing self-fertilizing mutants from spreading in outcrossing hermaphroditic populations. However, deleterious alleles may also generate an advantage to selfers in terms of more efficient purging, while the effects of epistasis among those alleles on inbreeding depression and mating system evolution remain little explored. In this paper, we use a general model of selection to disentangle the effects of different forms of epistasis (additive-by-additive, additive-by-dominance and dominance-by-dominance) on inbreeding depression and on the strength of selection for selfing. Models with fixed epistasis across loci, and models of stabilizing selection acting on quantitative traits (generating distributions of epistasis) are considered as special cases. Besides its effects on inbreeding depression, epistasis may increase the purging advantage associated with selfing (when it is negative on average), while the variance in epistasis favors selfing through the generation of linkage disequilibria that increase mean fitness. Approximations for the strengths of these effects are derived, and compared with individual-based simulation results.

INTRODUCTION

Self-fertilization is a widespread mating system found in hermaphroditic plants and animals (e.g., [START_REF] Jarne | Animals mix it up too: the distribution of selffertilization among hermaphroditic animals[END_REF][START_REF] Igic | Is self-fertilization an evolutionary dead end?[END_REF]. In Angiosperms, the transition from outcrossing to selfing occurred multiple times, leading to approximately 10-15% of species self-fertilizing at very high rates [START_REF] Barrett | The demography and population genomics of evolutionary transitions to self-fertilization in plants[END_REF]. Two possible benefits of selfing have been proposed to explain such transitions: the possibility for a single individual to generate offspring in the absence of mating partner or pollinator ("reproductive assurance", [START_REF] Darwin | The effects of cross-and self-fertilization in the vegetable kingdom[END_REF][START_REF] Stebbins | Self fertilization and population variability in higher plants[END_REF]Porcher and Lande, 2005a;[START_REF] Busch | The relative importance of reproductive assurance and automatic selection as hypotheses for the evolution of self-fertilization[END_REF], and the "automatic advantage" stemming from the fact that, in a population containing both selfers and outcrossers, selfers tend to transmit more copies of their genome to the next generation if they continue to export pollenthus retaining the ability to sire outcrossed ovules [START_REF] Fisher | Average excess and average effect of a gene substitution[END_REF][START_REF] Charlesworth | The cost of sex in relation to the mating system[END_REF][START_REF] Stone | Transmission advantage favors selfing allele in experimental populations of self-incompatible Witheringia solanacea (Solanaceae)[END_REF]. The main evolutionary force thought to oppose the spread of selfing is inbreeding depression, the decreased fitness of inbred offspring resulting from the expression of partially recessive deleterious alleles segregating within populations [START_REF] Charlesworth | Inbreeding depression and its evolutionary consequences[END_REF]. When selfers export as much pollen as outcrossers (leading to a 50% transmission advantage for selfing), inbreeding depression must be 0.5 to compensate for the automatic advantage of selfing [START_REF] Lande | The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models[END_REF]. However, observations from natural populations indicate that self-fertilizing individuals do not always export as much pollen as their outcrossing counterparts, as some of their pollen production is used to fertilize their own ovules (see references in Porcher and Lande, 2005a). This phenomenon, known as pollen discounting, decreases the automatic advantage of selfing [START_REF] Nagylaki | A model for the evolution of self-fertilization and vegetative reproduction[END_REF][START_REF] Charlesworth | The cost of sex in relation to the mating system[END_REF], thus reducing the threshold value of inbreeding depression above which outcrossing can be maintained (e.g., [START_REF] Holsinger | The evolution of self-fertilization in plants: a population genetic model[END_REF]. It may also lead to evolutionarily stable mixed mating systems (involving both selfing and outcrossing) under some models of discounting such as the mass-action pollination model [START_REF] Holsinger | Mass-action models of plant mating systems: the evolutionary stability of mixed mating systems[END_REF]Porcher and Lande, 2005a).

Several models explored the evolution of mating systems while explicitly representing the genetic architecture of inbreeding depression (e.g., [START_REF] Charlesworth | Inbreeding depression, genetic load, and the evolution of outcrossing rates in a multilocus system with no linkage[END_REF]; [START_REF] Uyenoyama | Coevolution of self-fertilization and inbreeding depression. I. Mutation-selection balance at one and two loci[END_REF][START_REF] Epinat | The evolution of assortative mating and selfing with in-and outbreeding depression[END_REF]Porcher and Lande, 2005b;[START_REF] Gervais | Genetic architecture of inbreeding depression and the maintenance of gametophytic selfincompatibility[END_REF], and highlighted the importance of another genetic factor (besides the automatic advantage and inbreeding depression) affecting the evolution of selfing. This third factor stems from the fact that selection against deleterious alleles is more efficient among selfed offspring (due to their increased homozygosity) than among outcrossed offspring, generating positive linkage disequilibria between alleles increasing the selfing rate and the better alleles at selected loci. Alleles increasing selfing thus tend to be found on better purged genetic backgrounds, which may allow selfing to spread even when inbreeding depression is higher than 0.5 [START_REF] Charlesworth | Inbreeding depression, genetic load, and the evolution of outcrossing rates in a multilocus system with no linkage[END_REF]. This effect becomes more important as the strength of selection against deleterious alleles increases (so that purging occurs more rapidly), recombination decreases, and as alleles increasing selfing have larger effects -so that linkage disequilibria can be maintained over larger numbers of generations [START_REF] Charlesworth | Inbreeding depression, genetic load, and the evolution of outcrossing rates in a multilocus system with no linkage[END_REF][START_REF] Uyenoyama | Coevolution of self-fertilization and inbreeding depression. I. Mutation-selection balance at one and two loci[END_REF][START_REF] Epinat | The evolution of assortative mating and selfing with in-and outbreeding depression[END_REF]. This corresponds to [START_REF] Lande | The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models[END_REF] verbal prediction that a mutant allele coding for complete selfing may increase in frequency regardless of the amount of inbreeding depression.

Most genetic models on the evolution of selfing assume that deleterious alleles have multiplicative effects (no epistasis). [START_REF] Charlesworth | Multilocus models of inbreeding depression with synergistic selection and partial self-fertilization[END_REF] considered a deterministic model including synergistic epistasis between deleterious alleles, showing that this form of epistasis tends to flatten the relation between inbreeding depression and the population's selfing rate, inbreeding depression sometimes increasing at high selfing rates. Concerning the spread of selfing modifier alleles, the results were qualitatively similar to the multiplicative model, except that, for parameter values where full outcrossing is not stable, the evolutionarily stable selfing rate tended to be slightly below 1 under synergistic epistasis (whereas it would have been at exactly 1 in the absence of epistasis). Other models explored the effect of partial selfing on inbreeding depression generated by polygenic quantitative traits under stabilizing selection [START_REF] Lande | Maintenance of quantitative genetic variance under partial self-fertilization, with implications for the evolution of selfing[END_REF][START_REF] Abu Awad | Effects of partial selfing on the equilibrium genetic variance, mutation load, and inbreeding depression under stabilizing selection[END_REF]. This type of model typically generates distributions of epistatic interactions across loci, including possible compensatory effects between mutations. When effective recombination is sufficiently weak, linkage disequilibria generated by epistasis may greatly reduce inbreeding depression, and even generate outbreeding depression between selfing lineages carrying different combinations of compensatory mutations. However, the evolution of the selfing rate was not considered by these models.

In this paper, we use a general model of epistasis between pairs of selected loci to explore the effects of epistasis on inbreeding depression and on the evolution of selfing. We derive analytical approximations showing that epistatic interactions affect the spread of selfing modifiers through various mechanisms: by affecting inbreeding depression, the purging advantage of selfers and also through linkage disequilibria between selected loci. Although the expressions obtained can become complicated for intermediate selfing rates, we will see that the condition determining whether selfing can spread in a fully outcrossing population often remains relatively simple. Notably, our model allows us to disentangle the effects of additive-by-additive, additive-by-dominance and dominance-by-dominance epistatic interactions on inbreeding depression and selection for selfing -while the models used by [START_REF] Charlesworth | Multilocus models of inbreeding depression with synergistic selection and partial self-fertilization[END_REF], [START_REF] Lande | Maintenance of quantitative genetic variance under partial self-fertilization, with implications for the evolution of selfing[END_REF] and Abu [START_REF] Abu Awad | Effects of partial selfing on the equilibrium genetic variance, mutation load, and inbreeding depression under stabilizing selection[END_REF] impose certain relations between these quantities. The cases of fixed, synergistic epistasis and of stabilizing selection acting on quantitative traits (Fisher's geometric model) will be considered as special cases, for which we will also present individual-based simulation results. Overall, our results

show that, for a given level of inbreeding depression and average strength of selection against deleterious alleles, epistatic interactions tend to facilitate the spread of selfing, due to the fact that selfing can maintain beneficial combinations of alleles.

METHODS

Life cycle. Our analytical model represents an infinite, hermaphroditic population with discrete generations. A proportion σ of ovules produced by a given individual are self-fertilized, while its remaining ovules are fertilized by pollen sampled from the population pollen pool (Table 1 provides a list of the symbols used throughout the paper). A parameter κ represents the rate of pollen discounting: an individual with selfing rate σ contributes to the pollen pool in proportion 1 -κσ (e.g., [START_REF] Charlesworth | The cost of sex in relation to the mating system[END_REF]. Therefore, κ equals 0 in the absence of pollen discounting, while κ equals 1 under full discounting (in which case complete selfers do not contribute to the pollen pool). We assume that the selfing rate σ is genetically variable, and coded by σ loci with additive effects:

σ = σ i=1 σ M i + σ P i (1)
where the sum is over all loci affecting the selfing rate, and where σ M i and σ P i represent the effect of the alleles present respectively on the maternally and paternally inherited genes at locus i (note that the assumption of additivity within and between loci may not always hold, in particular when selfing rates are close to 0 or 1). The model does not make any assumption concerning the number of alleles segregating at loci affecting the selfing rate.

The fitness W of an organism is defined as its overall fecundity (that may depend on its survival), so that the expected number of seeds produced by an individual is proportional to W , while its contribution to the population pollen pool is proportional to W (1 -κσ). We assume that W is affected by a possibly large number of biallelic loci. Alleles at each of these loci are denoted 0 and 1; the quantity X M j (resp. X P j ) equals 0 if the individual carries allele 0 on its maternally (resp. paternally) inherited copy of locus j, and equals 1 otherwise. The frequencies of allele 1 at locus j on the maternally and paternally inherited genes (averages of X M j and X P j over the whole population) are denoted p M j and p P j . Finally, p j = p M j + p P j /2 is the frequency of allele 1 at locus j in the whole population.

Genetic associations. Throughout the paper, index i will denote a locus affecting the selfing rate of individuals, while indices j and k will denote loci affecting fitness.

Following [START_REF] Barton | Natural and sexual selection on many loci[END_REF] and [START_REF] Kirkpatrick | General models of multilocus evolution[END_REF], we define the centered variables:

ζ M i = σ M i -σ M i , ζ P i = σ P i -σ P i , (2) 
ζ M j = X M j -p M j , ζ P j = X P j -p P j , (3) 
where σ M i and σ P i are the averages of σ M i and σ P i over the whole population. The genetic association between the sets U and V of loci present in the maternally and paternally derived genome of an individual is defined as:

D U,V = E [ζ U,V ] (4) 
where E stands for the average over all individuals in the population, and with:

ζ U,V = x∈U ζ M x y∈V ζ P y . (5) 
For example, D j,j = E X M j -p M j X P j -p P j is a measure of departure from Hardy-Weinberg equilibrium at locus j, while D ∅, jk = E X P j -p P j X P k -p P k measures the linkage disequilibrium between loci j and k on paternally derived haplotypes. Finally, DU,V is defined as (D U,V + D V,U ) /2, and DU,∅ will be denoted DU .

Using these notations, the variance in selfing rate in the population can be written as:

V σ = E   i ζ M i + ζ P i 2   . (6) 
Ignoring genetic associations between different loci affecting the selfing rate, this becomes:

V σ ≈ 2 i Dii + D i,i . (7) 
General expression for fitness, and special cases. The fitness of an individual divided by the population mean fitness W can be expressed in terms of "selection coefficients" a U,V representing the effect of selection acting on the sets U and V of loci [START_REF] Barton | Natural and sexual selection on many loci[END_REF][START_REF] Kirkpatrick | General models of multilocus evolution[END_REF]:

W W = 1 + U,V a U,V (ζ U,V -D U,V ) . (8) 
Throughout the paper, we assume no effect of the sex-of-origin of genes on fitness, so that a U,V = a V,U . The coefficient a j,∅ = a ∅,j will be denoted a j and represents selection

for allele 1 at locus j. The coefficient a j,j represents the effect of dominance at locus j, while a jk,∅ and a j,k represent cis and trans epistasis between loci j and k. Coefficients a jk,j and a jk,jk respectively correspond to additive-by-dominance and dominance-bydominance epistatic interactions between loci j and k, measured as deviations from additivity.

We will consider different examples of fitness functions (for which approximate expressions for a U,V coefficients are given in Supplementary File S1). The first corresponds to the case where allele 1 at each fitness locus j is deleterious, with selection and dominance coefficients s and h. Epistatic interactions occur between pairs of loci, and are decomposed into additive-by-additive (e axa ), additive-by-dominance (e axd ) and dominance-by-dominance (e dxd ) epistasis. We assume multiplicative effects of epistatic components on fitness W (i.e., additive effects on log W ), so that:

W = (1 -hs) n he (1 -s) n ho (1 + e axa ) n 2 (1 + e axd ) n 3 (1 + e dxd ) n 4 (9)
where n he and n ho are the numbers of loci at which a deleterious allele is present in the heterozygous (n he ) or homozygous (n ho ) state, while n 2 , n 3 and n 4 are the numbers of interactions between 2, 3 and 4 deleterious alleles at two different loci, given by:

n 2 = 1 2 n he (n he -1) + 2n he n ho + 2n ho (n ho -1) , (10) 
n 3 = n he n ho + 2n ho (n ho -1) , (11) 
n 4 = 1 2 n ho (n ho -1) . (12) 
Note that epistatic interactions are the same for all pairs of deleterious alleles. In such models, with fixed epistasis and possibly large numbers of loci, combinations of mutations quickly become advantageous when epistasis is positive, in which case they go to fixation and polymorphism is not maintained. We therefore focused on cases where e axa , e axd and e dxd are negative. [START_REF] Charlesworth | Multilocus models of inbreeding depression with synergistic selection and partial self-fertilization[END_REF] explored the effect of synergistic epistasis (measured by a parameter β) on inbreeding depression, using a fitness function that imposes relations between h, e axa , e axd and e dxd . As explained in Supplementary File S1, their fitness function (equation 2 in [START_REF] Charlesworth | Multilocus models of inbreeding depression with synergistic selection and partial self-fertilization[END_REF] is equivalent to setting e axa = -β h 2 , e axd = -β h (1 -2h) and e dxd = -β (1 -2h) 2 in our equation 9.

Our second fitness function corresponds to stabilizing selection acting on an arbitrary number n of quantitative traits, with a symmetrical, Gaussian-shaped fitness function. The general model is the same as in Abu Awad and Roze (2018): r αj denotes the effect of allele 1 at locus j on trait α, and we assume that the different loci have additive effects on traits:

g α = j r αj X M j + X P j ( 13 
)
where g α is the value of trait α in a given individual (note that g α = 0 for all traits in an individual carrying allele 0 at all loci). We assume that the values of r αj for all loci and traits are sampled from the same distribution with mean zero and variance a 2 . The fitness of individuals is given by:

W = exp - n α=1 g α 2 2V s ( 14 
)
where V s represents the strength of selection. According to equation 14, the optimal value of each trait is zero. This model generates distributions of fitness effects of mutations and of pairwise epistatic effects on fitness (the average value of epistasis being zero), while deleterious alleles have a dominance coefficient close to 1/4 in an optimal genotype (Martin and Lenormand, 2006b;[START_REF] Martin | Distributions of epistasis in microbes fit predictions from a fitness landscape model[END_REF][START_REF] Manna | Fitness landscapes: an alternative theory for the dominance of mutation[END_REF].

The last fitness function we examined is a generalization of the fitness function given by equation 14, in order to introduce a coefficient Q affecting the shape of the fitness peak:

W = exp - d √ 2V s Q , (15) 
where d = n α=1 g α 2 is the Euclidean distance from the optimum in phenotypic space (e.g., Martin and Lenormand, 2006a;[START_REF] Tenaillon | Quantifying organismal complexity using a population genetic approach[END_REF][START_REF] Blanckaert | Epistasis, pleiotropy and the mutation load in sexual and asexual populations[END_REF][START_REF] Abu Awad | Effects of partial selfing on the equilibrium genetic variance, mutation load, and inbreeding depression under stabilizing selection[END_REF]. The fitness function is thus Gaussian when Q = 2, while Q > 2 leads to a flatter fitness peak around the optimum. As shown by [START_REF] Gros | The evolution of epistasis and its links with genetic robustness, complexity and drift in a phenotypic model of adaptation[END_REF], the value of Q affects the average value of epistasis (on fitness) between mutations, which becomes negative when Q > 2.

Quasi-linkage equilibrium (QLE) approximation. Using the general expression for fitness given by equation 8, the change in the mean selfing rate per generation can be expressed in terms of genetic associations between loci affecting the selfing rate and loci affecting fitness. Expressions for these associations can then be computed using general methods to derive recursions on allele frequencies and genetic associations [START_REF] Barton | Natural and sexual selection on many loci[END_REF][START_REF] Kirkpatrick | General models of multilocus evolution[END_REF]. For this, we decompose the life cycle into two steps: selection corresponds to the differential contribution of individuals due to differences in overall fecundity and/or survival rates (W ), while reproduction corresponds to gamete production and fertilization (involving either selfing or outcrossing). Associations measured after selection (that is, weighting each parent by its relative fitness) will be denoted D U,V , while associations after reproduction (among offspring) will be denoted D U,V . Assuming that "effective recombination rates" (that is, recombination rates multiplied by outcrossing rates) are sufficiently large relative to the strength of selection, genetic associations equilibrate rapidly relative to the change in allele frequencies due to selection. In that case, associations can be expressed in terms of allele frequencies by computing their values at equilibrium, for given allele frequencies (e.g., [START_REF] Barton | Natural and sexual selection on many loci[END_REF]Nagylaki, 1993). Note that when allele frequencies at fitness loci have reached an equilibrium (for example, at mutation-selection balance), one does not need to assume that the selection coefficients a U,V are small relative to effective recombination rates for the QLE approximation to hold, but only that changes in allele frequencies due to the variation in the selfing rate between individuals are small. We will thus assume that the variance in the selfing rate in the population V σ stays small (and therefore, the genetic variance contributed by each locus affecting the selfing rate is also small), and compute expressions to the first order in V σ . This is equivalent to the assumption that alleles at modifier loci have small effects, as is commonly assumed in modifier models.

Individual-based simulations. In order to verify our analytical results, individualbased simulations were run using two C++ programs, one with uniformly deleterious alleles with fixed epistatic effects (equation 9) and the other with stabilizing selection on n quantitative traits (equation 14). Both are described in Supplementary File S5 , 2018). The selfing rate is controlled by 10 additive loci evenly spaced over the chromosome, each with an infinite number of possible alleles (the selfing rate being set to zero if the sum of allelic values at these loci is negative, and one if the sum is larger than one). In both programs, mutations affecting the selfing rate occur at rate U self = 10 -3 per generation, the value of each mutant allele at a selfing modifier locus being drawn from a Gaussian distribution with standard deviation σ self centered on the allele value before mutation. The selfing rate is set to zero during an initial burn-in period (set to 20,000 generations) after which mutations are introduced at selfing modifier loci.

RESULTS

Effects of epistasis on inbreeding depression. We first explore the effects of epistasis on inbreeding depression, assuming that the selfing rate is fixed. Throughout the paper, inbreeding depression δ is classically defined as:

δ = 1 - W self W out (16)
where W self and W out are the mean fitnesses of offspring produced by selfing and by outcrossing, respectively (e.g., [START_REF] Lande | The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models[END_REF]. In Supplementary File S2, we show that a general expression for δ in terms of one-and two-locus selection coefficients, in a randomly mating population (σ = 0) is given by:

δ ≈ - 1 2 j a j,j p j q j - 1 2 j<k a jk,jk [1 -2ρ jk (1 -ρ jk )] p j q j p k q k - j<k c jk Djk ( 17 
)
where the sums are over all loci affecting fitness, and with:

c jk = a j,k + [a jk,j (1 -2p j ) + a jk,k (1 -2p k )] (1 -ρ jk ) , (18) 
ρ jk being the recombination rate between loci j and k. With arbitrary selfing, and assuming all ρ jk ≈ 1/2, equation 17 generalizes to:

δ ≈ - 1 2 j a j,j (1 + F ) p j q j - 1 4 j<k a jk,jk (1 + F ) 2 + G jk p j q j p k q k (19)
with several higher-order terms depending on genetic associations between loci generated by epistatic interactions ( Djk , Dj,k , Djk,j , see equation B17 in Supplementary File S2 for the complete expression). The term F in equation 19 corresponds to the inbreeding coefficient (probability of identity by descent between the maternal and paternal copy of a gene), given by:

F = σ 2 -σ (20)
at equilibrium, while G jk is the identity disequilibrium between loci j and k [START_REF] Weir | Mixed self and random mating at two loci[END_REF], given by:

G jk = φ jk -F 2 , with φ jk = σ 2 -σ 2 -σ -2 (2 -3σ) ρ jk (1 -ρ jk ) 2 -σ [1 -2ρ jk (1 -ρ jk )] (21) 
(φ jk is the joint probability of identity by descent at loci j and k). Under free recombination (ρ jk = 1/2), it simplifies to:

G jk = 4σ (1 -σ) (4 -σ) (2 -σ) 2 , ( 22 
)
which will be denoted G hereafter.

In the case of unconditionally deleterious alleles with fixed epistasis (equation 9), equation 19 and the expressions for a U,V coefficients given in Supplementary File S1 yield:

δ ≈ 1 -exp - 1 2 [s (1 -2h) -2e axd n d ] (1 + F ) n d + e dxd 8 (1 + F ) 2 + G n 2 d ( 23 
)
where n d = j p j is the average number of deleterious alleles per haploid genome.

Equation 23 assumes that deleterious alleles stay rare in the population (so that terms in p j 2 may be neglected) and that the different terms of equation 19 contribute multiplicatively to δ (which often yields better approximations than the additive expression).

The equilibrium value of n d can be obtained by solving

∆ sel n d + U = 0 (24)
where ∆ sel n d = j ∆ sel p j is the change in n d due to selection and U is the deleterious mutation rate per haploid genome. From equation B26 in Supplementary File S2, we have to the first order in the selection coefficients:

∆ sel p j ≈ a j (1 + F ) p j + a j,j F p j + k =j a jk,k [F (1 + F ) + G jk ] p j p k + k =j a jk,jk F 2 + G jk p j p k . (25) 
Summing over loci and using the expressions for a U,V coefficients given in Supplemen-tary File S1, one obtains:

∆ sel n d ≈ -s [h + (1 -h) F ] n d + 2e axa (1 + F ) n 2 d + e axd [F (3 + F ) + G] n 2 d + e dxd F 2 + G n 2 d (26)
that can be used with equation 24 to obtain the equilibrium value of n d . Equation 26shows that, for non-random mating, negative values of e axa , e axd or e dxd reduce the mean number of deleterious alleles at equilibrium, thereby reducing inbreeding File S2, this expression can be recovered from our general expression for δ in terms of a U,V coefficients. Because the average epistasis is zero under Gaussian selection (e.g., [START_REF] Martin | Distributions of epistasis in microbes fit predictions from a fitness landscape model[END_REF], inbreeding depression is only affected by the variance in epistasis, whose main effect is to generate linkage disequilibria that increase the frequency of deleterious alleles (see also [START_REF] Phillips | Beyond the average: the evolutionary importance of gene interactions and variability of epistatic effects[END_REF] and thus increase δ. As shown by Abu Awad and Roze (2018), a different regime is entered above a threshold selfing rate when the mutation rate U is sufficiently large, in which epistatic interactions lower inbreeding depression (see also [START_REF] Lande | Maintenance of quantitative genetic variance under partial self-fertilization, with implications for the evolution of selfing[END_REF]. Selection coefficients a U,V under the more general fitness function given by equation 15 are derived in Supplementary File S1, showing that a "flatter-than-Gaussian" fitness peak (Q > 2) generates negative dominance-by-dominance epistasis (a jk,jk < 0), increasing inbreeding depression (by contrast, the first term of equation 17 representing the effect of dominance is not affected by Q). In the absence of selfing, and neglecting the effects of genetic associations among loci, one obtains (see Supplementary File S2 for derivation):

δ ≈ 1 -exp -U 1 + Q -2 8 ( 27 
)
where the term in (Q -2) /8 is generated by the term in a jk,jk in equation 17. Although this expression differs from equation 29 in Abu Awad and Roze (2018) -that was obtained using a different method -both results are quantitatively very similar as long as Q is not too large (roughly, Q < 6). Generalizations of equation 27 to arbitrary σ, and including the effects of pairwise associations between loci (for σ = 0) are given in Supplementary File S2 (equations B40 and B54).

Evolution of selfing in the absence of epistasis. In Supplementary File S3, we derive an expression for the change in the mean selfing rate σ per generation, neglecting the effects of epistatic interactions and associations between loci affecting fitness. This expression can be decomposed into three terms:

∆σ = ∆ auto σ + ∆ depr σ + ∆ purge σ (28) 
with:

∆ auto σ ≈ 1 -κ 1 -κ σ V σ 2 , (29) 
∆ depr σ = 2 i,j a j,j Dij,j , (30) 
∆ purge σ = 2 i,j a j Dij + Di,j (31) 
where the sums are over all loci i affecting the selfing rate and all loci j affecting fitness.

The term ∆ auto σ represents selection for increased selfing rates due to the automatic transmission advantage associated with selfing [START_REF] Fisher | Average excess and average effect of a gene substitution[END_REF]. It is proportional to the variance in selfing rate after selection V σ , and vanishes when pollen discounting is complete (κ = 1). The second term corresponds to the effect of inbreeding depression.

It depends on coefficients a j,j representing the effect of dominance at loci affecting fitness; in particular, a j,j < 0 when the average fitness of the two homozygotes at locus j is lower than the fitness of heterozygotes (which is the case when the deleterious allele at locus j is recessive or partially recessive). It also depends on associations Dij,j that are shown to be positive at QLE, reflecting the fact that alleles increasing the selfing rate tend to be present on more homozygous backgrounds. Finally, the last term depends on coefficients a j representing directional selection for allele 1 at locus j, and associations Dij and Di,j which are positive when alleles increasing the selfing rate at locus i tend to be associated with allele 1 at locus j, either on the same or on the other haplotype. This term is generally positive (favoring increased selfing rates), representing the fact that alleles coding for higher selfing increase the efficiency of selection at selected loci (by increasing homozygosity), and thus tend to be found on better purged genetic backgrounds, as explained in the Introduction (we show in Supplementary File S3 that Dij and Di,j are also generated by other effects involving the identity disequilibrium between loci i and j, when 0 < σ < 1).

The variance in the selfing rate after selection V σ , and the associations Dij,j , Dij and Di,j can be expressed in terms of V σ and of allele frequencies using the QLE approximation described in the Methods. The derivations and expressions obtained for arbitrary values of σ can be found in Supplementary File S3 (equations C31, C47, C48, C55 and C64), and generalize the results given by [START_REF] Epinat | The evolution of assortative mating and selfing with in-and outbreeding depression[END_REF] in the case of strong discounting (κ ≈ 1). When the mean selfing rate in the population approaches zero, one obtains:

V σ ≈ V σ , Dij,j ≈ 1 2 Dii p j q j , (32) 
Dij ≈ 1 2

a j + a j,j (1 -2p j ) ρ ij -a j (1 -2p j ) (1 -ρ ij ) Dii p j q j , Di,j ≈ 0. ( 33 
)
Using the fact that V σ = 2 i Dii under random mating (equation 7), equations 29 -33 yield, for σ ≈ 0:

∆ auto σ ≈ 1 -κ 2 V σ , ∆ depr σ ≈ -δ V σ , (34) 
where δ =j a j,j p j q j /2 is inbreeding depression, neglecting the effect of interactions between selected loci (see equation 17), while

∆ purge σ ≈ j E 1 ρ ij -a j (1 -2p j ) (1 -ρ ij ) a j [a j + a j,j (1 -2p j )] p j q j V σ 2 (35)
where the sum is over all loci j affecting fitness, and where E is the average over all loci i affecting the selfing rate. Because ∆ purge σ is of second order in the selection coefficients (a j , a j,j ), it will generally be negligible relative to ∆ depr σ (which is of first order in a j,j ), in which case selfing can increase if δ < (1 -κ) /2 [START_REF] Charlesworth | The cost of sex in relation to the mating system[END_REF].

When σ > 0, ∆ depr σ is not simply given by δ V σ (in particular, it also depends on the rate of pollen discounting and on identity disequilibria between loci affecting the selfing rate and loci affecting fitness, as shown by equation C31 in Supplementary File S3), but it is possible to show that ∆ depr σ tends to decrease in magnitude as σ increases (while ∆ auto σ becomes stronger as σ increases), leading to the prediction that σ = 0 and σ = 1 should be the only evolutionarily stable selfing rates [START_REF] Lande | The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models[END_REF].

As shown by equation 35, the relative importance of ∆ purge σ should increase when the strength of directional selection (a j ) increases, when deviations from additivity (a j,j ) are weaker and when linkage among loci is tighter. In the case where allele 1 at each fitness locus is deleterious with selection and dominance coefficients s and h (and assuming that p j 1) we have a j ≈ -sh and a j,j ≈ -s (1 -2h), while p j q j ≈ u/ (sh) at mutation-selection balance (where u is the per locus mutation rate towards allele 1). In that case, equation 35 simplifies to:

∆ purge σ ≈ E 1 ρ ij + sh (1 -ρ ij ) s (1 -h) U V σ 2 ( 36 
)
where U is the deleterious mutation rate per haploid genome and E is now the average over all pairs of loci i and j. Figure 2A compares the prediction obtained from equations 34 and 36 with simulation results, in the absence of pollen discounting (κ = 0), and when alleles affecting the selfing rate have weak effects (σ self = 0.01). Simulations confirm that selfing may evolve when inbreeding depression is higher than 0.5 (due to the effect of ∆ purge σ), provided that the fitness effect of deleterious alleles is sufficiently strong. The prediction for the case of unlinked loci (obtained by setting ρ ij = 0.5 in equation 36) actually gives a closer match to the simulation results than the result obtained by integrating equation 36 over the genetic map. This may stem from the fact that equation 36 overestimates the effect of tightly linked loci. The effect of the size of mutational steps at the modifier locus does not affect the maximum value of inbreeding depression for which selfing can spread, as long as mutations tend to have small effects on the selfing rate (compare Figure 2A and2B). However, the relative effect of purging (observed for high values of s) becomes more important when selfing evolves by mutations of larger size (σ self = 0.3 in Figure 2C, while mutations directly lead to fully selfing individuals in Figure 2D), in agreement with the results obtained by [START_REF] Charlesworth | Inbreeding depression, genetic load, and the evolution of outcrossing rates in a multilocus system with no linkage[END_REF] -note that our approximations break down when selfing evolves by large-effect mutations.

In the case of multivariate Gaussian stabilizing selection acting on n traits coded by biallelic loci with additive effects (equation 14) we have (to the first order in the strength of selection 1/V s ): a j = -ς j (1 -2p j ) and a j,j = -2ς j , where ς j = n α=1 r αj 2 / (2V s ) is the fitness effect of a heterozygous mutation at locus j in an optimal genotype. Assuming that polymorphism stays weak at loci coding for the traits under stabilizing selection, so that (1 -2p j ) 2 ≈ 1, and using the fact that p j q j ≈ u/ς j under random mating (when neglecting interactions between loci), one obtains from equation 35:

∆ purge σ ≈ E 3ς j ρ ij + ς j (1 -ρ ij ) U V σ 2 (37)
which is equivalent to equation 36 when introducing differences in s among loci, with h = 1/4 (note that the homozygous effect of mutation at locus j in an optimal genotype is ≈ 4ς j ). When neglecting the term in ς j in the denominator of equation 37, this simplifies to:

∆ purge σ ≈ 3 2 ς U V σ ρ h,σz (38) 
where ς is the mean heterozygous effect of mutations on fitness in an optimal genotype, and where ρ h,σz is the harmonic mean recombination rate over all pairs of loci i and j, where i affects the selfing rate and j affects the traits under stabilizing selection.

Using the fitness function given by equation 15 (where Q describes the shape of the fitness peak), equation 38 generalizes to:

∆ purge σ ≈ 3U 2 ρ h,σz 4U Qς -2 Q V σ (39) 
(see Supplementary File S1), which increases as Q increases in most cases. Therefore, for a given value of inbreeding depression, a flatter fitness peak tends to increase the relative importance of purging on the spread of selfing mutants in an outcrossing population.

Effects of epistasis on the evolution of selfing. Expressions for the change in mean selfing rate σ, including the effects of epistasis between pairs of selected loci are derived in Supplementary File S4. Because the expressions quickly become cumbersome under partial selfing, we restrict our analysis to the initial spread of selfing in an outcrossing population (σ ≈ 0). The change in mean selfing rate per generation now writes:

∆σ = ∆ auto σ + ∆ depr σ + ∆ LD σ + ∆ purge σ . (40) 
As above, ∆ auto σ represents the direct transmission advantage of selfing and is still given by equation 34 as σ tends to zero. The term ∆ depr σ corresponds to the effect of inbreeding depression; taking into account epistasis between selected loci, it writes:

∆ depr σ = 2 i,j a j,j Dij,j + 2 i,j<k
a jk,jk Dijk,jk

+ 2 i,j<k a j,k Dij,k + Dik,j + 2 i,j,k a jk,j Dijk,j + Dij,jk (41) 
As shown in Supplementary File S4, expressing the different associations that appear in equation 41 at QLE, to leading order (and when σ tends to zero) yields ∆ depr σ = -δ V σ , where δ is inbreeding depression measured after selection, that is, when the parents used to produced selfed and outcrossed offspring contribute in proportion to their fitness (an expression for δ in terms of allele frequencies and associations between pairs of loci is given by equation B9 in Supplementary File S2). Indeed, what matters for the spread of selfing is the ratio between the mean fitnesses of selfed and outcrossed offspring, taking into account the differential contributions of parents due to their different fitnesses. With epistasis, inbreeding depression is affected by genetic associations between selected loci, and δ thus depends on the magnitude of those associations after selection. Note that epistasis may also affect inbreeding depression through the effective dominance a j,j and equilibrium frequency p j of deleterious alleles (as described earlier), and these effects are often stronger than effects involving genetic associations when epistasis differs from zero on average.

The new term ∆ LD σ appearing in equation 40 represents an additional effect of epistasis (besides its effects on inbreeding depression δ ), and is given by:

∆ LD σ = 2 i,j<k a jk Dijk . ( 42 
)
The association Dijk represents the fact that the linkage disequilibrium D jk between loci j and k (generated by epistasis among those loci) tends to be stronger on hap-lotypes that also carry an allele increasing the selfing rate at locus i. Indeed, the magnitude of D jk depends on the relative forces of selection generating D jk and recombination breaking it, and selfing affects both processes: by increasing homozygosity, selfing reduces the effect of recombination (e.g., [START_REF] Nordborg | Structured coalescent processes on different time scales[END_REF], but it also increases "effective" epistasis, given that when a beneficial combination of alleles is present on one haplotype of an individual, it also tends to be present on the other haplotype due to homozygosity, enhancing the effect of fitness differences between haplotypes.

An expression for Dijk at QLE is given in Supplementary File S4, showing that Dijk is generated by all epistatic components (a jk , a j,k , a jk,j , a jk,k and a jk,jk ). In the case of uniformly deleterious alleles with fixed epistasis (equation 9), one obtains:

∆ LD σ ≈ E e axa (2 + ρ jk 2 ) + e axd + e axd + 1 2 e dxd [1 -2ρ jk (1 -ρ jk )] ρ ijk -(1 -ρ ijk ) (a j + a k + e axa ) e axa n d 2 V σ 2 (43)
where E is the average over all triplets of loci i, j and k, ρ ijk is the probability that at least one recombination event occurs between the three loci i, j and k during meiosis (note that the denominator is approximately ρ ijk when recombination rates are large relative to selection coefficients), and where n d is the mean number of deleterious alleles per haploid genome. Assuming free recombination among all loci (ρ jk = 1/2, 

ρ ijk = 3/4),
∆ LD σ ≈ [β h (1 + h) n d ] 2 V σ 6 . (45) 
Finally, under stabilizing selection acting on quantitative traits (and assuming that recombination rates are not too small), one obtains:

∆ LD σ ≈ E 2 + ρ jk 2 ρ ijk 2U 2 n V σ , (46) 
(where n is the number of selected traits) independently of the shape of the fitness peak Q, simplifying to (6U 2 /n) V σ under free recombination (see Supplementary File S4).

As in the previous section, the term ∆ purge σ equals 2 i,j a j Dij under random mating and represents indirect selection for selfing due to the fact that selfing increases the efficiency of selection against deleterious alleles. At QLE and to the first order in a U,V coefficients, the linkage disequilibrium Dij is given by (see Supplementary File S4

for derivation):

Dij ≈ 1 2 Dii p j q j ρ ij -a j (1 -2p j ) (1 -ρ ij ) a j + a j,j (1 -2p j ) + k [a jk,k + [a jk,k + a jk,jk (1 -2p j )] [1 -2ρ jk (1 -ρ jk )]] p k q k . ( 47 
)
The term on the first line of equation 47 is the same as in equation 33, representing the fact that increased homozygosity at locus j improves the efficiency of selection acting at this locus. Note that epistatic interactions may affect this term (in particular when the average epistasis between selected loci differs from zero) through the selection coefficients a j and a j,j as well as equilibrium allele frequencies p j . The term in the second line of equation 47 shows that negative additive-by-dominance or dominanceby-dominance epistasis between deleterious alleles increase the benefit of selfing, by increasing the efficiency of selection against deleterious alleles in homozygous individuals. In the case of unconditionally deleterious alleles with fixed epistasis, one obtains (to the first order in epistatic coefficients):

∆ purge σ ≈ E h [s (1 -h) -3e axd n d -[1 -2ρ jk (1 -ρ jk )] (e axd + e dxd ) n d ] -2e axa n d ρ ij -(1 -ρ ij ) a j × sn d V σ 2 . ( 48 
)
Under free recombination, this simplifies to:

∆ purge σ ≈ [h [2s (1 -h) -(7e axd + e dxd ) n d ] -4e axa n d ] sn d V σ 4 . ( 49 
)
Under Gaussian stabilizing selection, the coefficients a jk,j and a jk,jk are small relative to the other selection coefficients (as shown in Supplementary File S1), and the term on the second line of equation 47 may thus be neglected (in which case ∆ purge σ is still given by equation 38). With a flatter fitness peak (equation 15 with Q > 2), using the expressions for a jk,j and a jk,jk given by equations A54 and A55 in Supplementary File S1 yields:

∆ purge σ ≈ U 2 ρ h,σz 3 + 7 (Q -2) 4 4U Qς -2 Q V σ ( 50 
)
where the term in Q-2 between brackets corresponds to the term on the second line of equation 47 (effects of additive-by-dominance and dominance-by-dominance epistasis).

Figure 3 shows the parameter space (in the κ -δ plane) in which an initially outcrossing population (σ = 0) evolves towards selfing, in the case of uniformly deleterious alleles (fixed epistasis, equation 9). Note that when selfing increased in the simulations (green dots), we always observed that the population evolved towards selfing rates close to 1. Figures 3A-C show that negative e axd or e dxd (the other epistatic components being set to zero) slightly increase the parameter range under which selfing evolves: in particular, selfing can invade for values of inbreeding depression δ slightly higher than 0.5 in the absence of pollen discounting (κ = 0). Epistasis has stronger effects when negative e axd and/or e dxd are combined with negative e axa , as shown by Figures 3D-F (we did not test the effect of negative e axa alone, as δ is greatly reduced in this case unless e axa is extremely weak). The QLE model (dashed and solid curves) correctly predicts the maximum inbreeding depression δ for selfing to evolve, as long as this maximum is not too large: high values of δ indeed imply high values of U , for which the QLE model overestimates the strength of indirect effects (in particular, the model predicts that selfing may evolve under high depression, above the upper parts of the curves in Figures 3D-F, but this was never observed in the simulations). In all cases shown in Figure 3, the increased parameter range under which selfing can evolve is predicted to be mostly due to the effect of negative epistasis on ∆ purge σ, the effect of ∆ LD σ remaining negligible. Finally, one can note that the maximum δ for selfing to evolve is lower with e axa = -0.005, e axd = e dxd = -0.01 (Figure 3E) than with e axa = -0.005, e axd = -0.01, e dxd = 0 (Figure 3D). This is due to the fact that negative e axd and e dxd have two opposite effects: they increase the effect of selection against homozygous mutations (which increases ∆ purge σ), but they also increase the strength of inbreeding depression for a given mutation rate U (see Figure 1), decreasing the mean number of deleterious alleles per haplotype n d associated with a given value of δ (which decreases ∆ purge σ).

Supplementary Figure S1 shows the effect of the size of mutational steps at the selfing modifier locus, in the absence of epistasis (corresponding to Figure 3A), and with all three components of epistasis being negative (corresponding to Figure 3E). Increasing the size of mutational steps has more effect in the presence of negative epistasis, since negative epistasis increases the purging advantage of alleles coding for more selfing (∆ purge σ), whose effect becomes stronger relative to ∆ auto σ and ∆ depr σ when modifier alleles have larger effects (as previously shown in Figure 2).

Figure 4 shows the results obtained under Gaussian stabilizing selection (equation 14) acting on different numbers of traits n, keeping the mean deleterious effect of mutations ς constant. Under stabilizing selection, inbreeding depression reaches an upper limit as the mutation rate U increases (this upper limit being lower for lower values of n), explaining why high values of δ could not be explored in Figure 4. Again, epistasis increases the parameter range under which selfing can invade (the effect of epistasis being stronger when the number of selected traits n is lower), and the QLE model yields correct predictions as long as inbreeding depression (and thus U ) is not too large. In contrast with the fixed epistasis model discussed above, the model predicts that ∆ purge σ stays negligible, the difference between the dotted and solid/dashed curves in Figure 4 being mostly due to ∆ LD σ: selfers thus benefit from the fact that they can maintain beneficial combinations of alleles (mutations with compensatory effects) at different loci. Interestingly, for n = 5 and sufficiently high rates of pollen discounting κ, selfing can invade if inbreeding depression is lower than a given threshold, or is very high. The latter case corresponds to a situation where polymorphism is important (high U ) and where large numbers of compensatory combinations of alleles are possible. Although the model predicts that the same phenomenon should occur for higher values of n, it was not observed in simulations with n = 15 and n = 30, except for n = 15 and κ = 0.4. However, Supplementary Figures S2 andS3 show that the evolution of selfing above a threshold value of δ occurs more frequently when the fitness peak is flatter (Q > 2), and when mutations affecting the selfing rate have larger effects. 

DISCUSSION

The automatic transmission advantage associated with selfing and inbreeding depression are the two most commonly discussed genetic mechanisms affecting the evolution of self-fertilization. When these are the only forces at play, a selfing mutant arising in an outcrossing population is expected to increase in frequency as long as inbreeding depression is weaker than the automatic advantage, whose magnitude depends on the level of pollen discounting [START_REF] Lande | The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models[END_REF][START_REF] Holsinger | The evolution of self-fertilization in plants: a population genetic model[END_REF]. However, because selfers also tend to carry better purged genomes due to their increased homozygosity, several models showed that selfing mutants may invade under wider conditions than those predicted solely based on these two aforementioned forces [START_REF] Charlesworth | Inbreeding depression, genetic load, and the evolution of outcrossing rates in a multilocus system with no linkage[END_REF][START_REF] Uyenoyama | Coevolution of self-fertilization and inbreeding depression. I. Mutation-selection balance at one and two loci[END_REF][START_REF] Epinat | The evolution of assortative mating and selfing with in-and outbreeding depression[END_REF]Porcher and Lande, 2005b;[START_REF] Gervais | Genetic architecture of inbreeding depression and the maintenance of gametophytic selfincompatibility[END_REF]. Our analytical and simulation results confirm that the advantage procured through purging increases with the strength of selection against deleterious alleles and with the degree of linkage within the genome.

The simulation results also indicate that the verbal prediction, according to which mutations causing complete selfing may invade a population independently of its level of inbreeding depression (Lande and Schemske, 1985, p. 33), only holds when deleterious alleles have strong fitness effects, so that purging occurs rapidly (Figure 2D).

Whether purging efficiency should significantly contribute to the spread of selfing mutants depends on the genetic architecture of inbreeding depression. To date, experimental data point to a small contribution of strongly deleterious alleles to inbreeding depression: for example, [START_REF] Baldwin | Inbreeding depression is difficult to purge in self-incompatible populations of Leavenworthia alabamica[END_REF] recently showed that in the self-incompatible species Leavenworthia alabamica, inbreeding depression is not affected by three generations of enforced selfing (which should have lead to the elimination of deleterious alleles with strong fitness effects). Previous experiments on different plant species also indicate that inbreeding depression is probably generated mostly by weakly deleterious alleles [START_REF] Dudash | Five generations of enforced selfing and outcrossing in Mimulus guttatus: inbreeding depression variation at the population and family level[END_REF]Willis, 1999;[START_REF] Carr | Recent approaches into the genetic basis of inbreeding depression in plants[END_REF][START_REF] Charlesworth | The genetics of inbreeding depression[END_REF]. Data on the additive variance in fitness within populations are also informative regarding the possible effect of purging: indeed, using our general expression for fitness (equation 8) and neglecting linkage disequilibria, one can show that the additive component of the variance in fitness in a randomly mating population (more precisely, the variance in W/W ) is given by the sum over selected loci of 2a j 2 p j q j (see also eq. A3b in [START_REF] Charlesworth | Recombination load associated with selection for increased recombination[END_REF], a term which also appears in the effect of purging on the strength of selection for selfing (equation 35). Although estimates of the additive variance in fitness in wild populations remain scarce, the few estimates of the "evolvability" parameter (corresponding to the additive component of the variance in W/W ) available from plant species are small, of the order of a few percents [START_REF] Hendry | The contemporary evolution of fitness[END_REF]. Note that strictly, the effect of purging on the strength of selection for selfing is proportional to the quantity j a j [a j + a j,j (1 -2p j )] p j q j (equation 35), which may be larger than j a j 2 p j q j (for example, in the case of deleterious alleles with fixed s and h, the first quantity is approximately s (1 -h) U and the second shU ). However, the small values of the available estimates of j a j 2 p j q j , together with the experimental evidence mentioned above on the genetics of inbreeding depression, indicate that selfing mutants probably do not benefit greatly from purging. Nevertheless, it remains possible that the strength of selection against deleterious alleles (a j ) increases in harsher environments [START_REF] Cheptou | Effects of competition on lifetime estimates of inbreeding depression in the outcrossing plant Crepis sancta (Asteraceae)[END_REF][START_REF] Agrawal | Environmental duress and epistasis: how does stress affect the strength of selection on new mutations?[END_REF], leading to stronger purging effects in such environments.

The effects of epistasis between deleterious alleles on inbreeding depression and on the evolution of mating systems have been little explored (but see [START_REF] Charlesworth | Multilocus models of inbreeding depression with synergistic selection and partial self-fertilization[END_REF]. In this paper, we derived general expressions for the effect of epistasis between pairs of loci on inbreeding depression and on the strength of selection for selfing, that can be applied to more specific models. Our results show that different components of epistasis have different effects on inbreeding depression: in particular, while negative additive-by-additive epistasis tends to lower inbreeding depression by reducing the frequency of deleterious alleles, negative additive-by-dominance and dominance-bydominance epistasis increase inbreeding depression by lowering the fitness of homozygous offspring. Very little is known on the average sign and relative magnitude of these different forms of epistasis. In principle, the overall sign of dominance-by-dominance effects can be deduced from the shape of the relation between the inbreeding coefficient of individuals (F ) and their fitness (Crow and Kimura, 1970, p. 80), an accelerating decline in fitness as F increases indicating negative e dxd . The relation between F and fitness-related traits was measured in several plant species; the results often showed little departure from linearity (e.g., [START_REF] Willis | Effects of different levels of inbreeding on fitness components in Mimulus guttatus[END_REF][START_REF] Kelly | Epistasis in monkeyflowers[END_REF], but the experimental protocols used may have generated biases against finding negative e dxd [START_REF] Falconer | Introduction to Quantitative Genetics[END_REF][START_REF] Lynch | Genetics and Analysis of Quantitative Traits[END_REF][START_REF] Sharp | The decline in fitness with inbreeding: evidence for negative dominance-by-dominance epistasis in Drosophila melanogaster[END_REF].

Most empirical distributions of epistasis between pairs of mutations affecting fitness have been obtained from viruses, bacteria and unicellular eukaryotes (e.g., [START_REF] Martin | Distributions of epistasis in microbes fit predictions from a fitness landscape model[END_REF][START_REF] Kouyos | Epistasis between deleterious mutations and the evolution of recombination[END_REF][START_REF] De Visser | The evolution of sex: empirical insights into the roles of epistasis and drift[END_REF]. While no clear conclusion emerges regarding the average coefficient of epistasis (some studies find that it is negative, other positive and other close to zero), a general observation is that epistasis is quite variable across pairs of loci. This variance of epistasis may slightly increase inbreeding depression when it remains small (by reducing the efficiency of selection against deleterious alleles, [START_REF] Phillips | Beyond the average: the evolutionary importance of gene interactions and variability of epistatic effects[END_REF][START_REF] Abu Awad | Effects of partial selfing on the equilibrium genetic variance, mutation load, and inbreeding depression under stabilizing selection[END_REF], or decrease inbreeding depression when it is larger and/or effective recombination is sufficiently weak, so that selfing can maintain beneficial multilocus genotypes [START_REF] Lande | Maintenance of quantitative genetic variance under partial self-fertilization, with implications for the evolution of selfing[END_REF][START_REF] Abu Awad | Effects of partial selfing on the equilibrium genetic variance, mutation load, and inbreeding depression under stabilizing selection[END_REF]. Besides this "short-term" effect on inbreeding depression, the variance of epistasis also favors selfing through the progressive buildup of linkage disequilibria that increase mean fitness (associations between alleles with compensatory effects at different loci). Interestingly, this effect may allow selfers to spread above a threshold value of the rate of mutation on traits under stabilizing selection (Figures 4,S3). Is the variance of epistasis typically large enough, so that this benefit of maintaining beneficial combinations of alleles may significantly help selfing mutants to spread? Answering this question is difficult without better knowl-edge on the importance of epistatic interactions on fitness in natural environments.

Nevertheless, some insights can be gained from our analytical results: for example, neglecting additive-by-dominance and dominance-by-dominance effects, equations 42 and D7 indicate that the effect of linkage disequilibria on the strength of selection for selfing should scale with the sum over pairs of selected loci of a jk 2 p j q j p k q k , which also corresponds to the epistatic component of the variance in fitness in randomly mating populations. Although estimates of epistatic components of variance remain scarce, they are typically not larger than additive components (e.g., [START_REF] Hill | Data and theory point to mainly additive genetic variance for complex traits[END_REF], suggesting that the benefit of maintaining beneficial multilocus genotypes may be generally limited (given that the additive variance in fitness seems typically small, as discussed previously).

A mixed mating system was never stably maintained in our simulations: the selfing rate always evolved towards a value either close to zero or one. Using a deterministic model, [START_REF] Charlesworth | Multilocus models of inbreeding depression with synergistic selection and partial self-fertilization[END_REF] showed that in the presence of negative epistasis between deleterious alleles, and when outcrossing is not stable, a selfing rate slightly below one corresponds to the evolutionarily stable strategy (ESS). This can be understood from the fact that negative epistasis favors non-zero rates of recombination (e.g., [START_REF] Barton | A general model for the evolution of recombination[END_REF], while recombination becomes ineffective under complete selfing.

Similarly, Kamran-Disfani and Agrawal (2014) showed that selfing rates slightly below one are selectively favored over complete selfing in finite populations, when deleterious alleles occur at multiple loci: again, this probably results from selection for recombination, generated by Hill-Robertson effects between selected loci (e.g., [START_REF] Barton | Evolution of recombination due to random drift[END_REF]. Similar effects must have occurred in our simulations, although we did not check that selfing rates slightly below one resulted from selection to maintain low rates of outcrossing, rather than from the constant input of mutations at selfing modifier loci (this could be done by comparing the probabilities of fixation of alleles coding for different selfing rates, as in [START_REF] Kamran-Disfani | Selfing, adaptation and background selection in finite populations[END_REF]. It is possible that mixed mating systems may be more easily maintained under changing environmental conditions (for example, under directional selection acting on quantitative traits) than under the stable conditions considered in the present paper; this represents an interesting avenue for future research. 
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(

  and are available from Dryad). Both programs represent a population of N diploid individuals with discrete generations, the genome of each individual consisting of two copies of a linear chromosome with map length R Morgans. In the first program (fixed epistasis), deleterious alleles occur at rate U par haploid genome per generation at an infinite number of possible sites along the chromosome. A locus with an infinite number of possible alleles, located at the mid-point of the chromosome controls the selfing rate of the individual (given by averaging the selfing rate coded by the two alleles at this locus). In the program representing stabilizing selection, each chromosome carries equidistant biallelic loci affecting the n traits under selection (as in Abu Awad and Roze

  Figures1B-C). As selfing increases, this effect becomes compensated by the enhanced

Finally, Figure 5

 5 provides additional results on the effect of the number of se-lected traits n, for fixed values of the overall mutation rate U . Inbreeding depression is little affected by epistatic interactions when n is large, while low values of n tend to decrease inbreeding depression, explaining the shapes of the dotted curves showing the maximum level of pollen discounting for selfing to spread, when only taking into account the effects of the automatic advantage and inbreeding depression. The difference between the dotted and solid/dashed curves shows the additional effect of linkage disequilibria generated by epistasis (∆ LD σ), whose relative importance increases as the number of traits n decreases, and as the mutation rate U increases. Because U stays moderate (U = 0.2 or 0.5), the analytical model provides accurate predictions of the parameter range in which selfing is favored.
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 1234 Figure 1. Inbreeding depression δ as a function of the selfing rate σ. A-C: effects of
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 5 Figure 5. Evolution of self-fertilization under Gaussian stabilizing selection. The two

Table 1 :

 1 Parameters and variables of the model.

	σ	Selfing rate
	σ, V σ	Mean and variance in the selfing rate in the population
	κ	Rate of pollen discounting
	σ	Number of loci affecting the selfing rate
	W , W	Fitness of an individual, and average fitness
		Number of loci affecting fitness
	U	Overall (haploid) mutation rate at loci affecting fitness
	p j , q j	Frequencies of alleles 1 and 0 at loci affecting fitness
		Number of loci affecting selected traits
	n d	Mean number of deleterious alleles per haploid genome
	s, h	Selection and dominance coefficients of deleterious alleles
		Additive-by-additive, additive-by-dominance and
	e axa , e axd , e dxd	
		dominance-by-dominance epistasis between deleterious alleles
		Strength of synergistic epistasis in Charlesworth et al.'s (1991)
	β	
		model
	n	Number of quantitative traits under stabilizing selection
	V s	Strength of stabilizing selection
	r αj	Effect of allele 1 at locus j on trait α
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dashed curves correspond to the prediction obtained using the expression for ∆ LD σ under free recombination (that is, 6U 2 V σ /n, see equation 46), while the solid curves correspond to the predictions obtained by integrating equation 46 over the genetic map (the effect of ∆ purge σ is predicted to be negligible relative to the effect of ∆ LD σ).

To obtain these predictions, the relation between U and δ was obtained from a fit of the simulation results. Other parameter values: ς = 0.01, R = 20; in the simulations N = 5,000, U self = 0.001 (overall mutation rate at selfing modifier loci), σ self = 0.01 (standard deviation of mutational effects on selfing).