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ABSTRACT

Context. The ephemerides of natural satellites resulting from numerical integration have a very good precision on the fitting to recent
observations, in a limited interval. Meanwhile, synthetic ephemerides like the Théorie Analytique des Satellites de Saturne (TASS) by
Vienne and Duriez describe in detail the dynamical system by a representation based on the combinations of the proper frequencies.
Some theoretical studies need to have both advantages. For example, to study the rotation of Titan, one needs to know the representa-
tion of its longitude.
Aims. We aim to use these two types of ephemerides in order to rebuild a long-lasting and high-precision ephemeris with proper
frequencies based on the numerical integration ephemeris. The aim is to describe the numerical ephemerides with formulas similar to
analytical ones.
Methods. We used the representation of the orbital elements from the TASS ephemeris analysed over 10 000 years as a reference
template. We obtained the proper frequencies with both numerical and the TASS ephemeris over 1000 years only. A least-square
procedure allowed us to get the analytical representation of an orbital element in this limited interval.
Results. We acquire the representation of the mean longitude of Titan from JPL ephemeris over 1000 years. For almost all com-
ponents, the corresponding amplitudes and phases are similar to the relative terms from TASS. The biggest difference between our
representation and the mean longitude of Titan of JPL is less than 100 km over 1000 years, and the standard deviation is about 26 km.

Key words. ephemerides – celestial mechanics – planets and satellites: individual: Titan – methods: numerical

1. Introduction

Numerical ephemeris of natural satellites, which is widely used
in research and space projects and conveniently available for
download from the online service, based on the recent obser-
vations, is highly precise. Meanwhile, due to the limited span of
numerical epheremeris, the study of the motions could not ben-
efit from the good precision of numerical ephemeris. Otherwise,
theory ephemeris includes all the details of the system motion in
the representation with the proper frequencies. It is helpful in the
research of the influences between the different satellites in the
planetary system.

We envision making a connection between these two kinds of
ephemerides. The aim is to represent numerical ephemeris in the
form of a representation with the proper frequencies. We attempt
to obtain the proper frequencies of the system in a limited time
span of numerical ephemeris and repeat the similar representa-
tion of itself.

In this paper, we take the JPL ephemeris (Giorgini et al.
1996) for experiment and the Théorie Analytique des Satel-
lites de Saturne (TASS) ephemeris (Vienne & Duriez 1995) as
the template. TASS is available at the ftp service of IMCCE1,
and the Jet Propulsion Laboratory Horizons On line Ephemeris

1 ftp://ftp.imcce.fr/pub/ephem/satel/tass17/

System (JPL) is available on its website2. It provides access to
key solar system data and flexible production of highly accurate
ephemeris for solar-system objects (HORIZONS 2018). This
includes 715 000+ asteroids, 3420 comets, 178 natural satellites,
all planets, the Sun, 99 spacecraft, several dynamical points such
as Earth-Sun L1 to L5 equilibriums, and system barycentres. For
its Saturn satellite ephemeris, the official published precision is
about 10km. Therefore, JPL ephemeris is the better choice for
our work.

We compared the difference between JPL and TASS in the
ephemerides of Titan in Cartesian coordinates. The difference is
small enough (about 2600 km over 1000 years, and no more than
200 km in the last 100 years) for us to suppose it is possible to
find a similar representation of the mean longitude of Titan in
JPL.

All motions are referred to the Saturnicentric equatorial
plane in which the origin corresponds to the node with the
mean ecliptic J2000. The node and the inclination referred to
the equinox, and ecliptic J2000 system are defined as:

Ωa = 169.5291◦

ia = 28.0512◦. (1)

Each orbit of the satellites located in this system is described
by the osculating ecliptic elements p, λ, z, and ζ. The definition

2 https://ssd.jpl.nasa.gov/?horizons/
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of those variables are:

a = A(1 + p)−2/3 ⇐⇒ n = N(1 + p)
λ = Nt + λ0 + r

z = e exp
√
−1$ (2)

ζ = sin
i
2

exp
√
−1Ω,

where a, e, i,Ω, $, and λ are the classical elliptic elements.
n is the osculating mean motion, and N is the mean mean

motion, in such a way that r has no linear component in time
(r has only the quasi-periodic parts). All the classical elliptic
elements correspond to the constant GMs(1 + m/Ms) (G is the
Gaussian constant of gravitation, Ms and m are the masses of the
planet and its satellites).

On the website, the Horizon system presents ephemeris in
classical orbital elements (a, e, i, ω,$, M) in the ecliptic plane.
It is the normal form of ephemeris, but different from the one we
used. In our work, we transferred the ephemeris into four orbital
elements that form in the ring plane of Saturn with the values
given in Eq. (1).

In short, we give the abbreviations of some important con-
cepts in this paper, which are mentioned repeatedly. We name
TASS-t (Sect. 2) as the template of TASS, which includes the
representation of mean longitude of Titan and all the proper fre-
quencies of Saturnian system involved in the representation, and
we take TASS-s (Sect. 4) as the experiment results, consisting of
the obtained representation of mean longitude of Titan and the
proper frequencies of the limited interval.

FA is the abbreviation of the frequency analysis (Sect. 2),
LSM means the least-square method (Sect. 3).

2. Frequencies and synthetic representation of
motion

We know that a conservative dynamical system can be described
by its frequencies (Laskar et al. 1992), and the stability of its
orbits can be studied by the frequency analysis (Laskar 1993).
For regular motions, the frequencies description has the advan-
tage of giving rise to an analytical representation of the solutions.
Generally speaking, it is important to determine the frequencies
that influence the orbital elements of a dynamical system: in Sat-
urn’s system, it can be helpful to study the resonances between
satellites in detail. To this aim, we use the method based on a
refined numerical search for a quasi-periodic approximation of
its solutions over a finite timespan (Laskar 1993).

2.1. Integrable system, quasi-periodic series and proper
frequencies

Considering an integrable Hamilton system with m degree of
freedom based on Hamiltonian H, if the system evolves within
the hypothesis of the Arnold-Liouville theorem, some coordi-
nates called action-angles (J, θ) exist, with which the description
dynamics of the system is quite simple:

H(J, θ) = H0(J) =⇒

{
J(t) = J0

θ(t) = ω(J)t + θ0
when (J, θ) ∈ Rm × Tm. (3)

The dynamics of the system can be described by the vari-
able J j exp iθ j(t): the motion takes place on a m dimension
torus, around J j, with the constant angular velocities ω j. Unfor-
tunately, we have no way of knowing the possible coordinate

modification of those variables: this is the difficulty of analyti-
cal theories. However, the action-angle coordinates are intrinsic
of the system, in other words, even though a system is written
by “bad” variables, it should still evolve with its proper frequen-
cies ω j.

We assume a function f (t) describing a mechanical system.
For example, f (t) may stand for one of the variables in Eq. (2).
The previous properties allow us to write f (t) as a Fourier series
of θ:

f (t) =
∑
h∈Zm

ah exp ih·θ(t) with ah ∈ C. (4)

By developing the scalar product h · θ(t), we then obtain a
series in the form:

f (t) =
∑
k∈N

Ak exp iνkt with Ak ∈ C, (5)

where the ν j is integer combination of the proper frequencies ω j.
Suppose that we have a dynamics solution f (t) by the numer-

ical integration of equations, to make a frequency analysis in the
form of Eq. (5), but with a finite sum of the major terms, allowing
us to determine the amplitude Ak and the frequencies νk of the
expansion of f (t).In order to complete this step, we only need
to identify the νk as a integer combinations further to have the
proper frequencies.

In the following, we assume that the system is integrable, or
at least, close to an integrable system.

2.2. Some particularities in the arguments of TASS

With TASS, we performed the analytic resolution of each satel-
lite to find the solution of this form (Vienne & Duriez 1991,
1995):

f (t) = f0(t) + ε∆ f ( f0, t), (6)

where f (t) represents generically p, r, z or ζ. f0 describes the sec-
ular evolution of the variables, ε∆ f is the oscillatory motion with
a small amplitude (ε is a small parameter). Then, the Lagrange
equations are expanded in Taylor series around f0(t) and sepa-
rated into the long-period terms and the short-period terms. The
integration of short-period Lagrange equations is done analyti-
cally and term by term (at the first order of the masses, i and e
are assumed constant): the solution we get is ∆ f ( f0; t). Indepen-
dently, the secular part is obtained through frequency analysis of
numerical integration and leads to the solution f0(t).

Concretely, TASS supplies the solutions f0(t) and ∆ f (t) in
the form of a trigonometric series. However, the description
is ambiguous: ∆ f (t) depends implicitly on f0(t). The complete
solution f (t) should behave like a trigonometric series as Eq. (4),
but the amplitudes and frequencies are not written explicitly. For
example, here is the preliminary expansion of z2 the variable z
of Enceladus which is given in TASS:

z2 = a1 exp i(−λo2 + 2λo4) + a2 exp i(−λo2)
+ a3 exp i(−λo2 + 2λo4 + ω2) + · · · (7)

The amplitudes ak are given explicitly in TASS, but the com-
ponents λo are described as:{
λo2 = λ∗2 + b1 exp i(ω2) + b2 exp i(−λ∗2 + 2λ∗4 − ω4) + · · ·

λo4 = λ∗2 + c1 exp i(ω2) + c2 exp i(−λ∗2 + 2λ∗4 − ω4) + · · · ,
(8)

with ω2, λ∗2, λ∗4 and ω4 the proper angles, as explained in
Sect. 2.1. Here and in the following, the subscript ∗ means that
the argument corresponds to the proper frequency (roughly, the
frequency of the main term in the frequency analysis of the cor-
responding element).
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A frequency analysis: FA and TASS-t

The short period terms in TASS have not formed as the series
with exact proper frequencies. To avoid this particularity, we per-
formed a frequency analysis of all the elements of Titan given by
TASS (over 10 000 years) in order to make an explicit series such
as Eq. (4). These can then be compared with other ephemerides
like JPL or the ones named NOE (Lainey et al. 2004a,b).

The numerical analysis programme is implemented in C
language (FA for short). The elements could be represented as
the combinations following the D’Alembert rule. The software is
made by Saillenfest (2014). The method is based on the works of
Laskar et al. (1992) and Laskar (1993). The purpose is to recon-
struct the quasi-periodic function f (t) like Eq. (5) (with a finite
sum), from a series of points over the interval [0; T ]. To find the
first frequency ν1, we have to find the maximum of the function
|A(ν)| where

A(ν) = 〈 f , exp (iνt)〉, (9)

with

〈 f , g〉 =
1
T

∫ T

0
f (t) ¯g(t) (1 − cos(2π t/T )) dt, (10)

in which ¯g(t) is the complex conjugate of g(t).
We suppose that f (t) is tabulated with a step small enough to

neglect the aliasing and the numerical errors in the quadrature.
In practice, we first performed a fast Fourier transform (FFT) in
order to approximatively situate this maximum. The other fre-
quencies are determined in the same way.

The elements corresponding to f (t) could be represented
as the combinations following the D’Alembert rule as seen in
Eq. (4).

The representation of TASS-t (template of TASS), is used as
the template in the following. TASS-t is given in Tables A.1–A.4
for Titan. For better understanding of the paper, we also give the
series for elements of Iapetus z8 and ζ8 (Tables A.5 and A.6). Their
main terms influence the solution of Titan. All the elements used
are in the ring plane (defined by Eq. (1)). It should be noted that
the 10 000-year time span corresponds to an extrapolation in such
a way that TASS and TASS-t have the same precision.

3. Extension of the frequency analysis (FA) via
the least-squares method (LSM)

The difference between JPL and TASS in the ephemeris of Titan
is so tiny that we sufficiently find a similar representation of the
mean longitude of Titan in JPL. Our problem lies in determin-
ing the long-period terms similar to what we found in TASS-t,
such as:

Y(t) =

nt∑
i=1

Ai sin(ωit + φi), (11)

where Y(t) is one of the elements of TASS-t and nt corresponds
to the number of the terms. In the case of the mean longitude, we
have to add the main slope N × t + λ0.

Unfortunately, we cannot use FA to directly obtain the ampli-
tudes and phases of these nt terms. Worse still, we know nothing
about these frequencies of JPL ephemeris. Therefore, the solu-
tion has to be done separately in two steps. Firstly, we set all the
proper frequencies involved in the representation with fixed val-
ues, which we do in Sect. 4 and present in Table 3. Then, we get
the amplitude and phase of every component through the LSM.

With a step of 0.6 days over 1000 years, we have m = 607800
the number of equations for the mean longitude of Titan. If we
note

sin(ω1ti) = Xi,1

cos(ω1ti) = Xi,2

sin(ω2ti) = Xi,3

· · ·

(12)


a1 = A1 sin φ1

a2 = A1 cos φ1

a3 = A2 sin φ2

· · ·

(13)

We easily see that the equations are:

(X) × (A) = (Y). (14)

Here,

(X) =


∑m

i=1 X2
i,1

∑m
i=1 Xi,1Xi,2 · · ·

∑m
i=1 Xi,1Xi,n−1

∑m
i=1 Xi,1Xi,n

...
...

...
...∑m

i=1 Xi,nXi,1
∑m

i=1 Xi,nXi,2 · · ·
∑m

i=1 Xi,nXi,n−1
∑m

i=1 X2
i,n


(A) =


a1
...

an


(Y) =


∑m

i=1 Xi,1Y(ti)
...∑m

i=1 Xi,mY(ti)

 ,
(X) is the [m × n] matrix of equations, and (A) as a one-
dimensional unknown matrix. n is equal to the number of param-
eters, which is two times nt the number of terms. For every ti,
the frequency of phase and amplitude of the components do not
change, the difference between every equation depends on the
time and Y(t).

We take Eq. (14) to find the representation Eq. (11) of mean
longitude of Titan with JPL.

4. Determination of the proper frequencies

With the limited interval, such as 1000 years of the JPL, it is dif-
ficult to make distinguish between all the components with FA.
Therefore, we use the least-squares method described in the pre-
vious section. However, in this procedure, we need to know the
values of the set of proper frequencies. We validate our method
using TASS itself, but over 1000 years only, and estimate the
accuracy of the method by comparing the obtained solution,
named TASS-s, with TASS-t.

Focusing on the mean longitude of Titan, the proper frequen-
cies involved in its representation are:
λ∗5 (N5) proper frequency of the mean longitude of Rhea.
λ∗6 (N6) proper frequency of the mean longitude of Titan.
$∗6 proper frequency of the pericentre of Titan.
$∗8 proper frequency of the pericentre of Iapetus.
Ω∗6 proper frequency of the ascending node of Titan.
Ω∗8 proper frequency of the ascending node of Iapetus.
λ∗s (Ns) proper frequency of mean longitude of the Sun.
Λ6 undefined frequency used in TASS.
λ∗J (NJ) proper frequency of mean longitude of Jupiter.
λ∗S (NS) proper frequency of mean longitude of Saturn.
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4.1. The main slope in mean longitude: N and λ0

The main slope is computed using two methods. The first is a
simple least-squares method, or more specifically in this case,
a least-squares regression. The second one is using FA on
exp
√
−1λ6.

The mean mean motion N. The mean longitude of Titan λ6
is a quasi-periodic variable with a cycle of about 16 days. The
mean mean motion compute with 1000 years λ6 in TASS-s is
called NT1 for short. Similarly, NT10 is the mean mean motion of
10 000 years λ6 in TASS-t. The biggest difference among NT10
(FA), NT10 (LSM), and NT1 (LSM) in the position is about 25 km
over 1000 years, presented in Table 1. It is not a big one, hence
we take into account that both methods could find the system
value of the short period components, no matter the interval or
the ephemeris.

Hereinafter, when we talk about the mean mean motion of
Titan in TASS-t, we use the value of NT10 = 143.924047849167
radian per year from FA. Reasonably, we take NJ1 = 143.9240
45534754 radian per year from FA as the parameter of mean
mean motion of Titan in JPL.

The choice of phase λ0. The choice of phase in the mean
longitude of Titan, λ0 (in Table 1) is important. Table 2 shows
the solution of λ6 with phase of 1000 years JPL, marked as JP.
Correspondingly, in the same table, we also give the solution
with phase from TASS-t. Obversely, a bad choice of the phase
yields a large error in three major components Ω∗8, Ω∗6, and Λ6.
Moreover, it also affects the amplitude of 2$∗6. If we do not have
TASS-t as a reference to think about the difference in λ0 of dif-
ferent intervals, it would be impossible to detect those mistakes
with only the statistical indicators of the residuals.

4.2. Obtained proper frequencies of the limited interval
ephemeris: TASS-s and JPL

In Table 3, we list the frequencies of TASS and JPL in used. We
explain how to obtain them in subsequent section.

4.2.1. Mean longitude of Rhea: λ∗5 and mean longitude of the
Sun: λ∗s

With the results above, the proper frequencies of these short-
period terms (and also the mean longitude of Jupiter) are similar:
the value obtained with FA over 1000 years can be considered
as the system value. They are given in Table 3. The following
discussion is based on many experiments in the thesis of Xi
(Xi 2018). More details can be found through this reference. We
just talk about the main experiments and their conclusions in this
paper.

4.2.2. Longitude of the pericentre of Titan: $∗6
The difference in $∗6 between TASS-t and TASS-s corresponds
to 0, 17 years in the period and about 79.03 km in the position
after 1000 years. This difference is acceptable. For JPL, we are
confident of the value determined by FA of z6 over 1000 years.
In Table 3, we take 0.008931618591 radian per year as $∗6 for
TASS-s and 0.008922847882 radian per year for JPL.

4.2.3. Longitude of the ascending node of Titan: Ω∗6

The Ω∗6 is present as the major component in the variable ζ6

equals to sin i6
2 exp

√
−1Ω6. In Table A.4, we see a constant term

for which we do not know the value for JPL. In Xi (2018), the
many experiments we did show that the value of Ω∗6 is well-
correlated with the constant term. The best choice is to remove
the constant term of TASS-t then compute the value of Ω∗6 of JPL
by FA. By extending our tests, we prefer to use the formula given
in Vienne (1991) here. In this work, the values of the physical
parameters are included numerically in each coefficient of the
development, but the trace of the physical parameters is analyti-
cally preserved by the use of numerical partial derivatives:

Ω6 = − 0.0089306 − 0.0001255 × ∆m5

− 0.000005 × ∆m8 − 0.00830 × ∆J2, (15)

where

mi = mi0 × (1 + ∆mi)
J2 = J20 × (1 + ∆J2),

mi, is the mass of the satellite i. J2 is the main coefficient of the
oblateness perturbation, whereas mi0 and J20 are the initial values
of the parameters. The influence of ∆m5 and ∆m8 are negligible.
Furthermore, the nominal value of Ω6, −0.0089306 radian per
year, was obtained before the fitting of TASS on observations.
So it is better to use the TASS-t value. The equation we use is:

Ω6 = −0.008931239595 − 0.00830 × ∆J2. (16)

We take ∆J2 = −0.00046, computed from the comparison
of J2 used in Vienne & Duriez (1995) and in the website of JPL
(HORIZONS 2018). We obtain Ω∗6 = 0.008935057595 radian
per year in our following calculations. We note that we did not
use the partial derivatives with respect to the initial conditions.
We point out that the difference in Ω∗6 coming from the different
initial conditions from TASS and JPL are supposed to be negli-
gible.

4.2.4. Longitude of the pericentre of Iapetus: $∗8
The period of $∗8 is about 3200 years, so the pericentre can
not finish its cycle even once in the limited interval. An FA of
$∗8 over 1000 years gives 0.001801807851 radian per year for
TASS-s, and 0.001816807217 radian per year for JPL. Both are
far away from 0.001974690829 radian per year of TASS-t but
close to each other. As JPL and TASS describe the same dynam-
ical system, we cannot be confident in the value determined by
FA of $∗8 over 1000 years. So for TASS-s and JPL, we chose the
value of TASS-t (Table 3): 0.001974690829 radian per year. We
also note that this value gives better results than the one obtained
from the formula in Vienne (1991) similar to Eq. (15).

4.2.5. Longitude of the ascending node of Iapetus: Ω∗8

Ω∗8 is the biggest component in the representation of the mean
longitude of Titan, that the accuracy of its proper frequency has
a significant influence on our final solution.

The main part of the longitude of the ascending node of Iape-
tus in JPL is pleasantly surprising as −0.001957029522 radian
per year. With constants of their own, the two frequencies over
1000 years for TASS and JPL obtained with the LSM are sim-
ilar. It leads to a departure of 30.83 km in the position over
1000 years, and no more than 0.14 years in the period. We cannot
be confident of the value obtained over 1000 years for JPL. We
prefer the value of −0.001925543543 radian per year of TASS-t
as the proper frequency of the ascending node of Iapetus of JPL.
We prefer to keep the value −0.001946457996 radian per year of
TASS-s as an alternative to experiment with it.
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Table 1. Mean motion N and phase λ0 of TASS in different intervals.

Span ID Frequency ID λ0 Method
(year) (radian/year) (radian)

TASS-t 10 000 NT10 143.924047849167 λT10 5.71887846 FA
TASS 143.924047828061 5.71891639 LSM
TASS-s 1000 NT1 143.924047835237 λT1 5.71754788 FA
TASS 143.924047832049 5.71748146 LSM

Table 2. Comparison of the solutions of the mean longitude of Titan from JPL with different values of λ0.

ID Frequency Amplitude Phase
(radian/year) (radian) (km) (radian)

Ω∗8
0.001925543543 0.0015385090 1879.85800 −1.733645
0.001925543543 0.0030131523 3681.68050 −1.748134 JP

Ω∗6
0.008693210603 0.0007328212 895.41222 0.359277
0.008693210603 0.0005049251 616.95292 0.192544 JP

Λ6
0.006874219340 0.0001339679 163.69132 −2.904047
0.006874219340 0.0003742662 457.30461 1.100993 JP

λ∗5 − λ
∗
6

364.085261349846 0.0000111378 13.60892 0.779450
364.085261349846 0.0000111377 13.60881 0.779436 JP

2$∗6
0.017845695764 0.0000249581 30.49560 2.386224
0.017845695764 0.0000159298 19.46410 1.986390 JP

Table 3. Proper frequencies from TASS-t, TASS-s and JPL, (the selected values are marked with ?).

TASS-t TASS-s JPL ID
system value obtained value system value
(radian/year) (radian/year) (radian/year)

1 143.924047849167 143.924047832049 143.924045534754 λ∗6
2 508.009320172829 508.009319842398 508.009309199013 λ∗5
3 0.008933864296 0.008931618591 0.008922847882 $∗6
4 0.001974690829 ?0.001974690829 ?0.001974690829 $∗8
5 −0.008931239595 −0.008773851378 0.008935057595 Ω∗6
6 −0.001925543593 −0.001946457996 ?−0.001925543593 Ω∗8
7 0.213382895534 0.213382895534 0.213342329926 λ∗s
8 0.006867993783 0.006867993783 ?0.006867993783 Λ6

4.2.6. Resonance 2:5 between Jupiter and Saturn: Λ6

In TASS, several possible combinations with similar values
exist:$∗6−$

∗
8, −Ω∗6+Ω∗8, or 2λ∗J−5λ∗S. The time interval required

to separate 2λ∗J − 5λ∗S of the others would be 80 000 years and
600 000 years to separate $∗6−$

∗
8 and −Ω∗6 + Ω∗8. The authors of

TASS take it as −2λ∗J + 5λ∗S as an indirect perturbation of Jupiter.
In JPL, Λ6 is not clearly identified.

We do not know the exact combination in JPL. Therefore,
we tested all these values and compared the means and standard
deviations of the corresponding residuals (Table 4). We conclude
that the distributions of residuals are almost the same, except the
last line, which is mentioned as (TASS, PHASE) in Table 4. The
choice of Λ6 made no difference, so we preferred to take the one
from TASS-t.

4.3. Proper frequencies involved: system values and
obtained values

Now we have all the involved values of the proper frequencies for
rewriting the representation of mean longitude of Titan. Table 3
shows the group of proper frequencies in TASS-t, the homolo-
gous values obtained over 1000 years, and those we adopted to
determine the representation of JPL. The ones marked with ? are
not the ones obtained from the limited interval ephemeris, but the
selected values after our comparison of the results. A group of
frequencies is used to examine the precision of the LSM, and the
error coming from the inaccurate proper frequency of the selected
group. Finally, we took the JPL column to get the amplitudes and
phases in the representation of mean longitude of Titan with JPL,
which is our ultimate purpose.
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Table 4. Mean and standard deviation of the residuals for different uses of all the possible values of Λ6.

Λ6 Frequency Mean Standard
deviation

(radian/year) (m) (km)

−2λ∗J + 5λ∗S 0.007294999177 377.36 30.21872
−Ω∗6 + Ω∗8 0.006736181081 339.33 29.71464
$∗6 −$

∗
8 0.006572353661 331.03 29.61418

−2λ∗J + 5λ∗S (TASS) 0.006874219340 257.42 28.70089
−2λ∗J + 5λ∗S (TASS, PHASE) 0.006874219340 −312.62 25.56549

Fig. 1. Periodic part of the mean longitude r and its residuals after
removing the short-period terms in the JPL.The red curve is the mean
longitude of Titan from which we have removed the linear part. The blue
one represents the follow-up results when taking out the short-period
components involving λ∗s . The unit in Y-axis is radian.

4.4. Determination of the short period and semi-long period
terms

In the mean longitude of Titan (Table A.2), there are three terms
involving the mean longitude of the Sun, which turns hundreds
or thousands of times in 1000 years, hence their amplitudes and
phases being easier to find. It is more convenient to remove these
short period and semi-long period terms before we consider all
the other terms with the LSM. We made a small modification of
FA in order to find the amplitude and phase of a peak which is
close to a given frequency.

The obtained values for TASS-s are given in Table 5. Com-
pared with the corresponding lines of Table A.2, there are some
differences in frequency, amplitude, and phase, but the dispari-
ties are not big.

For JPL, as we did with TASS, we found the short-period
terms involving λ∗s by FA. We show them in the corresponding
lines of the final Table 7. These three terms are well-removed to
simplify the following calculations (see Fig. 1).

5. Test of the method: TASS-s

We tested our method with TASS over 1000 years to focus on
the long-period terms. In representation TASS-t, 2Ω8 is slowly
changing with a tiny amplitude (12 km) and is correlated with Ω∗8
in the limited interval, which yields the failure to solve the equa-
tion. Therefore, we ignored 2Ω8 and took the other five terms in
total into the calculation. They are λ∗5 − λ

∗
6, $∗6, Ω∗6, Ω∗8, and Λ6.

The result of TASS-s is given in Table 5. For each com-
ponent, we show the frequency, the solution of amplitude and
phase, the corresponding period, and the argument (like in
Table A.2) for TASS-t.

The global comparison between TASS-s and TASS-t shows
that: the mean of residuals of TASS-s is about −58 m, and the
deviation of residuals of TASS-s is about 16 km. The result from
−Ω∗6 has a deviation of about 70 km. It influences the near com-
ponent Λ6 to absorb it (68 km difference in amplitude).

We carried out another test using the TASS-t system proper
frequencies. Of course, the comparison is better: The biggest dif-
ference between the amplitudes is smaller than 5 km, the mean
of the residuals is no more than 1 m, and the deviation of the
residuals is also 16 km. The major error of the LSM is the trun-
cation error. The solution of the LSM is credible for our follow-
ing work. The disparities from phase are so small that they can
be ignored. More details of these comparisons can be found in
Xi’s thesis (Xi 2018).

The representation TASS-s have a limited truncation error of
10 km. All these results support our theory that the same method
should work well to obtain the representation of the mean longi-
tude of Titan with JPL.

6. Representation of the mean longitude in JPL

After these tests, we are confident in our LSM applied in the JPL
ephemerides. Now, we have prepared everything to focus on the
long period terms of the mean longitude of Titan in JPL. Simi-
larly, 2Ω∗8 are ignored, and only these five terms are considered:
λ∗5 − λ

∗
6, $∗6, Ω∗6, Ω∗8, and Λ6.

The representation of 1000 years JPL is given in Table 6,
mentioned as JPL in the second line. For an easy comparison, the
line mentioned as TASS-t is the exact TASS system value. For
every component, we show its identification in the first column
along with its frequency. After that, there are the amplitudes,
both in radians and kilometres, then their phase in radians.

From the comparison between TASS-t and the experiment
with TASS-s, we can conclude that:

– The difference in amplitude of Ω∗8 is about 74 km, which
corresponded to the system disparity of both ephemerides.

– Because of the uncertain proper frequency Ω∗6 (obtained
value), the error in amplitude of the LSM is more than 100 km.
As in TASS-s, it influenced the amplitude of component Λ6.

– When we use the theoretical value of Ω∗6 in the calculation,
the difference between the amplitude of Ω∗6 reduced to no more
than 4 km, along with the influence to Λ6, disappeared.

– Except the system difference in the major component Ω∗8,
the other results from JPL are very similar to TASS-t.

Figure 2 gives the residuals. They correspond to the mean
longitude of Titan in JPL when all the obtained components
of “JPL” are removed. So, they are the residuals between real
ephemeris and our representation. We can find that the curve
scatters much more in the period away from J2000.0. We cannot
explain what causes such behaviour. Using FA on the residuals
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Table 5. TASS-s: representation of λ6 for TASS over 1000 years with the obtained proper frequencies by the least-squares method.

n◦ Frequency Amplitude Phase Period ID
(radian/year) (radian) (km) (radian) (year)

1 0.001946457996 0.0014851266 1814.63161 −1.73740199 3228.01 −Ω∗8
2 0.008773851378 0.0006884030 841.13899 0.34890892 716.13 −Ω∗6
3 0.006867993783 0.0000885665 108.21680 −3.05325855 914.85 Λ6
4 364.085272883577 0.0000120881 14.77008 0.77944420 0.02 λ∗5 − λ

∗
6

5 0.017867728598 0.0000265389 32.42705 2.41822124 351.65 2$∗6
6 0.213382895534 0.0001829765 223.57347 2.41992955 29.45 λ∗s
7 0.426696677075 0.0002067852 252.66460 −1.15803311 14.73 2λ∗s
8 0.639898005931 0.0000291063 35.56409 −1.91815485 9.82 3λ∗s

Table 6. Comparisons of the representation of mean longitude of Titan between TASS-t and JPL.

ID Frequency Amplitude Phase
(radian/year) (radian) (km) (radian)

−Ω∗8 0.001925543543 0.0014891848 1819.59023 −1.761791 TASS-t
0.001925543543 0.0015494050 1893.17154 −1.745326 JPL

−Ω∗6 0.008931239596 0.0006277976 767.08705 0.342795 TASS-t
0.008935057595 0.0006308411 770.80583 0.343321 JPL

Λ6 0.006867993783 0.0000320522 39.16362 2.558410 TASS-t
0.006874219340 0.0000326175 39.85431 2.437628 JPL

λ∗5 − λ
∗
6 364.085272881417 0.0000128825 15.740789 0.778237 TASS-t

364.085261349846 0.0000111378 13.608928 0.779460 JPL

2$∗6 0.017867728608 0.0000278284 34.00269 2.455682 TASS-t
0.017845695764 0.0000273363 33.40144 2.418477 JPL

λ∗s 0.213299200620 0.0001839936 224.81626 2.415336 TASS-t
0.213381048936 0.0001830009 223.60326 2.420117 JPL

2λ∗s 0.426598240156 0.0002064532 252.25897 −1.183717 TASS-t
0.426697846565 0.0002067870 252.66679 −1.158157 JPL

3λ∗s 0.639897360242 0.0000291064 35.56424 −1.195372 TASS-t
0.639897726868 0.0000291066 35.56449 −1.918137 JPL

Fig. 2. Residuals of our representation of the mean longitude of Titan
of JPL.

gives no more information. The mean of these residuals is about
−13.27 m, and the standard deviation is about 25.59 km. The
biggest difference is no more than 100 km over 1000 years.

Figure 3 gives an image of the consistency of our solutions.
We take different numbers of terms into the LSM programme:

Fig. 3. Residuals of our representation of the mean longitude of Titan
of JPL using five terms or only four terms. The red curve corresponds
to the residuals when we take four terms in the calculation, and the blue
one corresponds to the residuals of five terms.

one term for the first time, two terms for the second time, and so
on, to make sure that we get the best solution. From the distribu-
tion of curves, we find that the solution of five terms is better than
of four terms, and both solutions are consistent and stable. Here,
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Table 7. Mean longitude of Titan in JPL as the form: λ6 = N × t + λ0 +
∑n

i=1 Ai sin(ωit + φi).

n◦ Frequency Amplitude Phase ID
(radian/year) (radian) (km) (radian)

143.924045534754 N
5.718878 λ0

1 0.001925543543 0.0015494050 1893.17154 −1.745326 −Ω∗8
2 0.008935057595 0.0006308411 770.80583 0.343321 −Ω∗6
3 0.426697846565 0.0002067870 252.66679 −1.158157 2λ∗s
4 0.213381048936 0.0001830009 223.60326 2.420117 λ∗s
5 0.006874219340 0.0000326175 39.85431 2.437628 Λ6
6 0.639897726868 0.0000291066 35.56449 −1.918137 3λ∗s
7 0.017845695764 0.0000273363 33.40144 2.418477 2$∗6
8 364.085261349846 0.0000111378 13.608928 0.779460 λ∗5 − λ

∗
6

we note that the residuals in Fig. 3 are not calculated with the
final choice of the proper frequencies in our solution, but with
the obtained proper frequencies in our initial experiment. That is
why the blue curve in Fig. 3 is not the same as, or as good as in
Fig. 2.

7. Conclusion
Our final solution is gathered in Table 7. It means that we can
obtain the mean longitude of Titan in JPL at any time with our
formula:

λ6 = N × t + λ0 +

nt∑
i=1

Ai sin(ωit + φi). (17)

We attempt to establish a connection between theoretical
ephemerides and ephemerides resulting from numerical integra-
tion. If we manage to avoid the shortcoming of the limited inter-
val, we obtain the characteristics of the system like the proper
frequencies. This task is very useful for theoretical studies, for
example, the study of natural satellite rotation.

In the case of orbital motion, we can expand the perturb-
ing function as a function of the osculating elements, in order
to use the Lagrange equations or their equivalent in Hamilto-
nian form. Moreover, the proper frequencies for a complex sys-
tem can be obtained with an approximate motion. Therefore, we
possibly obtain the proper frequencies and the representation of
a numerical ephemeris. We use both the FA and the LSM in our
calculations.

The limited interval influences the proper frequency values.
In summary, long period terms such as −Ω∗6, −Ω∗8, −$∗8, and
−$∗6, are more affected, while short period terms like λ∗s , λ∗6,
and λ∗5 are almost unaffected. So, we choose the corresponding
values obtained for the LSM to get TASS-s only.

Finally, we repeat our work with the JPL, and obtain the
proper frequencies and the representation in mean longitude of
Titan. The difference between our results and ephemeris itself is
less than 100 km over 1000 years. Therefore, from now on, our
formula works well to accurately estimate the value of the mean
longitude of Titan, for example, for the study of its rotation.

We intend to complete our work with a similar analysis of the
other orbital elements from JPL ephemerides, in order to have a
complete ephemeris of Titan. Our method could also be applied
to other Saturnian satellites, and moreover, using other numeri-
cal ephemerides like NOE (Lainey et al. 2004a,b).
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Appendix A: Additional tables

Table A.1. Mean motion of Titan p6.

n◦ Frequency Amplitude Phase Period Id
(radian/year) (radian) (km) (radian) (year)

1 −0.000000000000 0.0001348090 164.71907 3.14159265 ** **
2 364.085272884288 0.0000251406 30.71855 −2.36335826 0.02 λ∗5 − λ

∗
6

3 694.586823068935 0.0000123408 15.07885 −0.18685101 0.01 λ∗4 − λ
∗
6

Notes. The series is in cosine, and N is in use in TASS.

Table A.2. Mean longitude of Titan in the ring plane of Saturn, λ6 = N × t + λ0 + r6.

n◦ Frequency Amplitude Phase Period Id
(radian/year) (radian) (km) (radian) (year)

1 0.001925543543 0.0014891848 1819.59023 −1.76176914 3263.24 −Ω∗8
2 0.008931239596 0.0006277976 767.08705 0.34279510 638.38 −Ω∗6
3 0.426598241016 0.0002064532 252.25897 −1.15851073 14.73 2λ∗s
4 0.213299120062 0.0001839936 224.81626 2.41533633 7.37 λ∗s
5 0.006867993783 0.0000320522 39.16362 2.55841019 914.85 Λ6
6 0.639897360242 0.0000291064 35.564237 −1.91809699 9.82 3λ∗s
7 0.017867728608 0.0000278284 34.00269 2.44323143 351.65 2$∗6
8 364.085272881417 0.0000120882 15.74079 0.77823556 0.02 λ∗5 − λ

∗
6

9 0.003851087124 0.0000098618 12.04984 −0.38528668 1629.82 2Ω∗8

Notes. N = 143.924047285569 radian/year, λ0 = 5.718878462 radian. The series is in sine.

Table A.3. Eccentricity and the pericentre of Titan: e6 · e
√
−1$6 .

n◦ Frequency Amplitude Phase Period Id
(radian/year) (radian) (km) (radian) (year)

1 0.008933864289 0.0289265365 35344.46715 2.86627922 703.30 $∗6
2 −0.008933959907 0.0001921234 234.74983 0.42638138 −703.29 −$∗6
3 0.417664365570 0.0000744656 90.98728 −0.72852474 15.04 −$∗6 + 2λ∗
4 143.924047290026 0.0000668787 81.71708 −0.56432198 0.04 λ∗6
5 0.007008286694 0.0000242939 29.68399 −1.64598798 896.54 $∗6 + Ω∗8
6 0.010859401773 0.0000239166 29.22298 −2.06132503 578.59 $∗6 −Ω∗8
7 0.001974774505 0.0000172066 21.02423 −2.82136616 3181.72 $∗8
8 508.009320171889 0.0000101008 12.34187 0.21391389 0.01 λ∗5
9 0.630963495932 0.0000096035 11.73423 −1.47873726 9.96 −$∗6 + 3λ∗

Notes. The series is in complex exponential.
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Table A.4. Inclination and the ascending node of Titan: sin i6
2 · e

√
−1Ω6 .

n◦ Frequency Amplitude Phase Period Id
(radian/year) (radian) (km) (radian) (year)

1 −0.000000000000 0.0056023641 ** −3.06168702 ** **
2 −0.008931239594 0.0027899429 3408.94753 −0.25711520 −703.51 Ω∗6
3 −0.001925543576 0.0001312363 160.353698 −1.27742697 −3263.07 Ω∗8
4 0.426598241223 0.0001125670 137.54224 2.04979896 14.73 2λ∗s
5 −0.213299120064 0.0000191667 23.41922 0.82899234 −29.46 −λ∗s
6 0.639897360235 0.0000149794 18.30288 1.30207992 9.82 3λ∗s
7 0.213299120067 0.0000114462 13.98577 2.28081791 29.46 λ∗s
8 −0.006831187831 0.0000110589 13.51254 −2.60258392 −919.78 2λ∗J − 5λ∗s
9 −0.003851087191 0.0000094698 11.57087 −2.63456161 −1631.54 2Ω∗8

Notes. The series is in complex exponential.

Table A.5. Eccentricity and the pericentre of Iapetus: e8 · e
√
−1$8 .

n◦ Frequency Amplitude Phase Period Id
(radian/year) (radian) (km) (radian) (year)

1 0.001974690829 0.0293564806 104533.14325 −2.88504171 3181.86 $∗8
2 0.000000000173 0.0010160948 ** −1.17634332 ** **
3 0.008933864351 0.0009953583 3544.29174 −0.27290481 703.30 $∗6
4 −0.001974690013 0.0007357199 2619.76613 −0.28684911 −3181.86 −$∗8
5 −0.003900230657 0.0006699057 2385.41362 −1.60817645 −1610.98 −$∗8 + Ω∗8
6 143.924047287379 0.0005937571 2114.26216 −0.56432011 0.04 λ∗6
7 0.003900234199 0.0004151871 1478.40653 −1.46121687 1610.98 $∗8 −Ω∗8
8 0.424623422946 0.0003789230 1349.27660 −1.32845238 14.80 $∗8 + 2λ∗s
9 −86.067002634140 0.0002637298 939.09435 1.93136965 −0.07 −λ∗6 + 2λ∗8

Notes. The series is in complex exponential.

Table A.6. Inclination and the ascending node of Iapetus: sin i8
2 · e

√
−1Ω8 .

n◦ Frequency Amplitude Phase Period Id
(radian/year) (radian) (km) (radian) (year)

1 0.000000000013 0.1320165341 ** −3.06166175 ** **
2 −0.001925543543 0.0679455002 241941.69602 −1.27380978 −3263.07 −Ω∗8
3 0.001925548274 0.0006892422 2454.27453 1.43655002 3263.06 Ω∗8
4 −0.008931561444 0.0002730339 927.22457 2.895442360 −703.48 Ω∗6
5 0.426598229330 0.0002641112 940.45244 2.050845161 14.73 2λ∗s
6 0.428523789410 0.0001816922 646.97322 −2.872882953 14.66 −Ω∗8 + 2λ∗s
7 −0.003850976252 0.0000457179 162.79321 −2.698421716 −1631.58 2Ω∗8
8 −0.213299120075 0.0000449442 160.03821 0.826999484 −29.46 λ∗s
9 0.639897360224 0.0000337462 120.16414 1.303788709 9.82 2λ∗s

Notes. The series is in complex exponential.
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