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ABSTRACT

The Sérsic model shows a close fit to the surface brightness (or surface density) profiles of elliptical galaxies and galaxy bulges, and
possibly also those of dwarf spheroidal galaxies and globular clusters. The deprojected density and mass profiles are important for
many astrophysical applications, in particular for mass-orbit modeling of these systems. However, the exact deprojection formula for
the Sérsic model employs special functions that are not available in most computer languages. We show that all previous analytical
approximations to the 3D density profile are imprecise at low Sérsic index (n . 1.5). We derived a more precise analytical approxi-
mation to the deprojected Sérsic density and mass profiles by fitting two-dimensional tenth-order polynomials to the residuals of the
analytical approximations by Lima Neto et al. (1999, MNRAS, 309, 481; LGM) for these profiles, relative to the numerical estimates.
Our LGM-based polynomial fits have typical relative precision better than 0.2% for both density and mass profiles, for Sérsic indices
0.5 ≤ n ≤ 10 and radii 0.001 < r/Re < 1000. Our approximation is much more precise than previously published approximations
(except, in some models, for a few discrete values of the index). An appendix compares the deprojected Sérsic profiles with those of
other popular simple models.

Key words. methods: numerical – galaxies: elliptical and lenticular, cD – galaxies: structure – globular clusters: general –
galaxies: bulges

1. Introduction

The Sérsic model (Sérsic 1963; Sersic 1968) is the generaliza-
tion of the R1/4 law (de Vaucouleurs 1948) to describe the sur-
face brightness profiles of elliptical galaxies (Caon et al. 1993)
and the bulges of spiral galaxies (Andredakis et al. 1995). It has
also been used to describe the surface density profiles of nuclear
star clusters (Graham & Spitler 2009), resolved dwarf spheroidal
galaxies (Battaglia et al. 2006), and globular clusters (Barmby
et al. 2007).

The surface (mass or number) density (or equivalently sur-
face brightness) of the Sérsic model is

Σ(R) = Σ0 exp

−bn

(
R
Re

)1/n, (1)

where R is the projected distance to the source center, Re is the
effective radius containing half of the projected luminosity, n is
the Sérsic index, and Σ0 is the central surface density. The term
bn is a function of n, obtained by solving the equation:

Γ(2n)/2 = γ(2n, bn), (2)

where γ(a, x) =
∫ x

0 ta−1e−tdt is the lower incomplete gamma
function.

Since the Sérsic model accurately represents astronomical
objects viewed in projection, it is important to know its cor-
responding three-dimensional (3D) density and mass profiles.
These serve as a reference for comparison with other possible
observational tracers, as well as to dark matter. Moreover, the 3D
density profile is required for modeling the kinematics of spher-
ical structures because it appears in the Jeans equation of local
dynamical equilibrium. Since the Jeans equation also contains

the total mass profile, the 3D mass profiles of stellar components
are required to estimate the dark matter mass profile of elliptical
and dwarf spheroidal galaxies.

Many authors assume that simple three-dimensional models
resemble Sérsic models for certain values of the Sérsic index:
It is often assumed that massive ellipticals and spiral bulges are
well represented by the Hernquist (1990) model (e.g., Widrow
& Dubinski 2005). On the other hand, dwarf spheroidal galaxies
are often described with the Plummer (1911) model (e.g., Muñoz
et al. 2018, who also tried Sérsic and other models), while ultra
diffuse galaxies have been described with the Einasto (Einasto
1965; Navarro et al. 2004)1 model (Nusser 2019). Łokas &
Mamon (2001) noted that the projected Navarro et al. (1996,
hereafter NFW) model resembles an n = 3 Sérsic for reason-
able concentrations. Finally, n = 4 Sérsic models are consid-
ered to resemble the Jaffe (1983) model (Ciotti et al. 2019). In
Appendix A, we compare these models to the deprojected Sérsic.

Unfortunately, the deprojection of the Sérsic surface density
profile to a 3D (mass or number)2 density profile, through Abel
(1826) inversion

ρ(r) = −
1
π

∫ +∞

r

dΣ

dR
dR

√
R2 − r2

, (3)

1 Navarro et al. (2004) showed how the Einasto model accurately rep-
resents the density profiles of dark matter halos in dissipationless cos-
mological simulations, while Merritt et al. (2005) were the first to note
its similar form to the Sérsic model, and Merritt et al. (2006) were first
to realize that this model had been previously introduced by Einasto.
2 The number profile always has the same form as the mass profile,
and is obtained by simply replacing M(r) with N(r) and M∞ with N∞,
e.g., in Eqs. (7), (8), and (17).
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(e.g., Binney & Mamon 1982), as well as the corresponding 3D
mass (or number) profile

M(r) =

∫ r

0
4πs2ρ(s) ds, (4)

both involve the complicated Meijer G special function (Mazure
& Capelato 2002 for integer values of n, and Baes & Gentile
2011 for general values of n) or the other, complicated Fox H
function (Baes & van Hese 2011), neither of which are available
in popular computer languages.

Following the shape of the analytical approximation to the
R1/4 law by Mellier & Mathez (1987), Prugniel & Simien (1997,
hereafter, PS) proposed an analytical approximation for the 3D
density of the Sérsic profile:

ρPS(r) = ρ0

(
r

Re

)−pn

exp

−bn

(
r

Re

)1/n, (5)

where pn is a function depending only on n:

pn,PS = 1 −
0.594

n
+

0.055
n2 · (6)

Equation (5) yields a simple analytical form for the 3D mass
profile,

MPS(r) = M∞
γ[(3 − pn) n, bn (r/Re)1/n]

Γ[(3 − pn) n]
, (7)

M∞ = 4π ρ0 R3
e

n Γ[(3 − pn) n]

b(3−pn) n
n

, (8)

Lima Neto et al. (1999, hereafter LGM) later perfected the
approximation of Eq. (6) with

pn,LGM = 1 −
0.6097

n
+

0.05463
n2 · (9)

According to LGM, Eq. (9) has 5% relative accuracy for 0.56 ≤
n ≤ 10 and −2 < log(r/Re) < 3. However, the power-law
approximation at small radii is unjustified for small n. Indeed,
as shown by Baes & Gentile (2011), the central density profile
converges to a finite value for n < 1 (and the inner density pro-
file diverges only logarithmically for n = 1), as we illustrate in
Sect. 3.

Simonneau & Prada (1999, 2004, hereafter SP) proposed the
quasi-Gaussian expansion for the density profile

ρSP(r) =
2
π

bn

(n−1)
Σ0

Re

(
r

Re

)1/n−1 5∑
j=1

ρ j exp

−bnλ j

(
r

Re

)1/n , (10)

where

λ j =
(
1 − x2

j

)−1/(n−1)
, (11)

ρ j = w j
x j√

1 −
(
1 − x2

j

)2n/(n−1)
, (12)

where x j and w j are ten fit parameters. The individual SP density
profiles (the terms inside the sum of Eq. (10)) have a similar (but
not the same) form to that of the PS/LGM one, hence the similar
shape of the mass profile:

MSP(r) = M∞
4

π (n − 1) Γ(2n)

×

5∑
j=1

ρ j

λ2n+1
j

γ

2n + 1, bnλ j

(
r

Re

)1/n · (13)
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n
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Fig. 1. Variation with Sérsic index of the different parameters of the ana-
lytical approximation of Emsellem & van de Ven (2008) for the depro-
jected Sérsic density profile (filled circles). The solid and dotted curves
show the spline cubic and linear interpolations, respectively. At small
n, the parameters vary abruptly and the interpolations (both linear and
cubic) are therefore uncertain.

Trujillo et al. (2002) proposed an ellipsoid formula, which in
the limit of spherical symmetry becomes

ρT(r) =
2(n−1)/(2n) bn

π n
Σ0

Re
rpn(1/n−1) Kνn (r/Re)

1 −
∑2

i=0 an,i logi (r/Re)
, (14)

where Kν(x) is the modified Bessel function of the second kind3

of index ν, while νn, pn, an,0, an,1, and an,2 are empirical func-
tions of index n. Trujillo et al. (2002) only provided their results
for integer and half-integer values of n for n ≤ 5 and only inte-
ger values of n beyond. Emsellem & van de Ven (2008, hereafter
EV) repeated their analysis on a finer grid of n, with steps of
0.1 for 0.5 ≤ n ≤ 1.5 and with one more term, an,3, in Eq. (14)
involving 168 parameters. However, as shown in Fig. 1, these
functions vary abruptly for n . 1.2. Moreover, neither Trujillo
et al. (2002) nor Emsellem & van de Ven (2008) provide analyt-
ical forms for the mass profile.

In summary, all the previous approximations to the depro-
jected Sérsic model have drawbacks:

– Both PS and LGM (and Márquez et al. 2000, which is the
same as LGM, but with a slightly different last term for
pn, which was a typo) are inappropriate for low n (Baes &
Gentile 2011) and less precise than claimed (Emsellem &
van de Ven 2008).

– SP is limited to n ≥ 1, and is generally less precise than EV.
– Trujillo et al. (2002) is only given for half-integer values of

n and their parameters vary wildly with n for n ≤ 1.5. These
authors do not provide a formula for the mass profile.

– EV also suffers from discrete values of n, even though the
grid is finer (∆n = 0.1 for n ≤ 1.5). These authors also did
not provide a formula for the mass profile.

In this article, we provide polynomial fits to the log residuals
of the LGM approximation, which allow high accuracy to be
reached for both the 3D density and 3D mass profiles in a wide
range of Sérsic indices. In Sect. 2, we present the mathematical
formalism and briefly explain our numerical integration method.
We then show in Sect. 3 how our polynomial plus LGM approx-
imation is orders of magnitude more precise than the formulae
of LGM, SP, and Trujillo et al. (2002), as well as that of EV for
low n, and is only slightly less precise for n & 3. We conclude
and discuss our results in Sect. 4.

3 Trujillo et al. (2002) call this the modified Bessel function of the third
kind, as some others do.
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2. Method

2.1. Equations using dimensionless profiles

We express the general surface density, 3D density, and 3D mass
(or number) profiles in terms of dimensionless functions:

Σ(R) =
M∞
πR2

e
Σ̃

(
R
Re

)
, (15)

ρ(r) =

(
M∞

4πR3
e

)
ρ̃

(
r

Re

)
, (16)

M(r) = M∞M̃
(

r
Re

)
· (17)

Hereafter, we use x = r/Re and X = R/Re. For the Sérsic model
(see Graham & Driver 2005 for a thorough review of the Sérsic
profile), the dimensionless surface density profile is

Σ̃S(X) =
b2n

n

2n Γ(2n)
exp

(
−bn X1/n

)
, (18)

while for the PS model, one can write the dimensionless 3D den-
sity and mass profiles as

ρ̃PS(x) =
b(3−pn) n

n

n Γ
[
(3 − pn) n

] x−pn exp
[
−bnx1/n

]
, (19)

M̃PS(x) =
γ
[
(3 − pn) n, bn X1/n

]
Γ((3 − pn) n)

· (20)

It is easy to show that the deprojection Eq. (3) becomes

ρ̃(x) = −
4
π

∫ +∞

x

dΣ̃

dX
dX

√
X2 − x2

, (21)

where

dΣ̃

dX
≡ Σ̃′(X) = −

b2n+1
n

2n2 Γ(2n)
X−1+1/n exp

(
−bnx1/n

)
. (22)

The dimensionless mass profile is

M̃(x) =

∫ x

0
y2 ρ̃(y) dy = −

4
π

∫ x

0
y2 dy

∫ ∞

y

Σ̃′(X)√
X2 − y2

dX (23)

= −

∫ x

0
X2 Σ̃′(X) dX −

2
π

∫ ∞

x
X2 sin−1

( x
X

)
Σ̃′(X) dX

+
2
π

∫ ∞

x
x
√

X2 − x2 Σ̃′(X) dX, (24)

where Eq. (24) is obtained by inversion of the order of integra-
tion in the second equality of Eq. (23).

2.2. Numerical integration

We numerically evaluated the dimensionless 3D density
(Eq. (21)) and mass (Eq. (24)) profiles by performing the numer-
ical integrations in cells 50× 100 of [log n, log(r/Re)], with
log 0.5 ≤ log n ≤ 1 and −3 ≤ log(r/Re) ≤ 3. Numerical cal-
culations were done with Python’s scipy.integrate.quad. For
both density and mass profiles, we split the numerical integration
in two, that is,∫ b

a
f (X) dX =

∫ Xcrit

a
f (X) dX +

∫ b

Xcrit

f (X) dX, (25)

10−3 10−2 10−1 100 101 102 103

r/Re

10−3

10−2

10−1

100

101

102

103

ρ̃
×
n

Γ
[n

(3
−
p)

]

bn
(3
−
p)

×
ex

p
[b

(r
/R

e)
1/
n
]

Numerical

LGM

n = 0.75

n = 1.25

n = 2.25

n = 4.25

n = 8.25

n = 0.75

n = 1.25

n = 2.25

n = 4.25

n = 8.25

Fig. 2. Illustration of the accuracy of the PS formula with the LGM
coefficients for pn. The solid curves show the numerically estimated
profiles, while the colored-dashed curves show the LGM approxima-
tion.

where exp
(
−bnX1/n

crit

)
= 10−9 and a ≤ Xcrit ≤ b. We used a rel-

ative tolerance of epsrel = 10−4 and limit = 1000 in both
integrals. If Xcrit < [a, b], we also used epsrel = 10−4 and
limit = 1000, but for a single integral from a to b.

We performed our analysis using either the highly accurate
approximations for bn of Ciotti & Bertin (1999, hereafter, CB)
or the exact (numerical) solutions of Eq. (2). We noticed that
the difference between these two approaches was negligible (see
Sect. 3).

We then fit two-dimensional polynomials to both
log

[̃
ρLGM(x, n)/ρ̃(x, n)

]
and log

[
M̃LGM(x, n)/M̃(x, n)

]
, for

geometrically spaced x and n, writing

log
[
f̃LGM/ f̃

]
= −

k∑
i=0

k−i∑
j=0

ai j logi x log j n, (26)

with polynomial orders 2 ≤ k ≤ 12. For this, we used Python’s
package numpy.linalg.lstsq. We found the smallest residuals
for tenth-order polynomials when using both the bn approxima-
tion of CB and bn by numerically solving Eq. (2). The coeffi-
cients are provided in Tables B.1–B.4. In the rest of the paper,
we present the results relative to the CB approximation, since it
is a simpler and more used model, and also because our tenth-
order polynomial fits the exact bn case remarkably well.

2.3. Numerical precision: tests for known simple analytical
deprojections (n = 0.5 and 1)

For Sérsic indices n = 0.5 and n = 1, there are analytical solu-
tions for the 3D density profile:

ρ̃(x) =


4

b3/2
0.5
√
π

exp
[
−b0.5 x2

]
(n = 0.5),

2
b3

1

π
K0(b1x) (n = 1),

(27)
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Fig. 3. Accuracy of deprojected density (top 6 panels) and mass (3 bottom panels) of the different analytical approximations (PS: Prugniel &
Simien 1997; LGM: Lima Neto et al. 1999; SP: Simonneau & Prada 1999, 2004; Trujillo+02: Trujillo et al. 2002; EV: Emsellem & van de Ven
2008) and our new one (Eq. (28), with green-colored titles) as a function of both Sérsic index (abscissae) and radius (ordinates). The color scale
given in the vertical color bars is linear for log ratios between −0.001 and 0.001 and logarithmic beyond. The gray region and green curves in
the upper left of the density panels are for regions where the numerical integration reached the underflow limit or density 10−30 times ρ(Re),
respectively, because of the very rapid decline of density at large radii for low n, and also covers n < 1, which is not covered by the SP model. We
note that the EV and Trujillo+02 models perform better at specific values of n that are often missed in our grid.

where K0(x) is the modified Bessel function of the second kind
of index 0. We can therefore verify the numerical integration of
Eq. (21) for these two Sérsic indices.

For the interval −3 ≤ log(r/Re) ≤ 3, we compared the den-
sities from numerical integration with the analytical formulae of
Eq. (27) using the CB approximation for bn. The match is very
good, with root-mean-square (rms) values of log (̃ρana/ρ̃num) of
1.5 × 10−7 and 2 × 10−8 for n = 0.5 and n = 1, respectively. The
same comparison using the exact bn yields 7×10−5 and 2×10−8,

respectively (with one particular value of r causing the higher
rms for n = 0.5).

3. Results

As seen in Fig. 2, the 3D density profiles depart from the power
laws proposed by LGM at low n, especially for low radii, as
expected by the asymptotic expansions of Baes & Gentile (2011)
for n < 1. Interestingly, the LGM formula is also inadequate at
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Fig. 4. Accuracy of different approximations (LGM: Lima Neto et al. 1999; SP: Simonneau & Prada 1999, 2004; EV: Emsellem & van de Ven
2008) and our new one (Eq. (28)) as a function of Sérsic index. We note that the EV model performs better at specific values of n that are often
missed in our logarithmic grid of 1000 values of n.

low radii for n = 1.25 and 2.25, although the asymptotic expan-
sion of Baes & Gentile (2011) indicate power-law behavior at
small radii. This poor accuracy of the LGM approximation at
low radii is a serious concern when performing kinematic mod-
eling of systems with possible central massive black holes. For
example, Gaia second data release (DR2) positions and proper
motions for stars in nearby globular clusters extend inwards to
0.7 arcsec from the center, which translates to 0.002 Re.

We now compare the accuracy of the different analyti-
cal approximations for the 3D density and 3D mass profiles.
Figure 3 displays the ratio log

(
f̃model/ f̃

)
, for f̃ = ρ̃ and f̃ = M̃,

for the main analytical approximations available in the literature,
along with our new model

fnew(x, n) = fLGM(x, n) dex

 10∑
i=0

10−i∑
j=0

ai, j logi x log j n

 , (28)

where f is either the 3D density or 3D mass profile. We see
that our model presents a more continuous behavior over the full
range of Sérsic indices and radii. Our approximation displays
the smallest residuals among all models for n . 3 (except that
SP outperforms our model for mass estimates at r > 3 Re for
n > 1.3).

The variation of accuracy with Sérsic index can be seen in
more detail in Fig. 4, which displays the rms of log

(
f̃model/ f̃

)
,

over the radial domain where ρ(r) > 10−30 ρ(Re), of the main
analytical approximations using 1000 log-spaced Sérsic indices.
Figure 4 indicates that the SP and EV approximations for density
are less accurate than 2.3% (0.01 for log

(
f̃model/ f̃

)
) for n < 1.6

and n < 1.3, respectively. Our approximation (Eq. (28)) is more
accurate than SP for n < 4.3 (density) and n < 3.1 (mass), and is
more accurate than EV for n < 3.4 (density), except for their par-
ticular choices of n. Figure 4 shows that the EV approximation is
much more accurate at specific values of n (we note that our grid
does not contain all of these values precisely, and therefore the
EV approximation is even more accurate at these specific values
of n). However, these specific values of n represent a negligible

measure compared to the full continuous range of 0.5 ≤ n ≤ 10.
Therefore, the EV approximation at low n is not reliable for esti-
mating the 3D density profile.

We analyzed the results shown in Fig. 4 using bn from CB or
by numerically solving Eq. (2), and the results were very simi-
lar. In fact, the results are similar if we adopt one form of bn in
the numerical integration and the other in the analytical approx-
imations. This can be explained by the fact that log

(
f̃LGM/ f̃

)
is practically the same for both estimates of bn, yielding a very
similar fit of Eq. (26).

Finally, Table 1 provides the rms accuracies computed over
the full range of radii −3 ≤ log(r/Re) ≤ 3 and 0.5 ≤ n ≤ 10,
except for the SP formula, which does not allow n ≤ 1, and also
avoiding the domain where ρ(r) < 10−30 ρ(Re). We see that, aver-
aging over all Sérsic indices, our approximation is much more
accurate than all others (with over ten times lower rms).

4. Conclusions and discussion

The Sérsic model is usually considered to provide excellent fits
to the surface density (or surface brightness) profiles of elliptical
galaxies, spiral bulges, and even dwarf spheroidal galaxies and
globular clusters. In the past, many authors have used simple
analytical models to describe these systems, arguing that their
models, once projected, resemble Sérsic models. It is more rel-
evant to compare the physically meaningful three-dimensional
density profiles of these simple models to the deprojected Sérsic
model.

This comparison is made in Appendix A for the Plummer,
Jaffe, Hernquist, Einasto, and NFW models. As seen in Fig. A.1,
most of the simple models do not provide good fits to the
deprojected Sérsic model, even for narrow ranges of the Sér-
sic index. The Plummer model requires a low index at small
radii, but a much higher index at large radii, and the normalized
density profile fits poorly at most radii. The Hernquist model
resembles the n = 2.8 deprojected Sérsic model at low radii and
the n = 5.7 Sérsic at large radii. The NFW models resemble
the n = 2.8 deprojected Sérsic at low radii (consistent with the
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Table 1. Accuracy of approximations to 3D density and mass profiles.

rms rms

Author log
(
ρ̃approx

ρ̃num

)
log

 M̃approx

M̃num


Prugniel & Simien (1997) 0.1052 0.1187
Lima Neto et al. (1999) 0.0905 0.1021
Simonneau & Prada (2004) (n > 1) 0.0238 0.0098
Trujillo et al. (2002) 0.1496 –
Emsellem & van de Ven (2008) 0.0382 –
New 0.0005 0.0007
Hybrid-1 (optimized for ncut) 0.0004 0.0005
Hybrid-2 (optimized for rcut) 0.0004 0.0005

Notes. The rms accuracies are computed over the full range of radii
−3 ≤ log(r/Re) ≤ 3 (100 steps) and 0.5 ≤ n ≤ 10 (50 steps), except
for the SP formula, which does not allow n ≤ 1, and also avoiding
the domain where ρ(r) < 10−30 ρ(Re). Trujillo et al. (2002) and EV do
not provide analytical mass profiles. The lower two rows display hybrid
models, both with our new approximation ρ̃new for n < 3.4 and ρ̃EV

for n ≥ 3.4. The first hybrid model has a mass profile M̃new for n < 3
and M̃SP for n ≥ 3, while in hybrid model 2, the mass profile is M̃new for
r < Re and M̃LGM for r ≥ Re. The values in bold highlight the accuracies
with our approximations.

similarity of the projected Sérsic with NFW discovered by Łokas
& Mamon 2001), but have a shallower slope at large radii than
even the shallowest (n = 8) deprojected Sérsic model. On the
other hand, the Jaffe model resembles the n = 5.7 model at all
radii. Moreover, as seen in Fig. A.2, the Einasto model provides
a fair representation (rms difference of density profiles normal-
ized to value at half-mass radius less than 0.1 dex) of the depro-
jected Sérsic model for n > 6.5.

We reconsidered the different analytical deprojections of the
Sérsic surface brightness (or surface density) profile. We found
that the analytical approximations present in the literature do not
show satisfying results when the Sérsic index is in the range
0.5 ≤ n . 1.5 (apart from the specific values of n given by
Emsellem & van de Ven 2008). In particular, the power-law
times exponential density profile of Prugniel & Simien (1997)
and Lima Neto et al. (1999) fails to reproduce the inner den-
sity profiles for low n, even up to n = 2.25 despite the power-law
behavior expected at small radii for n > 1 (Baes & Gentile 2011).

With a tenth-order two-dimensional polynomial fit, we pro-
pose a new analytical approximation (Eq. (28)) that is precise
over the range log 0.5 ≤ log n ≤ 1, for −3 ≤ log (r/Re) ≤ 3.
Our approximation provides the highest precision when averag-
ing over all values of Sérsic indices and radii (Table 1). While
the approximations of Simonneau & Prada (1999, 2004) on one
hand and of Emsellem & van de Ven (2008) on the other are
more accurate than ours for n > 4.3 and 3.4, respectively, ours is
more accurate at lower Sérsic indices.

This is important for the study of astronomical sources with
low Sérsic indexes, such as galaxy bulges, nuclear star clusters,

dwarf spheroidal galaxies, and globular clusters. Moreover, our
approximation of Eq. (28) to the density profile is sufficiently
accurate for most scientific analyses for n > 3. Nevertheless,
the user could use a hybrid approximation, combining either the
Simonneau & Prada (2004) or Emsellem & van de Ven (2008)
approximations for n ≥ 3.4 and ours for n < 3.4 (as shown in
the last rows of Table 1). Finally, our analysis has the advantage
of also providing a precise approximation for the mass profile,
whereas no analytical expression can be derived from the density
profile of Emsellem & van de Ven (2008). Our Python 3 codes
are available at4 along with coefficients of Tables B.1 and B.2.

These results will be useful in future mass-orbit modeling
analyses of low-mass spherical systems, as we are preparing for
globular clusters (Vitral & Mamon, in prep.).

Acknowledgements. We thank Alister Graham for providing important
references.
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Appendix A: Comparison of deprojected Sérsic to
other popular models
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Fig. A.1. Comparison of other known 3D density profiles and the depro-
jected Sérsic density profile for certain values of the Sérsic index n. All
density profiles are normalized to the value at the 3D half-mass radius,
rh (see text). The different NFW models can be distinguished at low
radii, where the density increases with rmax/a.

Figure A.1 compares the density profiles, normalized to the half-
mass radius rh, for which we applied the following relations:

ρ(r) ∝
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exp
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−
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)1/n
]

(Einasto).

(A.1)

The ratio of half-mass radius to scale radius rh/a is given by
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10−1

100

rm
s

lo
g

(
ρ

S
ér

si
c(
r)

ρ
S

ér
si

c(
r h

)

ρ
E

in
as

to
(r

h
)

ρ
E

in
as

to
(r

)

)

Fig. A.2. Comparison of Einasto and deprojected Sérsic density pro-
files (both normalized to half-mass radius). Red: best-fit Einasto index
(dashed line is nEinasto = nSersic). Blue: rms of best fit.

rh

a
=



[(
1 + 21/3

)
/
√

3
]

(Plummer),

1 (Jaffe),(
1 +
√

2
)

(Hernquist),

dex
(
−0.209 + 0.856 log c − 0.090 log2 c

)
(NFW),[

P(−1)(3n, 1/2)
]n

(Einasto).

(A.2)

In Eq. (A.2) for NFW, c = rmax/a, where rmax is the max-
imum allowed radius (because, contrary to all other models
discussed here, the NFW model has logarithmically divergent
mass). Also, for Einasto, P(−1)(a, y) is the inverse regular-
ized lower incomplete gamma function, i.e., x = P(−1)(a, y)
satisfies γ(a, x)/Γ(a) = y5. For Sérsic, the conversion was
done by fitting a third-order polynomial and recovering the
relation rh/Re =

∑3
j=0 ai logi n, where {a0, a1, a2, a3} =

{1.32491, 0.0545396, −0.0286632, 0.0035086}.
The Einasto model, which is the 3D analog of the Sér-

sic model, resembles the deprojected Sérsic model. Figure A.2
shows the best-fit values of the Einasto index, nEinasto in terms of
the Sérsic index. The relation (red curve) is almost one-to-one
(dashed line). The figure also shows the rms over all radii and
best-fit indices (blue curve).

5 The inverse (regularized) incomplete gamma function is available in
many computer languages, e.g. Python (scipy package), Fortran, Mat-
lab, Mathematica, and Javascript.
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Appendix B: Coefficients of polynomials for new
deprojected Sérsic models

In this section, we present Tables B.1–B.4, which contain the
coefficients ai j in Eq. (26), for f̃ = ρ̃ and f̃ = M̃, as well as

for both Ciotti & Bertin (1999) approximation for bn and the
exact solution from Eq. (2). The numbers in parentheses are the
exponents: e.g., “1.234 (−3)” corresponds to 1.234×10−3. Coef-
ficients that are not followed by a number in parentheses have
exponent zero.

Table B.1. Coefficients of Eqs. (26) and (28), for f̃ = ρ̃ and bn calculated from Ciotti & Bertin (1999) accurate approximation.

i\ j 0 1 2 3 4 5 6 7 8 9 10

0 5.017 (−3) 1.573 (−3) −7.175 (−2) 1.256 (−1) 4.047 (−1) −1.191 2.455 (−1) 8.650 (−1) 1.178 −2.771 1.209
1 −4.507 (−3) −8.623 (−3) 5.430 (−2) 2.298 (−1) −9.349 (−1) −3.113 (−1) 5.052 −7.980 5.065 −1.162 –
2 −4.251 (−2) 6.921 (−2) 2.706 (−1) −1.134 1.318 7.078 (−1) −3.093 2.664 −7.604 (−1) – –
3 1.373 (−2) −2.444 (−2) −8.324 (−2) 2.795 (−1) −1.923 (−1) −2.219 (−1) 3.670 (−1) −1.381 (−1) – – –
4 1.428 (−3) −7.563 (−3) 2.897 (−4) 5.385 (−2) −1.248 (−1) 1.200 (−1) −4.310 (−2) – – – –
5 −1.388 (−3) 3.261 (−3) 1.615 (−3) −1.112 (−2) 1.272 (−2) −5.059 (−3) – – – – –
6 −9.613 (−5) 5.901 (−4) −4.636 (−4) −4.867 (−4) 4.043 (−4) – – – – – –
7 9.505 (−5) −1.801 (−4) 1.074 (−5) 5.734 (−5) – – – – – – –
8 4.306 (−6) −2.496 (−5) 2.464 (−5) – – – – – – – –
9 −2.924 (−6) 4.229 (−6) – – – – – – – – –
10 −2.117 (−8) – – – – – – – – – –

Table B.2. Coefficients of Eqs. (26) and (28), for f̃ = M̃ and bn calculated from Ciotti & Bertin (1999) accurate approximation.

i\ j 0 1 2 3 4 5 6 7 8 9 10

0 7.076 (−4) 1.014 (−4) −3.794 (−2) 2.785 (−2) 4.247 (−1) −6.904 (−1) −6.342 (−1) 8.367 (−1) 2.565 −4.115 1.622
1 1.557 (−2) −4.107 (−2) −6.114 (−2) 7.489 (−1) −1.700 −3.157 (−2) 5.508 −8.413 5.055 −1.080 –
2 −3.517 (−2) 5.740 (−2) 2.328 (−1) −9.638 (−1) 1.007 1.001 −3.228 2.706 −7.776 (−1) – –
3 1.986 (−2) −2.017 (−2) −1.276 (−1) 3.000 (−1) −8.746 (−2) −4.227 (−1) 5.202 (−1) −1.817 (−1) – – –
4 1.274 (−3) −4.467 (−3) 1.989 (−3) 3.040 (−2) −7.734 (−2) 7.555 (−2) −2.723 (−2) – – – –
5 −2.853 (−3) 3.494 (−3) 8.720 (−3) −1.959 (−2) 1.656 (−2) −6.196 (−3) – – – – –
6 −1.620 (−4) 1.411 (−4) −4.970 (−5) −3.006 (−4) 2.779 (−4) – – – – – –
7 2.557 (−4) −3.086 (−4) −2.993 (−4) 3.039 (−4) – – – – – – –
8 1.608 (−5) −2.203 (−6) −3.249 (−7) – – – – – – – –
9 −9.523 (−6) 1.303 (−5) – – – – – – – – –
10 −6.227 (−7) – – – – – – – – – –

Table B.3. Coefficients of Eqs. (26) and (28), for f̃ = ρ̃ and bn calculated from Eq. (2).

i\ j 0 1 2 3 4 5 6 7 8 9 10

0 5.017 (−3) 1.573 (−3) −7.176 (−2) 1.256 (−1) 4.048 (−1) −1.191 2.460 (−1) 8.647 (−1) 1.178 −2.771 1.209
1 −4.506 (−3) −8.634 (−3) 5.434 (−2) 2.298 (−1) −9.353 (−1) −3.103 (−1) 5.051 −7.979 5.065 −1.162 –
2 −4.251 (−2) 6.921 (−2) 2.706 (−1) −1.134 1.318 7.077 (−1) −3.093 2.664 −7.605 (−1) – –
3 1.373 (−2) −2.443 (−2) −8.325 (−2) 2.795 (−1) −1.922 (−1) −2.220 (−1) 3.670 (−1) −1.381 (−1) – – –
4 1.428 (−3) −7.564 (−3) 2.912 (−4) 5.385 (−2) −1.247 (−1) 1.200 (−1) −4.310 (−2) – – – –
5 −1.388 (−3) 3.260 (−3) 1.617 (−3) −1.112 (−2) 1.272 (−2) −5.060 (−3) – – – – –
6 −9.613 (−5) 5.900 (−4) −4.633 (−4) −4.872 (−4) 4.045 (−4) – – – – – –
7 9.505 (−5) −1.801 (−4) 1.072 (−5) 5.735 (−5) – – – – – – –
8 4.306 (−6) −2.496 (−5) 2.464 (−5) – – – – – – – –
9 −2.924 (−6) 4.229 (−6) – – – – – – – – –
10 −2.113 (−8) – – – – – – – – – –

Table B.4. Coefficients of Eqs. (26) and (28), for f̃ = M̃ and bn calculated from Eq. (2).

i\ j 0 1 2 3 4 5 6 7 8 9 10

0 7.075 (−4) 1.030 (−4) −3.796 (−2) 2.788 (−2) 4.249 (−1) −6.912 (−1) −6.335 (−1) 8.375 (−1) 2.563 −4.113 1.621
1 1.557 (−2) −4.107 (−2) −6.112 (−2) 7.489 (−1) −1.700 −3.088 (−2) 5.507 −8.413 5.055 −1.080 –
2 −3.518 (−2) 5.740 (−2) 2.328 (−1) −9.638 (−1) 1.007 1.001 −3.228 2.706 −7.776 (−1) – –
3 1.986 (−2) −2.017 (−2) −1.276 (−1) 3.000 (−1) −8.743 (−2) −4.228 (−1) 5.203 (−1) −1.817 (−1) – – –
4 1.274 (−3) −4.469 (−3) 1.990 (−3) 3.040 (−2) −7.734 (−2) 7.556 (−2) −2.723 (−2) – – – –
5 −2.853 (−3) 3.494 (−3) 8.720 (−3) −1.959 (−2) 1.656 (−2) −6.195 (−3) – – – – –
6 −1.620 (−4) 1.412 (−4) −4.977 (−5) −3.007 (−4) 2.780 (−4) – – – – – –
7 2.557 (−4) −3.086 (−4) −2.993 (−4) 3.039 (−4) – – – – – – –
8 1.608 (−5) −2.209 (−6) −3.205 (−7) – – – – – – – –
9 −9.523 (−6) 1.303 (−5) – – – – – – – – –
10 −6.228 (−7) – – – – – – – – – –
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