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The Clinical and Laboratory Standards Institute recommends the use of Mueller Hinton
(MH) medium to perform drug susceptibility testing (DST) of Mycobacterium avium
complex (MAC) using the microdilution method. For MAC, there has been no study on
the impact of media on the determination of minimum inhibitory concentrations (MICs)
of antibiotics other than clarithromycin. This study aimed at determining the impact of
two media used for DST of MAC and at augmenting the number of pertinent MICs for
MAC species encountered in clinical practice. MICs of antibiotics used for the treatment
of MAC infections were determined for 158 clinical MAC isolates (80 M. avium, 40
M. intracellulare, 35 M. chimaera, two M. yongonense and one M. timonense) in MH
and 7H9 broths using the SLOMYCO SensititreTM system (TREK Diagnostic Systems,
East Grinstead, United Kingdom). The modal MICs determined in both media were
the same for linezolid, moxifloxacin, rifabutin and amikacin but not for clarithromycin,
rifampin and ethambutol. The kappa test for MICs converted to susceptibility categories
showed an excellent agreement for clarithromycin, a moderate agreement for linezolid
and a weak agreement for moxifloxacin and amikacin. For amikacin, 7H9 allowed a
better distinction (fewer intermediate strains) of wild-type populations than MH. Existing
breakpoints for linezolid and moxifloxacin are spread through the distribution of MICs
for wild-type populations. The only breakpoints that can be used rationally are those for
amikacin and clarithromycin. For amikacin, 7H9 performs better than MH, whereas both
media perform equally for clarithromycin. Given that testing in 7H9, as opposed to MH,
allows easier MIC measurements and yields greater reproducibility, we propose the use
of 7H9 medium for DST of MAC.

Keywords: drug susceptibility testing, Mycobacterium avium complex, SLOMYCO SensititreTM, 7H9, Mueller
Hinton, clarithromycin, amikacin

Abbreviations: BTS, British Thoracic Society; CLSI, Clinical and Laboratory Standards Institute; DST, drug susceptibility
testing; I, intermediate susceptibility; MAC, Mycobacterium avium complex; ME, major error; mE, minor error; MH, Mueller
Hinton; MIC, minimum inhibitory concentration; NTM, nontuberculous mycobacteria; R, resistance; S, susceptibility; SGM,
slowly growing mycobacteria; VME, very major error.
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INTRODUCTION

Nontuberculous mycobacteria (NTM) are ubiquitous
microorganisms isolated mainly from water and soil. In 1959,
Runyon proposed the first classification of NTM into four groups,
the first three comprising “Slowly Growing Mycobacteria” (SGM)
and the fourth of “Rapidly Growing Mycobacteria.”

The most common SGM are the species belonging to the
Mycobacterium avium complex (MAC), comprising especially
Mycobacterium avium, Mycobacterium intracellulare and
Mycobacterium chimaera. MAC organisms can cause different
conditions in humans such as pulmonary disease, lymphadenitis
and disseminated infection (Griffith et al., 2007). The incidence
of MAC infections is increasing in most industrialized countries,
possibly because of the increase in immunocompromised
and/or older patients (Griffith et al., 2007; Prevots et al., 2010).
These infections require antibiotic therapy based on macrolides
(azithromycin or clarithromycin) combined with a rifamycin
(rifampin or rifabutin) and ethambutol. Parenteral or inhaled
amikacin may be added to this regimen for severe cases (Griffith
et al., 2007, 2018; Olivier et al., 2017). Clofazimine, moxifloxacin,
linezolid and bedaquiline are alternative drugs proposed mainly
for the treatment of infections caused by macrolide-resistant
MAC, but clinical evidence of their efficacy is lacking (Griffith
et al., 2007; Koh et al., 2013; Jo et al., 2014; Philley et al., 2015).

The Clinical and Laboratory Standards Institute (CLSI)
published guidelines for drug susceptibility testing (DST) of
NTM in 2011, mainly reproduced by the British Thoracic Society
(BTS) in 2017, and updated in 2018 (Clinical and Laboratory
Standards Institute [CLSI], 2011, 2018; Haworth et al., 2017).
As for MAC, both CLSI and BTS agree that, for clarithromycin
susceptibility, the isolate be tested prior to the initiation of
treatment in patients who satisfy the diagnostic criteria of
nontuberculous mycobacterial lung disease of the American
Thoracic Society/Infectious Disease Society of America. Indeed,
a strong relationship between in vitro activity and in vivo efficacy
of clarithromycin has been well established in clinical trials
(Dautzenberg et al., 1995; Wallace et al., 1996, 2014; Tanaka
et al., 1999; Kobashi et al., 2012). When testing macrolides,
the pH of the medium is critical for the interpretation of the
minimal inhibitory concentration (MIC) (Truffot-Pernot et al.,
1991). Cation-adjusted Mueller Hinton (MH) medium has a pH
of 7.4 whereas 7H9 medium has a pH of 6.8. Consequently,
CLSI guidelines propose different breakpoints according to
the medium employed only for clarithromycin (Clinical and
Laboratory Standards Institute [CLSI], 2011, 2018).

The BTS also recommends amikacin susceptibility testing of
isolates collected prior to initiation of treatment (Haworth et al.,
2017). New CLSI guidelines published in 2018 likewise propose
amikacin testing and give two breakpoints, depending on the
route of administration (intravenous or inhaled) (Clinical and
Laboratory Standards Institute [CLSI], 2018).

In case of resistance to clarithromycin, CLSI recommends
DST of moxifloxacin and linezolid, whereas BTS recommends
testing a wider panel of antibiotics to guide treatment regimens
(Clinical and Laboratory Standards Institute [CLSI], 2011, 2018;
Haworth et al., 2017).

Although used for the treatment of MAC infections, no
clinical breakpoints have been defined for ethambutol and
rifamycins.

Therefore, our goals were to determine the impact of the
media used for MAC DST and to augment MIC data for clinically
relevant MAC species.

MATERIALS AND METHODS

Bacterial Strains and Growth Conditions
The study involved 158 clinically relevant MAC isolates sent to
the French National Reference Centre for Mycobacteria from
2015 to 2017. The isolates were grown on Löwenstein-Jensen
medium and incubated at 37◦C in ambient air. Before April
2016, isolates were identified with the GenoType Mycobacterium
CM line probe assay (Hain Lifescience, Nerhen, Germany)
associated with the sequencing of the internal transcribed spacer
(ITS) region and, after this date, with the GenoType NTM-
DR assay (Hain Lifescience). Mixed NTM infections were ruled
out from the study.

The reference strain M. avium ATCC 700898 was used for the
quality control of MIC determinations and for reproducibility
testing of the technique.

MIC Determination
For each strain, DST was performed in parallel once in MH
and once in 7H9 broth by microdilution using the SLOMYCO
SensititreTM system (TREK Diagnostic Systems, East Grinstead,
United Kingdom) and MICs were determined according to
the instructions of the CLSI and manufacturer. In practice,
a suspension (0.5 McFarland standard) of each isolate was
transferred into the two assessed media: cation-adjusted MH
broth and Middlebrook 7H9 broth, both supplemented with 5%
oleic albumin dextrose catalase (OADC). The final suspension
was inoculated into the tray that was subsequently incubated
at 37◦C in ambient air. The tray was examined after 7 days of
incubation and MICs were determined visually using an inverted
mirror. In case of insufficient growth, trays were reincubated
and read again after 10 to 14 days. The lowest concentration of
antimicrobial that inhibited visible growth was taken as the MIC.
Results were considered to be invalid if no growth was detected
in the control well.

For each strain, 13 antimicrobial agents were tested but only
results concerning the MICs of those recommended for treatment
of MAC infections (clarithromycin, moxifloxacin, linezolid,
amikacin, ethambutol, rifampin, rifabutin) are presented in
this work.

The range of tested concentrations for each antibiotic of
interest is given in Supplementary Table S1.

SIR (Susceptibility, Intermediate
Susceptibility, Resistance)
Categorization
For clarithromycin, two breakpoints were used to categorize
MICs according to the medium inoculated: with MH broth
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TABLE 1 | Antimicrobial agents and interpretive criteria for Mycobacterium avium
complex used in the study.

Antimicrobial agent Medium MIC (mg/L)

for category

S I R

Amikacin (IV) MH and 7H9 ≤16 32 ≥64

Amikacin (liposomal or inhaled) MH and 7H9 ≤64 – ≥128

Clarithromycin MH (pH 7.3–7.4) ≤8 16 ≥32

7H9 (pH 6.8) ≤16 32 ≥64

Linezolid MH and 7H9 ≤8 16 ≥32

Moxifloxacin MH and 7H9 ≤1 2 ≥4

S, susceptible; I: intermediate; R: resistant.

(pH 7.4), clarithromycin susceptibility was assumed at an
MIC of ≤8 mg/L as opposed to ≤16 mg/L when 7H9 broth
(pH 6.8) was used. No breakpoint is proposed in the recent
CLSI guidelines (Clinical and Laboratory Standards Institute
[CLSI], 2018) to interpret the clarithromycin MIC measured in
7H9. We therefore used the breakpoint proposed in 2011 for
the radiometric instrument method (Clinical and Laboratory
Standards Institute [CLSI], 2011) since the pH is the same
in both cases. To interpret moxifloxacin and linezolid MICs
obtained in both media, we used the breakpoints defined by
the CLSI for broth microdilution at pH 7.4 (susceptible strain
if moxifloxacin MIC ≤ 1 mg/L and linezolid MIC ≤ 8 mg/L)
(Clinical and Laboratory Standards Institute [CLSI], 2018). For
amikacin, we applied the breakpoint defined by the CLSI in 2018
for the intravenous route (susceptible strain if MIC ≤ 16 mg/L)
(Brown-Elliott et al., 2013; Clinical and Laboratory Standards
Institute [CLSI], 2018). These breakpoints are summarized
in Table 1.

Statistical Analysis
Reproducibility was evaluated by measuring MICs of the
reference strain M. avium ATCC 700898 six times in both media.
The results are expressed as a percentage of agreement compared
to reference values given by the CLSI.

MIC50 and MIC90 values were determined from MIC
distributions and were defined as the MICs required to inhibit
the growth of 50% and 90% of the studied strains.

ECOFF and modal MIC (defined by the most frequent
MIC value for each distribution of aggregated MICs for each
species and drug), were calculated using the EUCAST excel
tool ECOFF Finder (European Committee on Antimicrobial
Susceptibility Testing [EUCAST], 2019, http://www.eucast.org/
mic_distributions_and_ecoffs/). We chose to present ECOFF
95% values since the MICs showed a non-wild-type distribution,
some reflecting acquired resistance.

MIC and susceptibility results obtained with both media were
compared. Confirmed discordant results were classified as either
very major errors [VME, defined as resistance (R) in MH but
susceptibility (S) in 7H9], major errors (ME, S in MH and R
in 7H9), or minor errors [mE, intermediate (I) in one medium
but S or R in the other]. MICs determined in MH broth were
considered the reference values.

The agreement between both methods was expressed as
percent concordance and the strength of the agreement was
determined using kappa scores which are considered to be
excellent, strong, moderate, weak, very weak or null when they
are 1–0.8, 0.8–0.6, 0.6–0.4, 0.4–0.2, 0.2–0 or ≤0, respectively.

RESULTS

Strains Included in the Study
A total of 158 MAC isolates were included in the study. These
strains were collected from 141 patients. 14 patients had between
two and four strains included in the study (total of 31 strains),
with a mean interval between two strains of 6.5 months. These
strains belonged to different species: 80 M. avium (51%), 40
M. intracellulare (25%), 35 M. chimaera (22%), 2 Mycobacterium
yongonense (1%) and 1 Mycobacterium timonense (1%). These
strains were isolated from various pulmonary specimens (90%)
and extrapulmonary samples (10%) such as blood cultures and
lymph node biopsies. They were isolated from 141 patients, 96
(68%) who had a history of long-term macrolide treatment, 20
(14%) who had no history of treatment, and 25 (18%) whose
history of treatment was unknown.

Reproducibility
Reproducibility results are shown in Supplementary Table S2.

The concordance percentages obtained for the three
antibiotics for which the CLSI proposes breakpoints were 100%
with both media tested, except for clarithromycin in MH (67%).

MICs
The distribution of MIC values determined in MH and 7H9
for MAC species is shown in Figure 1 and in Supplementary
Figures S1, S2. MIC50, MIC90, Modal MIC, percentage of
concordance, kappa and ECOFF values are shown in Table 2.

Amikacin modal MICs were identical for the three species
(M. avium, M. intracellulare and M. chimaera) in MH and
7H9 (16 mg/L) except for M. intracellulare in 7H9 (8 mg/L).
Ethambutol, linezolid, moxifloxacin and rifabutin modal MICs
were within one or two titer steps of each other for the three
species in both media. Clarithromycin and rifampin modal
MICs were higher for M. avium than for M. intracellulare
and M. chimaera.

Three strains were unusual MAC members: one M. timonense
and two M. yongonense for which it was not possible to draw any
conclusion concerning the distribution of MIC values because of
the limited sample size (Supplementary Table S3).

Impact of the pH of the Medium on the
MICs of Antibiotics Recommended for
Treatment of MAC Infections
For MAC, modal MICs were the same in both media for
amikacin (16 mg/L), linezolid (32 mg/L) moxifloxacin (2 mg/L)
and rifabutin (≤0.25 mg/L), but not for rifampin (2 mg/L in
MH vs. > 8 mg/L in 7H9), clarithromycin (2 mg/L in MH vs.
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FIGURE 1 | Distribution of MICs for M. avium, M. intracellulare, M. chimaera and M. avium complex clinical isolates determined in MH and 7H9 broths. x-axis
represents the MICs in mg/L. y-axis represents the number of strains. Blue and red bars represent values obtained in MH and 7H9 broth, respectively. Vertical lines
represent the CLSI susceptibility breakpoints. For amikacin, breakpoints for the intravenous route are represented in full lines and for the liposomal or inhalation route
in dotted lines. For clarithromycin, breakpoints for MICs determined in MH and 7H9 are represented in blue and red lines, respectively.

8 mg/L in 7H9) and ethambutol (4 mg/L in MH vs. 8 mg/L in
7H9) (Table 2).

The concordance percentages for MIC values determined in
both media are low to moderate: from 27% for clarithromycin to
60% for linezolid. These results are confirmed by the kappa test
revealing a very weak agreement for clarithromycin, ethambutol,
rifabutin and rifampin (0 < k ≤ 0.2), a weak agreement for
amikacin and moxifloxacin (0.2 < k ≤ 0.4) and a moderate
agreement for linezolid (0.4 < k ≤ 0.6) (Table 2).

When MICs of the four drugs whose breakpoints were
available (Table 1) were converted into interpretive categories,
the kappa test showed a weak agreement for amikacin
and moxifloxacin, a moderate agreement for linezolid and
an excellent agreement for clarithromycin (k ≥ 0.8). The
concordance percentage was between 59% (moxifloxacin) and

98% (clarithromycin) (Table 3). VME and ME were observed
for moxifloxacin (respectively, 3 and 2%) and linezolid (2%
for both), and mE were observed for all drugs, up to 36% for
moxifloxacin (Table 3).

Among strains resistant to clarithromycin or amikacin in
the two media for which search for resistance mutations was
performed, the results of the genotypic drug susceptibility testing
were the following:

– among the 18 strains categorized resistant to
clarithromycin in both media, 12 strains (67%) harbored
an rrl mutation in at position 2058 or 2059,

– among the 2 strains categorized resistant to amikacin
in both media, 1 harbored a mutation in rrs at the
1408 position.
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TABLE 2 | MICs (mg/L) determined in MH and 7H9 for M. avium complex overall and for the species M. avium, M. intracellulare, and M. chimaera.

MIC values

N Modal MIC
MH/7H9

MIC50

MH/7H9
MIC90

MH/7H9
Tentative ECOFF

95% MH/7H9
% Concordance Kappa coefficient

Amikacin

M. avium complex 158 16/16 16/16 32/16 32/32 57 0.39

M. avium 80 16/16 16/16 32/16 32/32 56 0.3

M. intracellulare 40 16/8 8/8 32/16 NA/32 55 0.39

M. chimaera 35 16/16 8/8 16/16 32/32 57 0.43

Clarithromycin

M. avium complex 158 2/8 2/8 64/>64 8/32 27 0.18

M. avium 80 2/16 3/8 >64/>64 8/32 19 0.12

M. intracellulare 40 1/4 2/4 8/16 8/16 20 0.13

M. chimaera 35 1/2 1/2 8/16 4/16 46 0.37

Ethambutol

M. avium complex 158 4/8 4/8 16/>16 16/32 37 0.18

M. avium 80 8/8 8/8 16/>16 32/16 35 0.13

M. intracellulare 40 4/4 4/4 8/16 16/8 43 0.17

M. chimaera 35 4/8 4/8 16/16 8/32 34 0.17

Linezolid

M. avium complex 158 32/32 32/32 64/64 64/64 60 0.43

M. avium 80 32/32 32/32 64/64 64/64 49 0.25

M. intracellulare 40 32/16 32/24 64/32 >64/64 70 0.58

M. chimaera 35 16/16 16/16 32/32 64/64 74 0.61

Moxifloxacin

M. avium complex 158 2/2 2/2 8/8 8/4 46 0.24

M. avium 80 2/1 2/2 8/8 8/4 55 0.35

M. intracellulare 40 4/2 3/2 8/4 8/4 48 0.26

M. chimaera 35 2/2 4/2 8/4 8/4 20 −0.08

Rifabutin

M. avium complex 158 ≤0.25/≤0.25 ≤0.25/0.5 2/2 1/0.5 39 0.17

M. avium 80 ≤0.25/0.5 ≤0.25/1 1/2 0.5/4 27 0.06

M. intracellulare 40 ≤0.25/≤0.25 ≤0.25/0,5 2/2 0.5/0.5 48 0.3

M. chimaera 35 ≤0.25/≤0.25 ≤0.25/0.5 2/2 0.5/0.5 57 0.37

Rifampin

M. avium complex 158 2/>8 4/4 >8/>8 >8/NA 35 0.09

M. avium 80 >8/>8 4/8 >8/>8 NA/NA 40 0.04

M. intracellulare 40 4/2 4/2 >8/8 >8/>8 31 0.1

M. chimaera 35 2/1 4/2 8/8 >8/>8 29 0.15

NA, not available, ECOFF above the test concentration range.

Interestingly, among the strains categorized intermediate to
clarithromycin or amikacin whatever the medium, no resistance
mutation was found.

DISCUSSION

There are several issues concerning DST of NTM, from the
lack of data regarding breakpoint availability to the scarcity
of data establishing a correlation between in vitro assays and
patient outcomes.

Recent studies have shown the impact of the media used on the
determination of MICs for mycobacteria (Lavollay et al., 2014;
Aziz et al., 2017). The goal of this study was to compare those
measured in MH and 7H9 broths.

Regarding the reproducibility of results obtained with the
reference strain M. avium ATCC 700898, we identified a major
issue linked to the low percentage of agreement obtained with
clarithromycin tested in MH broth (67%) whereas it was 100% in
7H9 broth. It could be related to antibiotic instability, a problem
possibly influencing MIC measurements, as pointed out recently
(Schoutrop et al., 2018). Indeed, this latter study revealed an
important decrease of ≥75% in clarithromycin concentration in
cation-adjusted MH broth medium over 14 days of incubation
at 37◦C while amikacin levels remain stable. In consequence,
current MIC determinations could lead to false high MICs thus
underestimating drug susceptibility.

CLSI and BTS recommend the performance of clarithromycin
susceptibility testing of isolates taken prior to the initiation of
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TABLE 3 | Comparison of amikacin, clarithromycin, linezolid and moxifloxacin
susceptibility results determined using SLOMYCO SensititreTM panels (TREK
Diagnostic Systems) according to the medium employed (very major errors are
given in bold and underlined, major errors in bold, and minor errors are underlined).

7H9 % Agreement (kappa)

S I R

Amikacin MH S 132 2 0 87 (0.35)

I 17 4 0

R 0 1 2

Clarithromycin MH S 136 2 0 98 (0.92)

I 1 1 0

R 0 0 18

Linezolid MH S 14 7 3 73 (0.52)

I 1 27 18

R 3 11 74

Moxifloxacin MH S 27 5 3 59 (0.38)

I 21 25 6

R 5 25 41

treatment. As expected, the main difference between the MICs
determined in the two media was observed for clarithromycin
due to the difference in their pH (6.8 in 7H9 vs. 7.4 in MH)
(Table 2 and Supplementary Figure S1; Truffot-Pernot et al.,
1991). However, using previous CLSI breakpoints given for
testing in 7H9 medium with radiometric testing (Clinical and
Laboratory Standards Institute [CLSI], 2011), only rare minor
errors were observed when MICs were converted into the SIR
categories (2%) (Table 3).

Both guidelines also recommend the performance of amikacin
susceptibility testing of isolates taken prior to initiation of
treatment (Haworth et al., 2017; Clinical and Laboratory
Standards Institute [CLSI], 2018). In both media, the MICs of
amikacin were better correlated than those of clarithromycin
(57 vs. 27%), but SIR concordance was lower (87 vs. 98%)
(Tables 2, 3). In particular, when MICs were converted into
SIR categories, 17 strains (11%) were categorized as I in
MH and S in 7H9. Among these 17 strains, none was
identified in patients who had been treated previously with
amikacin. Moreover, of these, 12 were screened for mutation
in rrl, none was mutated. Finally, the MIC distribution was
Gaussian in MH and 7H9 media (Figure 1 and Supplementary
Figures S1, S2). Thus, we believe that these 17 strains
belong to the wild-type MAC strain population and should
not be categorized as I. We propose to either modify the
breakpoint in MH from 16 to 32 mg/L, or to measure the
amikacin MIC in 7H9.

Susceptibility testing of moxifloxacin and linezolid may
be considered for macrolide-resistant strains, although no
in vitro-in vivo correlation has yet been established (Koh
et al., 2013; Haworth et al., 2017; Clinical and Laboratory
Standards Institute [CLSI], 2018). For linezolid and moxifloxacin,
agreement was weak to moderate between both methods
(Table 3), and in up to 5% of MICs that were converted into
SIR categories there were VME and ME. Several reasons can
explain this lack of agreement between the results obtained

using the two media. The first is that the proposed breakpoints
are spread through the distribution of the MICs of the wild-
type strains (Figure 1 and Supplementary Figures S1, S2).
Therefore, small MIC variations that are not clinically relevant
may modify the categorization. The second reason is linked
to the TREK microplate system. Reading is difficult, requires
trained staff and is easier when the test is performed in 7H9
rather than in MH broth (personal observation). Overall, as
MICs are high and there is no clear demonstration of activity
of these drugs in humans (Schön and Chryssanthou, 2017),
we propose not to perform in vitro susceptibility testing for
moxifloxacin and linezolid.

Finally, although ethambutol and rifamycins are used for
the treatment of MAC infections, no clinical breakpoints
have been defined for these drugs (Clinical and Laboratory
Standards Institute [CLSI], 2018). In their absence, agreement
was measured based on MICs. It must be mentioned that
for rifabutin and rifampin, the concentration range tested
in broth does not cover the entire MIC distribution, either
because concentrations are too high (rifabutin) or too low
(rifampin) (Figure 1). However, despite overall high in vitro
MICs, it has been shown that rifamycins and ethambutol
do prevent selection of clarithromycin resistance (May et al.,
1997; Gordin et al., 1999; Benson et al., 2003), and a recent
study reported a better clinical response when rifampin and/or
ethambutol MICs were below 8 mg/L (Kwon et al., 2018). If
these results are confirmed, this concentration could be used as
a clinical breakpoint.

Regarding MIC profiles among MAC members, our data
confirm previous studies showing that MICs for M. avium are
rather equivalent to or higher than those for other members
of the MAC (Renvoisé et al., 2014; Litvinov et al., 2018). Also,
rifampin MICs for M. chimaera isolates were lower than for
M. avium, in line with a recent study (Maurer et al., 2018).
Regarding the rarely described M. timonense and M. yongonense,
our data are in favor of lower amikacin MICs for these
species than for other members of MAC. Given the small
number of strains in our study and in the literature, more
data are needed to know the wild-type susceptibility profiles of
these two species.

ECOFF values were close to those described in 2018 by Maurer
et al., for clarithromycin, amikacin and rifabutin (a difference of
no more than one dilution, except for rifabutin, in M. chimaera)
and added data for ethambutol, rifampin and moxifloxacin
(Maurer et al., 2018).

In conclusion, there is no major difference between MICs
measured in 7H9 and MH broth for most antibiotics with the
exception of clarithromycin and amikacin. For clarithromycin,
the MIC values obtained with the two media evaluated are
significantly different. Nevertheless, there is no clinical impact on
SIR categorization when using breakpoints adapted to the media
employed. However, for amikacin, 7H9 broth allows a better
distinction between wild and resistant populations by limiting
the number of strains categorized “intermediate.” Moreover, the
7H9 broth seems to offer a better growth of mycobacteria than
the MH medium which makes it possible to render the results
of the DST faster (from the first reading on day seven) without
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requiring a second reading on D10 or D14 as it can happen
with the MH broth.

In addition, better growth of mycobacteria facilitates the
reading of MICs, thus reducing inter-operator variability and
improving the reproducibility of the technique. Since the only
difference we’ve shown between the two media are in favor of the
7H9 medium, we recommend using the 7H9 broth supplemented
with 5% OADC instead of CAMH broth supplemented with 5%
OADC for DST of MAC.
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