M. Claudon, Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) in the liver-Update, Ultrasound Med. Biol, vol.34, issue.1, pp.11-29, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01717336

T. R. Porter, Clinical applications of ultrasonic enhancing agents in echocardiography, J. Amer. Soc. Echocardiography, vol.31, issue.3, pp.241-274, 2018.

R. Senior, Clinical practice of contrast echocardiography: Recommendation by the European association of cardiovascular imaging (EACVI) 2017, Eur. Heart J.-Cardiovascular Imag, vol.18, issue.11, pp.1205-1205, 2017.

P. S. Sidhu, The EFSUMB guidelines and recommendations for the clinical practice of contrast-enhanced ultrasound (CEUS) in nonhepatic applications: Update 2017 (long version), Ultraschall Med, vol.39, issue.2, pp.2-44, 2018.

J. K. Dave, Non-invasive intra-cardiac pressure measurements using subharmonic-aided pressure estimation: Proof of concept in humans, Ultrasound Med. Biol, vol.43, issue.11, pp.2718-2724, 2017.

I. Gupta, J. R. Eisenbrey, P. Machado, M. Stanczak, K. Wallace et al., On factors affecting subharmonic-aided pressure estimation (SHAPE), Ultrason. Imag, vol.41, issue.1, pp.35-48, 2019.

R. E. Klabunde, Cardiovascular integration, adaptation, and pathophysiology, Cardiovascular Physiology Concepts, pp.198-234, 2012.

J. Xi, The estimation of patient-specific cardiac diastolic functions from clinical measurements, Med. Image Anal, vol.17, issue.2, pp.133-146, 2013.

J. Xi, W. Shi, D. Rueckert, R. Razavi, N. P. Smith et al., Understanding the need of ventricular pressure for the estimation of diastolic biomarkers, Biomech. Model. Mechanobiol, vol.13, issue.4, pp.747-757, 2014.

V. G. Halldorsdottir, Subharmonic contrast microbubble signals for noninvasive pressure estimation under static and dynamic flow conditions, Ultrason. Imag, vol.33, issue.3, pp.153-164, 2011.

P. J. Frinking, E. Gaud, J. Brochot, and M. Arditi, Subharmonic scattering of phospholipid-shell microbubbles at low acoustic pressure amplitudes, IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol.57, issue.8, pp.1762-1771, 2010.

A. Katiyar, K. Sarkar, and F. Forsberg, Modeling subharmonic response from contrast microbubbles as a function of ambient static pressure, J. Acoust. Soc. Amer, vol.129, issue.4, pp.2325-2335, 2011.

J. K. Dave, On the implementation of an automated acoustic output optimization algorithm for subharmonic aided pressure estimation, Ultrasonics, vol.53, issue.4, pp.880-888, 2013.

J. R. Eisenbrey, Simultaneous grayscale and subharmonic ultrasound imaging on a modified commercial scanner, Ultrasonics, vol.51, issue.8, pp.890-897, 2011.

A. W. Appis, M. J. Tracy, and S. B. Feinstein, Update on the safety and efficacy of commercial ultrasound contrast agents in cardiac applications, Echo Res. Pract, vol.2, issue.2, pp.55-62, 2015.

K. S. Andersen and J. A. Jensen, Impact of acoustic pressure on ambient pressure estimation using ultrasound contrast agent, Ultrasonics, vol.50, issue.2, pp.294-299, 2010.

F. Li, D. Li, and F. Yan, Improvement of detection sensitivity of microbubbles as sensors to detect ambient pressure, Sensors, vol.18, issue.12, p.4083, 2018.

T. Sun, N. Jia, D. Zhang, and D. Xu, Ambient pressure dependence of the ultra-harmonic response from contrast microbubbles, J. Acoust. Soc. Amer, vol.131, issue.6, pp.4358-4364, 2012.

P. Marmottant, A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture, J. Acoust. Soc. Amer, vol.118, issue.6, pp.3499-3505, 2005.

A. Q. Nio, The subharmonic amplitude of SonoVue increases with hydrostatic pressure at low incident acoustic pressures, Proc. IEEE Int. Ultrason. Symp. (IUS), pp.1-4, 2017.

I. Beekers, T. Van-rooij, A. F. Van-der-steen, N. Jong, M. D. Verweij et al., Acoustic characterization of the CLINIcell for ultrasound contrast agent studies, IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol.66, issue.1, pp.244-246, 2019.

V. G. Halldorsdottir, Subharmonic aided pressure estimation for monitoring interstitial fluid pressure in tumours-In vitro and in vivo proof of concept, Ultrasonics, vol.54, issue.7, pp.1938-1944, 2014.

J. L. Raymond, Broadband attenuation measurements of phospholipid-shelled ultrasound contrast agents, Ultrasound Med. Biol, vol.40, issue.2, pp.410-421, 2014.

W. Shi, F. Forsberg, J. Raichlen, L. Needleman, and B. Goldberg, Pressure dependence of subharmonic signals from contrast microbubbles, Ultrasound Med. Biol, vol.25, issue.2, pp.275-283, 1999.

J. K. Dave, V. G. Halldorsdottir, J. R. Eisenbrey, and F. Forsberg, Processing of subharmonic signals from ultrasound contrast agents to determine ambient pressures, Ultrason. Imag, vol.34, issue.2, pp.81-92, 2012.

J. K. Dave, Noninvasive LV pressure estimation using subharmonic emissions from microbubbles, JACC, Cardiovascular Imag, vol.5, issue.1, pp.87-92, 2012.

L. Bergamasco and D. Fuster, Oscillation regimes of gas/vapor bubbles, Int. J. Heat Mass Transfer, vol.112, pp.72-80, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01525867

C. Greis, Technology overview: SonoVue (Bracco, Milan), Eur. Radiol, vol.14, issue.8, pp.11-15, 2004.

A. Prosperetti, Subharmonics and ultraharmonics in the forced oscillations of weakly nonlinear systems, Amer. J. Phys, vol.44, issue.6, pp.548-554, 1976.

E. L. Carstensen and L. L. Foldy, Propagation of sound through a liquid containing bubbles, J. Acoust. Soc. Amer, vol.19, issue.3, pp.481-501, 1947.

I. Gupta, The effects of hydrostatic pressure on the subharmonic response of SonoVue and Sonazoid, Proc. IEEE Int. Ultrason. Symp. (IUS), pp.1-4, 2019.

J. E. Chomas, P. Dayton, J. Allen, K. Morgan, and K. W. Ferrara, Mechanisms of contrast agent destruction, IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol.48, issue.1, pp.232-248, 2001.

E. Kanbar, D. Fouan, C. A. Sennoga, A. A. Doinikov, and A. Bouakaz, Impact of filling gas on subharmonic emissions of phospholipid ultrasound contrast agents, Ultrasound Med. Biol, vol.43, issue.5, pp.1004-1015, 2017.

Y. Luan, Lipid shedding from single oscillating microbubbles, Ultrasound Med. Biol, vol.40, issue.8, pp.1834-1846, 2014.

D. Fuster, A review of models for bubble clusters in cavitating flows, pp.1-40, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01913039

G. S. Stergiou, A universal standard for the validation of blood pressure measuring devices: Association for the advancement of medical instrumentation/European society of Hypertension/international organization for standardization (AAMI/ESH/ISO) collaboration statement, Hypertension, vol.71, issue.3, pp.368-374, 2018.

A. Q. Nio, E. J. Stöhr, and R. E. Shave, Age-related differences in left ventricular structure and function between healthy men and women, Climacteric, vol.20, issue.5, pp.476-483, 2017.

D. E. Sosnovik, S. L. Baldwin, S. H. Lewis, M. R. Holland, and J. G. Miller, Transmural variation of myocardial attenuation measured with a clinical imager, Ultrasound Med. Biol, vol.27, issue.12, pp.1643-1650, 2001.

J. R. Eisenbrey, Chronic liver disease: Noninvasive subharmonic aided pressure estimation of hepatic venous pressure gradient, Radiology, vol.268, issue.2, pp.581-588, 2013.

K. Nam, Monitoring neoadjuvant chemotherapy for breast cancer by using three-dimensional subharmonic aided pressure estimation and imaging with US contrast agents: Preliminary experience, Radiology, vol.285, issue.1, pp.53-62, 2017.

I. Gupta, Effect of pulse shaping on subharmonic aided pressure estimation in vitro and in vivo, J. Ultrasound Med, vol.36, issue.1, pp.3-11, 2017.

D. Fuster and T. Colonius, Modelling bubble clusters in compressible liquids, J. Fluid Mech, vol.688, pp.352-389, 2011.

C. Esposito, K. Dickie, F. Forsberg, and J. K. Dave, Towards real-time implementation of subharmonic aided pressure estimation (SHAPE)-How to identify optimum acoustic output for SHAPE, Proc. IEEE Int. Ultrason. Symp. (IUS), pp.1-4, 2017.

B. Helfield, J. J. Black, B. Qin, J. Pacella, X. Chen et al., Fluid viscosity affects the fragmentation and inertial cavitation threshold of lipid-encapsulated microbubbles, Ultrasound Med. Biol, vol.42, issue.3, pp.782-794, 2016.

H. Mulvana, E. Stride, J. V. Hajnal, and R. J. Eckersley, Temperature dependent behavior of ultrasound contrast agents, Ultrasound Med. Biol, vol.36, issue.6, pp.925-934, 2010.

R. J. Eckersley, C. T. Chin, and P. N. Burns, Optimising phase and amplitude modulation schemes for imaging microbubble contrast agents at low acoustic power, Ultrasound Med. Biol, vol.31, issue.2, pp.213-219, 2005.