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Abstract— The low frequency array (LOFAR) is a phased array interferometer currently consisting of
13 international stations across Europe and 38 stations surrounding a central hub in the Netherlands.
The instrument operates in the frequency range of24MMHz and is used for a variety of astrophysical
science cases. While it is not heliophysics or space weather dedicated, a new project lcQfifee for

Space Weath&(LOFAR4SW) aims at designing a system upgrade to allow the entire array to observe the
Sun, heliosphere, Eatrthionosphere, and Jupiter throughout its observing window. This will allow the
instrument to operate as a space weather observing platform, facilitating both space weather science and
operations. Part of this design study aims to survey the existing space weather infrastructure operating
at radio frequencies and show how LOFAR4SW can advance the current state-of-the-art étdthis

In this paper, we survey radio instrumentation and facilities that currently operate in space weather
science and/or operations, including instruments involved in solar, heliospheric, and ionospheric studies.
We furthermore include an overview of the major space weather service providers in operation today
and the current state-of-the-art in the radio data they use and provide routinely. The aim is to compare
LOFAR4SW to the existing radio research infrastructure in space weather and show how it may advance
both space weather science and operations in the radio domain in the near future.

Keywords: Space weather / Radio

1 Introduction (Patil et al., 201y pulsar and fast transient observations
(Stappers et al., 20),Jand large-scale radio surveg@himwell

The low frequency array (LOFAR) is a phased arra)?t al., 201_7, among many others. LOFAR is also |_nvolved in
interferometer currently consisting of 13 international statiorPlar Physics and space weather research, including both quiet
spread across seven European countries with a central hub®fl active Sun, heliospheric, and ionospheric observations
38 stations in the Netherlandsag Haarlem et al., 20).3The ~ (€-9- Fallows et al.,, 20132016 Morosan et al., 2034/0ocks
system is operated by the Netherlands Institute for Radff & 201% However, it does not observe the Sun or helio-
Astronomy (ASTRON), observes in the frequency range ofPhere constantly and therefore cannot function as a space
~10-240 MHz, and is used for a variety of astrophysical sciencWeather facility for monitoring or forecasting. A current project

use cases, including research into the epoch of reionizatigfoWn as LOFAR for Space Weather (LOFAR4SH#p:/
www.lofardsw.el aims to design an upgrade to LOFAR such

“Corresponding authoeoincarley@gmail.com that it can observe the Sun, heliosphere, Earitnosphere
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and Jupiter simultaneously and constantly throughout it®ajor space weather service providers and how/if they use
observing window, even while performing observations of otheradio data.

astrophysical objects. Such a system upgrade requires a redesign

of both front- and back-end systems, software pipelines

redesigns, as well as a redesign of the operational and adminisSpace weather phenomena observed

trative aspects of the entire system (8ppendix for further ;

details of this upgrade). As part of the design study, a survey at radio wavelengths
was performed to review the current and planned use of radio . . . .
instrumentation in space weather. The aim of this survey is tg Radio te_chnlque_s geneyally prowde access to observations
de ne the relationship of LOFAR4SW to the overall landscap@' SClar. heliospheric, and ionospheric space weather phenom-

of radio space weather research infrastructure. This includgg@: Here we brigy describe the different phenomena and the
comparing LOFAR4SW to other radio instrumentation, as we ind of radio observations that are typically performed of each

as a survey of how radio data are used by space weather senftE
providers.
Instruments operating in the radio domain were some of tig1 Solar ares

rst to begin observing space weather phenomena routinely e.g. ) )
the early observation of coronal shocks and energetic particles The sudden release of magnetic energy over tens of minutes
in the form of type Il and Il radio bursts, respectivelyilfl, ~ results in the acceleration of energetic particles and the emission
195Q Wild et al., 1959. Observations of such phenomena stillof light from across the entire electromagnetic spectrum. The
enjoy a prominent position in space weather science and opefr€ mechanism can result in both thermal and non-thermal
ations in the modern era, and the variety of radio phenomefi@dio emission from a variety of mechanisms including thermal
under routine observation in a space weather context has groRkgmsstrahlung\White et al., 201}, (gyro)-synchrotron emis-
since these early developments. For example, analysis of soi#gn Oulk & Marsh, 1982, plasma emission and electron
radio bursts and their relation tares, coronal mass ejections cyclotron maser emissiorMglrose, 201y Exactly which
(CMEs), and solar energetic particles (SEPs) now play a képechanlsm is observed depends on the conditions ohcl)'lmg
role in the nowcasting and forecasting of such phenomerf#@sma, and uxes can range from on the ordef410'° Jy
(Balch, 1999 Cremades et al., 201%ucca et al., 2097 (where 1 Jy =1 W m™ Hz °) depending on the emission
Interplanetary scintillation (IPS) observations of CMEs anénechanism. Typical observations of such activity include
the solar wind throughout the heliosphere are becoming rRoNitoring radio ux at discrete frequencies, e.g. with the Radio
new and integral part of geomagnetic storm forecasting (e.golar Telescope NetworkG(idice, 1973 observing“solar
Bisi et al., 2010p Jackson et al., 20)5 Observations of fadio bursts (SRBs) in dynamic spectra anywhere in the
ionospheric scintillation, whether due to heliospheric, magnetdequency range from 10 kHz to above 1 GHz, as well as
spheric, or atmospheric drivers, are essential to aid the forechBding of the are-related radio bursts themselves @ie&
of radio communication degradationgaf de Kamp et al., & Vilmer, 2008 for a recent review). Imaging and/or spec-
2009 Prikryl et al., 2012 troscopy of are-related radio activity is a powerful diagnostic

The variety of instruments used to observe these phenome®fa are plasma parameters and electron distribution functions
has also grown, involving both ground- and space-based rad@hite et al., 201JL particle acceleration mechanisms
observing infrastructure, covering a frequency range from kHZleishman et al., 20)6and particle propagation characteristics
to THz (seeGary, 2016for a recent solar-sped review). (Reid & Kontar, 201)3_ Hence, these observations are vital for
Space weather radio instruments range in complexity from sihderstanding the origin ofare accelerated electrons and the
gle antennas to long baseline interferometers composed of eitfigidamental physics of theare itself, which are both a major
dishes or phased arrays. The number of space weather serRéé of space weather research. From an operations perspective,
providers using radio data also continues to grow. These bodiegxes of solar radio bursts can be so large that they can
provide daily alerts on space weather conditions to interestégversely affect ground and satellite radio communication at
stakeholders in industry, such as the aviation, power-grid, arfefrth (e.9.Marqué et al., 20)3hence there is a need to under-
satellite industries. Despite the variety of radio instruments uséégnd the fundamentahre physics from a radio perspective.
in space weather and the increasing number of forecasters using
radio data routinely, a modern survey of radio instruments argl2 Coronal mass ejections
data used in a space weather capacity has not been performed.

This paper aims at such a survey and attempts toedeow The release of magnetic energy in the solar corona can also
radio data is used in space weather (for both science and opeiad to the expulsion of plasma structures known as CMEs.
ations), the current instrumentation in existence, which spa€@MEs can travel in excess of the coronal magnetosonic speed
weather service providers use radio data, the developmemtsd therefore drive shockwaves and accelerate electrons. Plasma
and state-of-the-art in space weather radio observations, agmission generated from these electrons is obsen/égpadI’

nally how a fully built LOFAR4SW ts into this landscape radio bursts Nelson & Melrose, 1985 seeFigure 1a and b
of existing facilities. IrBection 1we describe the primary space They are observed from decimetric to kilometric wavelengths
weather phenomena and give a brief overview of how raditkHz to <1 GHz), with the long wavelength observation indicat-
observations relate to each.3ection 2 we describe the kinds ing the driving of an interplanetary shoelinterplanetary type
of radio data in use in space weather observatioredtion 3  IIs therefore have been used as a space weather forecasting
we survey the instruments currently in use in space weath&chnique of interplanetary shock arrival at Eavaimuth &
science and operations. 8ection 4 we describe the current Mann, 2004 Cremades et al, 20L5Direct imaging of
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Fig. 1. Examples of solar radio data typically used in space weather science and operations. (a) A dynamic spectrum of solar radio bursts. T}

is the most typical observation type used to obseaves and eruptive activity in the solar corona. Type llIs indicate electron beam propagation
into the heliosphere, the type Il represent the driving of a shock (adapte@itkrat al., 201p (b) Combination of eruption observation in
EUV and type Il radio sources (pink, orange, and green points), adapte&diorat al. (2012)(c) Data-driven modelling of the position of

type Il and Il radio sources with respect to the CME (adapted fMagdaleni et al., 2013 (d) Direct observation of a radio CME using the
NRH (Bastian et al., 20Q1such observations are rare, but can allow for a diagnostic of CME mageletiose to the Sun (below a few solar
radii)

type |l radio sources is typically performed at ~<880 MHz  can hence be a good space weather diagnostic of arrival time

(Dauphin et al., 20Q6Bain et al., 2012Zucca et al., 2007  at Earth.

which generally provides shock observation below ~3 R One of the few ways to observe a CME in the interplanetary

Spectral characteristics of type lIs, along with images of theinedium is through observations of IPS (eBis] et al., 2010

radio sources, can be a good space weather diagnostic of fias involves observations of intensity and phase changes of the

shock properties in the early phases of eruption, as well dight from distant radio sources, which can provide a measure of

the properties of accelerated electrons themseldaescd density and indication of magneti@ld enhancements in the

et al., 20122017 Carley et al., 2013 heliosphere, seBection 4for details. A primary goal in space
While imaging type 1l shocks is a means of tracking shockveather research and operations is to predict the arrival time

activity in the low corona, radio sources from within the CMEof CMEs at Earth, as well as forecasting the strength and direc-

itself can be observed in the form of type IV radio bursts (thesion of the CME magneticeld. Radio techniques remain one of

bursts can also have a component associated wittateeand the most promising (if not the only) means of observing these

a sub-class known dmoving type IV is typically attributed to  properties remotely before the CME arrives at Earth.

the CME). These radio sources can be used as a rare diagnostic

of CME magnetic eld in the low coronaHain et al., 2014 2 3 solar energetic particles

Carley et al., 202)7 which is also an important space weather

property. They can allow for direct radio imaging of the CME  During the are or CME, energetic particles (electrons, pro-

itself (Bastian et al., 200Maia et al., 200y (Fig. 1d), but such  tons, and ionised nuclei of heavy elements) may escape directly

observations remain rare. More commonly, type IV bursts aito the heliosphere. If detected in-situ they are known as solar

observed as discrete radio sources that are co-spatial with #eergetic particles (SEPReames, 1999 The particles can

CME, providing indirect observations of the eruption in thehave energies in the range of keV to GeV in the largest events.

early phases of its evolution, typically below ~3.RKlein  Both the electrons and heavier nuclei can affect spacecraft

et al. (2018)have also recently shown that microwawence electronics Xapsos et al., 2007Glover et al., 2008 while

at the time of CME launch is correlated with CME speed anthe protons and heavier nuclei pose a radiation hazard to
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astronauts or crew of trans-polaghts, with the hazard depend- 2.6 Geomagnetic storms

ing on SEP intensity and energgucinotta et al., 2010 }
Reames, 20)3Radio spectroscopic signatures in the form of Impact of CIRs or CMEs on the Earshmagnetospheric
type llls provide insight into SEP release into the heliosphef@vironment can lead to a highly disturbed geomagnetit,

(Klein et al., 2010 Kouloumvakos et al., 20)5The details known as a geomagnetic storieppenman, 1996 Geomag-

of the spectral characteristics and imaging of type llis can bietic storms are most powerful when the interplanetary
used as an indicator of SEP release time and position, as wépgnetic eld is oppositely directed to the Eastiyeomagnetic

as a diagnostic of their means of propagation throughout the?ld i.e. when the interplanetaty8, componerit is directed
heliosphere (at least for the electronsyueda et al., 2034  Southward. This causes increased levels of magnetic reconnec-
Despite efforts in forecasting SEPs, which sometimes involvéon on the day-side geomagnetield and increased currents
solar radio burstsB@alch, 1999Zucca et al., 2007SEP arrival in the ionosphere, ultimately leading to geomagnetically
time prediction remains one of the most diflt aspects of induced currents (GICs) in ground-based technologies like
space weather. Much of the ditilty is in determining SEP €lectricity grids or oil and gas pipelines (eBaqteler et al.,
origin (either are or shock see e.d<ahler, 2007, and deter- 1998 Trichtchenko & Boteler, 2001 Hence, predicting
mining the complicated particle injection and transport physicgeomagnetic storms is an essential aspect of space weather
of SEPs through the heliosphere (eAgueda & Lario, 2016 ~ Monitoring. To date, such forecasts have proved the most

Lario et al., 2017Dresing et al., 2038 aitinen et al., 2018 challenging aspect of space weather science and prediction.
Radio observations of IPS and Faraday rotation $sex. 4

2.4 Solar wind remain the only viable method for remote monitoring of the
strength and direction of the interplanetary magnetid Bisi

The constant oubw of plasma from corona to heliosphereeét al., 2010pand hence one of the few methods of forecasting
is known as the solar wind, which generally comes in two varithese properties.
eties; the slow wind with an average speed of ~350 khasd
fast wind with average speed of ~750 kni at 1 AU. The slow
yvind is thought to emerge from closed regions of mggnetiﬂ: 3 Space weather impacts and indices:
in the corona, while the fast wind emerges from regions of open . :
magnetic eld known as coronal hole€ianmer, 2000 Since radio perspective
coronal holes can be maintained for months and rotate roughly
at the same rate as the Sun, conduits of fast wind that impact on Each of the space weather phenomena described above is an
neighbouring slow wind streams can be maintained for month&ctive area of space weather research from a scgispec-
Such regions of interacting fast and slow wind constantly swedjye. As described, these phenomena can have an impact on
around the solar system and are known as co-rotating interactib@rtiis technological infrastructure, and these impacts are
regions (CIRs). If a CIR impacts the Earth, it can cause a gegenerally measured via space weather indices. These indices
magnetic disturbance known as a sub-stofsuiutani et al., are metrics used to dee the current space weather conditions
2009. Tiburzi et al. (2019has recently shown the effectivenessin an operational capacity, and radio observation can contribute
of using dispersion measures of low frequency radio observtp their forecast and nowcast in a variety of ways.
tions of pulsars in characterising the state of the solar wind,
while Bisi et al. (2010a)and Richardson (2018have also 3.1 Indices of geomagnetic storms
shown that similar techniques in interplanetary scintillation

can be used to observe CIRs well inside Earth-orbit. The severity of geomagnetic storms (and subsequent GICs)
is monitored via a large number of worldwide magnetometers
2.5 lonospheric disturbances (e.g. Wei et al.,, 2013 Measurement of the components of

the Earths electromagneticeld over time can be used to derive
Conditions in the ionosphere can become disturbed due iadices that indicate the current state of the geomagredtior
the increased levels of X-ray and EUV emission during solaeverity of any geomagnetic storm, including Dstindex
ares, leading to increases in the total electron content (TE() measure of the increase of ionospheric ring curieiriiex
in the ionosphere (e.ggelvakumaran et al., 201%urthermore, (a measure of the regional or local rate of change of the
signi cant levels of geomagnetic activity caused by disturbancggomagnetic eld), andkp-index (a planetary-scale version of
in the solar wind from CIRs or CMEs can lead to increase#-index), and NOAAs G1 (minor) to G5 (severe) rating. Radio
activity in the ionosphere, e.g. sudden ionospheric disturbancedservations may indirectly contribute to the forecast of these
increased turbulence, a variety of ionospheric currents, partidledices via observations of IPS. However, forecasting the
instabilities, and waves in ionospheric plasifsu(utani et al., severity of a geomagnetic stor@st and kp-strength) from
2009. Plasma turbulence in the ionosphere can strongly affettte properties of an earth-bound CME or solar wind transient
many of the technologies upon which we increasingly relyremains a signicant research challenge. There is currently no
including satellite communications, radar target detection, arkthown way to remotely observe interplanetary magnedid
precision navigation via Global Navigation Satellite Systemstrength and direction, but recent research has shown that radio
(GNSS). Use of radar, scintillation measures, and spectroscopiagnostics of the Faraday rotation of light from radio sources
signatures of such activity (sBect. 4 can aid the diagnostics of passing through the heliosphere could provide insight into these
ionospheric disturbances and serve as a measure of ragioperties (seSect. 4. Hence the radio domain is one of the
communication quality during times of elevated solar activitprimary candidates for accurate geomagnetic storm prediction
(™gman et al., 20Q7Yasyukevich et al., 20)8 in the near future.
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3.2 Indices of radio communication interruption which particle radiation storms are measured are varied, but
) . . one of the primary metrics is the NOAA SWPC-S5 index.

The ionosphere can become disturbed during times @fadio observations are sometimes involved in nowcasting of
increased solar activity, resulting in interruptions in the qualitgepg Balch, 1999 Zucca et al., 2037 and could potentially

of radio communications. There are a variety of measures gk used to nowcast the severity of particle radiation storms.
the quality of ground- and spaced based radio communicatiopgwever, the impact of SEPs remains a sigant challenge

via the ionosphere. These include the/S#dices—a measure  jn both space weather nowcasting and forecastinggtasiadis
of the variation in intensity and phase of GNSS signals ait al., 201y

1.58 GHz and 1.23 GHz coming through the ionosphere (the
technique can be applied to many other frequencies but GNSS
carrier frequencies are the most widely used). The total electrgn . . .
content (TEC) of the ionosphere is an important parametér R2dio observation techniques used
related to the frequency of radio waves which experience trans-in space weather
mission or reection from the ionosphere and is derived from
GNSS, ionosonde or active/passive radar (see later). Related There are a variety of techniques used routinely in radio
to this, the maximum usable frequency (MUF) is the highesibservations of space weather phenomena. These include some
radio frequency that can be used for transmission betweerell known techniques such as monitoring total solas with
two points via reection from the ionosphere. Other parametersime series, dynamic spectroscopy of solar radio bursts, and
include the highest ordinary-wave frequency (fofE)eated interferometric imaging. Some typical examples of these obser-
back from a sporadic E layer, the altitude of the peak densityation types are shown iRigure 1and the instruments that
in the ionospheric F2 layer (hmF2), and the plasma frequen@pserve these data types are outlined below. In this section,
of the F2 layer (foF2), each observed by ionosondesSiit'a ~ we outline some of the latest techniques available for radio
et al, 2014for a review of the International Referencespace weather observations, particularly those used by phased-
lonosphere model in relation to these indices). The variabilityrray interferometers such as LOFAR. The additional advantage
of uxat 10.7 cm (F10.7) is also used as a proxy for full Sumf a phased array is the ability to beam-form in potentially
EUV ux and can be used as an input into ionospheric modelsundreds of different directions at onsear{ Haarlem et al.,
There has also been recent suggestion of the use of F11.1 a80a3. This allows for the observation of hundreds of sources
compliment to thisAcebal & Sojka, 201)L Each of the above on the sky and in the case of LOFAR4SW gives the ability
metrics are constantly monitored worldwide as a means @ simultaneously observe the Sun, heliosphere, and ionosphere
nowcasting global radio communication quality through th€as well as any other astrophysical observation). The latest space
ionosphere and they are some of the most popular metrics wéather techniques which can generally make use of beam-
space weather activity observed at radio frequencies. forming are as follows.

In addition to disturbed radio communications due to
ionospheric conditions, radio communications can also be ref- Tied-array solar imaging
dered ineffective due to highux from solar radio bursts. For
example, the high intensity of solar radio bursts (sometimes Phased array instruments such as LOFAR can produce mul-
greater than fOsolar ux units (SFU), where 1 SFU = tiple telescope beams on the sky in the same or many different
10*Jy =10 W m 2Hz 1) can result in carrier-to-noise ratio directions. This effectively allows for observation of time series
degradation in the L1 observing channel of GPS satellitgznd dynamic spectra) along multiple lines-of-sight. When these
(Cerruti et al., 2006 In extreme cases the interference can benultiple beams are arranged in a grid-pattern in a single
so bad it may also result in loss of GPS navigational lock at sitefirection (at a single source) on the sky, the technique is known
across the Sun-lit side of the Earth for up to 10 n@ier(uti  as“tied-array imagiriy seeFigure 2for an example applied to
etal., 2008 Recent results have shown that such a degradati@alar observations using LOFAR. In recent years such a tech-
in GPS signals can result in position errors of up to 300 migue has been successfully employed to perform spatially
(Muhammad et al., 20}5Marqué et al. (2018)as also shown resolved observations of solar radio bursts (eMpyosan
recently that communications for aeronautical navigation ait al., 20142015 Reid & Kontar, 201Y. Compared to interfer-
~1 GHz may also experience interference during intense solametric imaging, the advantage of such a technique in the case
radio bursts. There is no universal metric of radio burst intenspf LOFAR is its much higher time-sampling, e.g. the time
ties, but one standard is the National Oceanic and Atmospherigsolution of tied-array imaging with LOFAR is potentially as
Administration (NOAA) Space weather Prediction Centehigh as micro-seconds (compared to >0.1 s for interferometric
(SWPC) RAR5 rating, rated minor to extreme in terms of radioimaging), depending on the frequency resolution. Such high

burst ux. time resolution has provided a means of observing the origin
of ne structure and how radio waves propagate through the
3.3 Radiation hazards corona Kontar et al., 202)7 Furthermore, one of the advantages

of the LOFAR system is that interferometric and tied-array
The arrival of SEPs at Earth can cause damage to satelliteaging can also be performed simultaneously.
electronics (via either electronic discharge or heavy-ion impact
on microelectronics) and cause a radiation hazard for astronayts Observations of interplanetary scintillation
or the crew of high-latitude ights, with the level of risk
depending on particle intensity and ener@jloyer et al., While beam forming on the Sun has lead to breakthroughs
2008 Cucinotta et al., 201(Reames, 2033 The indices by in the understanding of solar radio bursts, beam-formed
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Fig. 2. An example of tied-array imaging applied to the solar corona fmmosan et al. (2015)Using LOFAR core stations, up to
488 beamlets can be arrange in a grid over the Sun, each giving a dynamic spectrum of the radio activity at that particular location. This allov
for spatially resolved observations of radio bursts on the Sun, in this case the examination of the onigigtafcture known as S-bursts.

observations of distant radio sources are used to perforased to provide-4 day advance warning of solar wind struc-
observations of IPS. This technique monitors the variability itures and Earth-bound CMEs. The model requires input of the
ux and phase of distant radio sources and can be used to didgundary conditions in the solar wind at ~R1, and density
nose density and velocity variations (from CIRs/SIRs or CMEsynd velocity observations of IPS are now used routinely to pro-
in the interplanetary medium, ségure 3 Observations of IPS vide these boundary conditionta¢kson et al., 201¥u et al.,
can be used to monitor and sometimes forecast solar wind/CNEB15. IPS + ENLIL is now used by multiple space weather
conditions Jackson et al., 20)3nd the technique has beenservice providers to provide forecasting of solar wind plasma
demonstrated using multiple instruments of the Worldwide IPBarameters days in advance, Seetion 5.2
Stations (WIPSS) network. If there is full Stokes polarisation
information available then it is theoretically possible t04.3 lonospheric scintillation and active/passive radar
estimate the solar wind/CME magnetield strength and
direction via monitoring of a phenomenon known as Faraday Beam-forming can also be used to monitor ionospheric con-
rotation (e.g.Jensen et al., 201.0As light from a distant radio ditions in both space and time. lonospheric studies in a space
source travels through the interplanetary medium (IPM), the&eather context primarily use radar techniques that are @eélssi
plane of polarisation of the radio waves rotate, with the amouss a subset of two categories, namely active and passive radar.
of rotation depending on the magnetield strength and Active radar consists of transmitting a radio signal into the iono-
direction in the IPM or any CME contained within it. This cansphere and receiving the ected/returned signal with a receiver.
lead to a calculation of the line-of-sight magnetitl component - Comparing transmitted and returning signals provides an analy-
of a CME in interplanetary space, and some promising resulgs of ionospheric conditions and hence provides useful informa-
have recently been shown using the Very Large Array dton of the quality of radio communications that interact with the
1-2 GHz for a CME at 615 R. (Kooi et al., 201, However, ionosphere. Passive radars do not transmit, but receive signals
observing CMEs further into the heliosphere (0.4 AU) at LOFARrom known transmitters, such as TV and radio transmission
frequencies must contend with the additional Faraday rotati@annels. The techniques are varied but mainly consist of:
also experienced by emission passing through the ionosphere,
so distinguishing the rotation component due to a CME alone lonosonde (active): lonospheric sounders use radio trans-
remains a signcant challenge in radio space weather studies. missions that experience total eetion at the local
Nonetheless, efforts are underway to achieve this and plasma frequency. From the analysis of theeoted
LOFAR4SW aims to be a pioneer in this effort in the near future.  signal, electron density characteristics of the ionosphere
One of the most advanced space weather forecasting (TEC maps) can be derived. Different frequencies can
techniques is in the use of magnetohydrodynamic (MHD) mod- probe different altitudes/regions in the ionosphere, and
els of the solar wind (including transients) throughout the they primarily operate in the HF range, $égure 4
heliosphere, such as the ENLIL model (e@dstrcil, 2003. Riometry (passive): Relative lonospheric Opacity Meters
ENLIL (named after the SumeriahGod of Wind) is a for Extra-Terrestrial Emissions of Radio waves measure
large-scale, MHD-based numerical model of the heliosphere, the absorbed power from galactic sky noise, which is a
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Fig. 3. Examples of heliospheric observations from IPS typically used in space weather science and operations. (a) IPS g-level (related
density uctuation in the interplanetary medium) and speed. (b) Tomographic 3-D reconstruction of properties in top panel. (¢) SOHO data o
velocity of solar wind (left) and ACE data of density (right) with respect to time, plotted with forecast of the same property using observations
of IPS. Observations such as these are now used routinely in space weather forecasting. Realtime data are lav@ilapteuasd.edu/

function of the degree of ionisation (electron density) olntennas receive the signals from satellite beacons and monitor
the ionospheric D region (#0200 km altitude). the amplitude and phase change of discrete single-frequency
LOFAR4SW intends to operate as a passive system fdime-serie's providing information on the S4-index and
ionospheric studies monitoring, including riometry. / -index, and conditions in the ionosphere such as the total
Incoherent scatter radar (active): A technique thatlectron content (TEC), among other properties (¢id-Valls
observes weak scatter from thermal plasma ion-acoustit al., 201). However, such measurements are usually per-
and Langmuir mode resonant oscillations. Primary medermed at a single frequency and spatial location; much greater
surements include electron density, electron temperatutiaformation can be found in the dynamic spectrum over a wide
ion temperature, and ionospheric drifts. Operation caftequency bandwidth (e.grallows et al., 2014 and making
be in HF/VHF/UHF/L-band. use of the wide geographic distribution of LOFAR4SW stations
Coherent scatter radar (active): These systems measaoss Europe. Widespread stations and the ability to beamform
coherent scatter from ionospheric irregularities due ttowards multiple points on the sky will enable the dynamics of
plasma instabilities, waves, and structures. Moderlarge-scale phenomena, such as Travelling lonospheric Distur-
systems perform radar imaging, and can operate in thmnces (TIDs), to be studied, while small-scale dynamics can
HF domain. be viewed using the dense LOFAR core stations.
The current operational plan for LOFAR4SW is the perfor-
mance of daily observations using solar imaging spectroscopy,
LOFAR4SW will be able to perform routine observations ofsolar tied-array imaging, IPS, FR, and ionospheric studies using
the ionosphere using passive radar techniques that monitor iolwth passive radar and scintillation techniques. Each of these
spheric disturbances. It will also monitor scintillation in thetechniqgues will be performed simultaneously, making
ionosphere in much the same way as GNSS receivers. GNESGFAR4SW one of the few instruments in the world capable

Page 7 of 16


http://ips.ucsd.edu/

E.P. Carley et al.: J. Space Weather Space Clim. 2020,

WAVES, S/WAVES

SO-RPW, PSP-FIELDS
GNSS

EISCAT

MEXART
LPI KSWC-IPS
ISEE
ORT

SSRT

10 kHz 100 kHz 1 MHz 10 MHz 100 MHz 1 GHz 10 GHz 100 GHz

10 km 1km 100 m 10m 1m 10cm 1cm 1 mm

Fig. 4. A comparison of LOFAR4SW to other solar physics or space weather radio instruments. The bottom edge indicates frequency
wavelength, and International Telecommunication Union (ITU) designated name of each frequency band. The top of the graphic indicates tl
heliospheric domain that such frequencies generally give observational access to. The graphic on the right indicates the observational techni
that the instruments use. The bubble for each instrument indicates its frequency range. Instruments in blue are solar/heliosphere/ionospt
dedicated, while those in grey can observe the Sun but are not (will not be) dedicated instrumentsd&pdsiof each instrument are given

in Table 1

of simultaneous observation of the Sun, heliosphere, and ionaumber of instruments operating in the radio domain, ranging
sphere in a space weather science and operations capacity.in complexity from small GNSS antennas to long-baseline
phased-array interferometers such as LOFAR. Such instruments
observe one or more of the phenomena outline8eation 2
: and are either dedicated solar instruments (therefore offering
5 Space weather radio research some level of space weather monitoring) or non-dedicated
infrastructure (contributing to Space Weather Science). Here we mainly
concentrate on instruments that are dedicated to observing the
This section provides information on space weather researhin, heliosphere, and/or ionosphéfigure 4attempts to sum-
infrastructures, which include the instruments used to performarise the primary instruments performing radio space weather
space weather observations and the bodies that use the dutince and/or operations. It shows instruments operating from
from these instruments to provide space weather forecasigquencies of kHZTHz, the heliospheric domain such frequen-
warnings and other services. While regional surveys of sudhes generally give access to, and the type of observations made
infrastructures exist (se@enardini et al., 2016or a recent (imaging spectroscopy, beam forming and spectroscopy, or time
review of space weather research networks in Latin Americaderies and spectroscopy). Those instruments shown in grey can
our survey concentrates on the worldwide infrastructure, specifbserve solar and space weather phenomena, but are not dedi-

ically operating in the radio domain. cated instruments.
For solar observations, there are a limited number of inter-
5.1 Space weather instruments operating at radio ferometers that observe the Sun routinely, including the Nancay
wavelengths Radioheliograph (NRHKerdraon & Delouis, 1997 located in

central France and observing the solar corona at ten discrete
In the following, a space weather instrument is any groundrequencies from 150 MHz to 450 MHz; the recently built
or space-based instrument that is capable of monitoring soldjngantu Solar Radioheliograph (MUSERIei et al., 2013
heliospheric and/or ionospheric phenomena, enabling bolbcated in inner Mongolia and performing imaging spectroscopy
space weather science, and forecasting. There are a hujé¢he solar corona from 0.4 GHz to 15 GHz; the Gauribidanur

Page 8 of 16



E.P. Carley et al.: J. Space Weather Space Clim. 2020,

Space Weather Radio Research Infrastructure
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Fig. 5. Worldwide distribution of space weather service providers (indicated by national map and descfiaele if) and the primary
instruments offering radio observations of space weather phenomena (outhigedliandTable ). Green circles indicate the instruments that
are space-weather dedicated, with orange circles indicating instruments that can perform solar observatiohddab dontinely. Green
triangles indicate the positions of the radio spectrometers of RSTN which provide routine SRB monitoring and alerts.

Radioheliograph (GRAPHRamesh et al., 1998n southern Since the LOFAR4SW system will act as an interferometer
India, operating at discrete frequencies between 40 MHz amhd a beam-former, it will also bridge the gap between instru-
150 MHz; the Expanded Owens Valley Solar Array (EOVSAments that are solely used to image the Sun (e.g., NRH and
Kuroda et al., 2018in the USA, performing imaging spec- MUSER) and those that perform observations of IPS in the
troscopy from 1 GHz to 18 GHz; the Japanese Nobeyamfzliosphere, including the Big Scanning Array of Lebedev
Radioheliograph (NoRHNakajima et al., 1994operating at Physical Institute (BSA-LPDagkesamanskii, 20Dp®perating

17 GHz and 34 GHz, and the Siberian Solar Radio Telescop¢ 111 MHz and located in Russia; the Mexican Array Radio
(SSRT;Grechnev et al., 200®perating at the single frequency Telescope (MEXART Mejia-Ambriz et al., 2010 operating

of 5.7 GHz (the location of these and other instruments aigt 140 MHz; the Korean Space Weather Centre (KSWC) IPS
shown inFig. 5. Of the numerous interferometers performingarray fttp://spaceweather.rra.gqg.biperating at 327 MHz; the
imaging spectroscopy of the Sun routinely, LOFAR4SW willSolar Terrestrial Environment Laboratory ISEE IPS array oper-
have the lowest operating frequency, down to the ionospheriting in several locations in Japan at 327 MKAz4| et al.,
cut-off (imaging to the greatest altitude in the corona 01993; and the Ooty Radio Telescope (ORSykumar et al.,

~3 R ). The lower frequency bands observed by LOFAR1988 also operating at 327 MHz, located in India.
(4SW) are vital observations, giving access to regions of th@bservations of IPS are also part of the wider plans for space
corona where eruptions are accelerated, shocks are drivergather monitoring as part of the the Chinese Meridian Project
and energetic particles are released into the heliosphere. S{¢fang, 201

observations are therefore essential for understanding early- Of those instruments that observe the heliosphere through
phase space weather phenomena. LOFAR4SW is also unigi®S, LOFAR4SW will be one of the few instruments to do so
in the sense that it is one of the few instruments capable okver a broad frequency band, as opposed to the single frequency
imaging spectroscopy both as an interferometer and as a tigihased arrays that are commonly used, and with the ability to
array beamformer. It can also perform these modes simultarabserve multiple sources simultaneously. The IPS-capable
ously, providing the dual advantage of high sensitivity andtations listed above are ofally grouped into a consortium
spatial resolution of interferometry and high temporal resolutioknown as the Worldwide Interplanetary Scintillation Stations
(potentially mili or microseconds) of tied-array imaging. In thiSWIPSS;Bisi et al., 201y network, the goal of which is to
sense, it will be the most diverse amongst the imaging spemutinely provide IPS observations for space weather science
trometers that observe the Sun on a routine basis. and forecasting purposes.
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Table 1. Radio instruments performing observations for space weather science and/or operations.

Instrument Frequency Local noon Observable Angular Operational SW
(MHz) (uTCcy resolution phase monitoring

LOFAR 10-240 11 Sun, IPM, lono  1430°°(core stations) >2006 No
LOFAR4SW 16240 11 Sun, IPM, lono  1%30°(core stations) >2023 Yes
SKA 350-14000 10 (SA), 4 (AUS)  Sun, IPM, lono TBD >2020 No
MUSER 406-15000 4 Sun 1850% >2014 Yes
FAST 70-3000 4 Sun 0830° >2017 No
EOVSA 1006-18000 20 Sun 0.051° >2015 Yes
MWA 80-300 4 Sun, IPM, lono 450 >2012 No
NRH 150-445 11 Sun 092.6° 199742014 Yes
GRAPH 50-150 7 Sun 8112 1997 — present Yes
VLA 74-50000 18 Sun 1913 >1980 No
OVRO-LWA 10-88 18 Sun, IPM, lono 20 >2009 Yeé
NoRH 17, 34 3 Sun 0.670.0° >1992 Yes
SSRT 5700 5 Sun 5 >1996 Yes
EISCAT 3D 218248 TBD IPM, lono TBD >2021 TBD
ORT 327 7 IPM N/A >1970 Yes
MEXART 140 17 IPM N/A >2010 Yes
BSA-LPA 111 7 IPM N/A >1970s Yes
GMRT 156-1500 7 Sun, IPM %10 >1998 Yes
KSWC-IPS 327 4 IPM N/A N/A Yes
lonosonde 0.5-20 0-24 lono N/A N/A Yes
ISEE 327 3 IPM N/A >1980s Yes
KAIRA 10-240 11 lono 220 >2012 Yes
RSTN 2585 0-24 Sun N/A >1980s Yes
WIND/WAVES 0.0114 0-24 Sun, IPM N/A >1996 Yes
STEREO/WAVES 0.0416 0-24 Sun, IPM N/A 20062015 Yes
SO RPW 0.0220 Intermittent Sun, IPM N/A 2012022 Yes
PSP FIELDS 0.0220 Intermittent Sun, IPM N/A 2012025 Yes
SRB monitoring 10-5000 0-24 Sun N/A N/A Yes

2|f the observatory performs daytime space weather observations it may do so at any time when the Sun is visible, however nominal operati
is likely to be several hours centered on local noon.

b There are hundreds of global ionosondes and SRB monitoring observatories. The parameters presented here are a generic representati
their nominal operational ranges.

¢ SW monitoring refers to whether or not the instrument observe the sun, heliosphere or ionopshere constantly throughout its observir
window.

4 OVRO-LWA is currently being upgraded with a solar-dedicated backend for space-weather-capable imaging spectroscopy (completio
expected in 2 years).

LOFAR4SW will routinely monitor the ionosphere and will 20 MHz is indicated by thélonosonde* marker inFigure 4
provide complimentary observations alongside the Kilpisjarvio add to this, there are thousands of Global Navigation
Atmospheric Imaging Receiver Array (KAIRAMcKay-  Satellite System (GNSS) monitors that observe ionospheric
Bukowski et al., 2015 which is an independent station usingscintillation at 1.23 and ~1.58 GHz (in L-band). As outlined
LOFAR hardware, located in northern Finland and dedicateid Section 5.2 ionospheric observations are among the most
to observations of the ionosphere through passive radar; thepular space weather data products and LOFAR4SW will be
European Incoherent Scatter (EISCARishbeth & Williams, one of the most sensitive and advanced amongst the stations
1989 radar system is a combination of three active radars opgaroviding textbfthis kind of data.
ating at 224, 500, and 931 MHz located on Svalbard, Northern LOFAR4SW will also provide complimentary observations
Scandanavia, also providing routine ionospheric studies (a ne SRBs via both imaging spectroscopy and tied-array imaging.
system known as EISCAT_3D is under development, aiming t@round-based SRB monitors number in the hundreds worldwide.
provide 3D monitoring of the atmosphere and ionosphere fdrhey range in complexity from interferometers to single dish/
space weather science and operations). As well as these raalatennas and receivers. Some of the most notable radio burst
systems there are hundreds of ionosonde instruments operatingnitors used in space weather science and operations are the
globally. They are grouped into several networks of instrumentaultiple sites of RSTNGuidice, 1979 providing 24 h dynamic
such as Low-latitude lonospheric Sensor Network (LISN) andpectra observations from four separate sites around the world;
Realistic lonosphere (RI) networks, which participate in théhe Nancay Decametric Array (NDALecacheux, 2000
United Nations International Space Weather Initiative (ISWl)operating from 10 MHz to 80 MHz and tHebservation
Because the individual instruments number in the hundredRadiospectrographique pour FEDOME Etlide des Eruptions
only the general frequency of operation from 1 MHz toSolaire$ (ORFEES; https://www.obs-nancay)fr observing
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from 100 MHz to 1000 MHz, operated at the Nancay Radioasrable 2. Worldwide space weather service providers and associated
tronomy Facility in central France; the eCALLISTO networkradio data provision on their public domain websites.
Benz et al.,, 2009 with several sites worldwide operatin . .
(anywhere betwegﬁ 45 MHz and 870 MHz (dependirr)1g on ?h§w service provider _ lonosphere  SRBs _ IPS  F107
site), also providing 24 h monitoring of SRBs. These are juswPC
some of the many individual stations and networks of SRBIOSWOC
monitors worldwide, so only the general frequency of operatiokSWC
is indicated a$ SRB Monitoring® in Figure 4 Importantly, ~SCISMEX
LOFAR4SWs lowest frequencies of operation extend down t!DC
the ionospheric cut-off at 320 MHz, joining the highest 2\5&\/%—RWC
frequency of operation of the small number of space-borrg g
SRB monitoring platforms, namely WIND/WAVEBd¢ugeret |pg
et al., 1995 STEREO/WAVES Bougeret et al., 2008Parker gsgpc
Solar Probe (PSP) FIELD84le et al., 201p6and Solar Orbiter kNMmI
(SO) Radio and Plasma Waves (RRWaksimovic et al., 2007 SWACI
instruments. These instruments operate from a few kHz téPL-RWC
~16 MHz and provide observation of interplanetary type Il anWIFtS
Il bursts (among many other phenomena), which are essent@/FC
for monitoring interplanetary shock and energetic electron pro PANSA
agation. LOFARASW, WAVES and S/WAVES could provide ;o0
. . eSWua
continuous coverage of SRBs from low coronaR-2to inter- |5\ o0y
planetary space (>10R ), provided they are all functioning cswrc U
simultaneously in the future. The PSP and SO missions Wdrc-Rwc U
perform several perihelia of the Sun, providing intermittenEsc U
observations of the inner-heliosphere and solar corona with
nominal mission lifetimes up to 2025 and 2027, respectivel\swpc, Space Weather Prediction Centre (USA); MOSWOC, Met
LOFAR4SW therefore has the opportunity to overlap with thesef ce Space Weather Operations Centre (UK); KSWC, Korean
new and future missions, potentially providing simultaneouSpaceWeather Centre (Republic of Korea); SCISMEX, Space-
radio (as well as in-situ) observations from inner-heliospheieather Service Mexico (Mexico), SIDC, Solar Wlences Data
and Earth-based platforms. Analysis Center (Belgium); SRC-RWC, Space Research Center-
Overall,Figure 4shows where LOFAR4SW sits in compar- Regional Warning Center (Poland); SWS, Australian Bureau of
ison to the major radio research facilities in space weath eteorology Space Weather Services (Australia); NISR, National

. . . . stitute for Space Research (Brazil); IPG, Institute of Applied
bridging .the gap between SOIa.r’ heI'OSphenC’.{.ind |onosphe eophysics (Russia); SEPC, Space Environment Prediction Center
observatlons, as well as havllng t_he capability of ”_‘U't'p' China); KNMI, Royal Netherlands Meteorological Institute (Neth-
observing techniques such as imaging spectroscopy, tied-arigyands): SWACI, Space Weather Application Centre (Germany):
imaging and general beam-forming. LOFAR4SW will thereforeyp-RwC, National Physical Laboratory-Regional Warning Center
be one of the most versatile and advanced instruments in use fvidia); SWIFtS, Space Weather Information and Forecast Services

space weather science and operations. The characteristics of(théonesia); SWFC, Space Weather Forecast Center (Japan);

ccC
cccccc
cCccCcc

ccccccccc

ccccccccccccccccc
ccc

facilities mentioned above is providedTable 1 SANSA, South African National Space Agency (South Africa);
LSWC, Lund Space Weather Centre (S_weden); ESWUA, Electronic
5.2 Space weather service providers utilising radio Space Weather Upper Atmosphere site (ltaly); IONOCY, Cyprus

lonospheric Research Group (Cyprus); CSWFC, Canadian Space
Weather Forecasts Centre (Canada); IAP-RWC, Institute of Atmo-

heric Physics-Regional Warning Center (Czech Republic); ESC,
égert Services Centre for Heliospheric Weather (Austria).

observations

Here we dene space weather service providers as an
institute or body that uses the data/metadata/analysis from sp
weather instruments to provide forecasts and warnings of space
weather phenomena. The dissemination of data and forecasts
are either via a website or an email warning system. As metPS (5/22). This distribution of radio data service provision is
tioned, service providers are the main stakeholder of informaet surprising, given that ionospheric data is the most accessible
tion from instruments and observatories. Their primary goal isnd directly applicable to space weather impact (from nowcast-
to act as liaison between scientists, who record and analyse datg, of radio communication e€iency). Only a small number of
and industry or government bodies who use the results of theservice providers use IPS data, most likely due to these kinds of
analyses. observations being highly specialised and also being in their

There are 22 space weather service providers to monitoperational infancy. As the technique becomes more established
solar, heliospheric, and/or ionospheric activifipble 2lists it is likely that more service providers will use it as a standard,
each SW service provider and the radio data used in thejiven it is now one of the primary and few methods of
service provision. The most popular space weather radasbserving CMEs and solar wind transients in the heliosphere.
disseminated through the SW service providers is ionospheric Figure 5shows the worldwide distribution of space weather
data, with 19 out of 22 using these data. This is followed bgervices along with some of the primary radio instruments in
radio ux monitoring at single frequencies such as F10.Use today. LOFAR4SW holds a strategic position, as it will
(9/22), SRB monitoring (10/22), andhally observations of be a key IPS station at European and African longitudes and
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has good proximity to several space weather service providerstruments of its kind i.e. phased-array interferometers capable

concentrated in Europe. As such, LOFAR4ASW will be arof performing imaging spectroscopy, as well as tied-array

integral part of the European space weather research anthging and general beam-forming. It will therefore be an

operations infrastructure. integral part of the space weather research and operations infras-
Many of the institutes described above act in close collabdructure in the near future.

ration as part of a global space weather forecasting effort, and
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