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Abstract
We consider an elastic manifold of internal dimension d and length L pinned in a N dimen-
sional random potential and confined by an additional parabolic potential of curvature μ.
We are interested in the mean spectral density ρ(λ) of the Hessian matrix K at the absolute
minimum of the total energy. We use the replica approach to derive the system of equations
for ρ(λ) for a fixed Ld in the N → ∞ limit extending d = 0 results of our previous work
(Fyodorov et al. in Ann Phys 397:1–64, 2018). A particular attention is devoted to analyz-
ing the limit of extended lattice systems by letting L → ∞. In all cases we show that for
a confinement curvature μ exceeding a critical value μc, the so-called “Larkin mass”, the
system is replica-symmetric and the Hessian spectrum is always gapped (from zero). The gap
vanishes quadratically at μ → μc. For μ < μc the replica symmetry breaking (RSB) occurs
and the Hessian spectrum is either gapped or extends down to zero, depending on whether
RSB is 1-step or full. In the 1-RSB case the gap vanishes in all d as (μc − μ)4 near the
transition. In the full RSB case the gap is identically zero. A set of specific landscapes realize
the so-called “marginal cases” in d = 1, 2 which share both feature of the 1-step and the full
RSB solution, and exhibit some scale invariance. We also obtain the average Green function
associated to the Hessian and find that at the edge of the spectrum it decays exponentially in
the distance within the internal space of the manifold with a length scale equal in all cases
to the Larkin length introduced in the theory of pinning.
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1 Introduction

1.1 The RandomManifold Model and Some Known Results

Numerous physical systems can be modeled by a collection of points or particles coupled
by an elastic energy, usually called an elastic manifold, submitted to a random potential (see
[1–3] for reviews). They are often called “disordered elastic systems” and generically exhibit
pinning in their statics and depinning transitions and avalanches in their driven dynamics
[4–9]. Their energy landscape is complex leading to glassy behavior.

The manifold is usually parameterized by a N -component real displacement field u(x) ∈
R

N , where x belongs to an internal space x ∈ Ω .Ω can be either a finite collection of points,
such as a subset Ld of an internal space of dimension d , Ω ⊂ Z

d , for discrete models, or
Ω ⊂ R

d in a continous setting. The case d = 1 corresponds to a line in N dimensions and for
N = 1 was studied in the present context in [10]. The case d = 0 usually refers below to Ω

being a single point, previously studied in [11] in the large N limit, and the present study can
be seen as its generalization to a manifold. There are two terms in the total energy. First the
points inΩ are coupled via an elastic energy, which is a quadratic form in the fields u(x). We
also include in this quadratic term a parabolic confining potential of curvature μ > 0. The
absolute minimum of this first term is thus the flat, undisturbed, configuration u(x) = 0. The
second term is the quenched disorder, modeled by a random potential energy which couples
directly to u(x). We thus consider the following model of an elastic manifold in a random
potential given by its energy functional

H[u] =
∑

x,y

u(x) · (μ1 − tΔ)xy · u(y) +
∑

x

V (u(x), x) (1)

where here x ∈ Ld ⊂ Z
d , 1 is an appropriate identity operator, and the matrix −tΔxy

is required to be positive definite. Here Δ can be chosen as the discrete Laplacian in the
hypercube Ld with periodic boundary conditions. In that case its eigenmodes are plane
waves ∼ eikx and we denote Δ(k) its eigenvalues, i.e. in d = 1, Δ(k) = 2(cos k − 1) with
k = 2πn/L , n = 0, . . . L − 1. For general d similar formula holds and t must be positive,
t > 0. All formula below extend immediately to more general functions tΔ(k), e.g. to more
general elasticity (such as long range elasticity). They also extend to cases where tΔxy is a
quadratic form defined on any graphΩ . Finally, they also extend to the limit of the continuum

manifold model, e.g. with the standard Laplacian Δ = ∑d
i=1

∂2

∂x2i
whose spectrum is given

by Δ(k) = −k2. We thus use the notation
∫
k = 1

Ld

∑
k ≡ ∫ ddk

(2π)d
so our main formula are

valid both for discrete and continuum (in the continuum
∑

x ≡ ∫ dd x). We see from (1)
that μ acts as a “mass” which, for the continuum model, leads to reducing the fluctuations
beyond the scale Lμ = √

t/μ.
Here we will consider V (u, x) to be a mean-zero Gaussian-distributed random potential

inRN ×Z
d with a rotational and translational invariant covariance (also called the correlator

in the physical context) such that potential values are uncorrelated for different points in the
internal space, but correlated for different displacements1:

V (u1, x1)V (u2, x2) = N B

(
(u1 − u2)2

N

)
δd(x1 − x2), (2)

1 We follow here the same notations as in [12–15]. Note the factor of 2 difference with the definition of B(q)

in [11]. Noting B̂ the similar function there, we have B(q) = B̂(q/2). Q defined below is the same object in
both papers.
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178 Y. V. Fyodorov, P. Le Doussal

In Eq. (2) and henceforth the notation · · · stands for the quantities averaged over the random
potential.

The equilibrium statics of this model has been much studied. From the competition
between the elastic and the disorder energy, the minimal energy configuration u0(x) (ground
state) is non trivial and exhibits interesting statistically self-affine properties characterized by
a roughness exponent: u0(x)−u0(0) ∼ |x |ζ . The sample to sample fluctuations of the ground
state energy (and, at finite temperature, of the free energy) grow with the scale as ∼ Lθ , with
θ = d − 2 + 2ζ as a consequence of the symmetries of the model (1)–(2). In addition the
manifold is pinned, i.e. its macroscopic response to an external force is non-linear. The early
(and partly phenomenological) theory of pinning is due to Larkin and Ovchinnikov (see [1]
for a review). Below the so-called Larkin length scale Lc, with Lc ∼ (B ′′(0))−1/(4−d) for
weak disorder (small B ′′(0)) the deformations are elastic, the response is linear, deformations
can be calculated from perturbation theory, leading to the roughness exponent ζ = (4−d)/2.
Above Lc metastability sets in, the response to perturbations involves jumps (shocks), with
non-trivial roughness ζ of minimal energy configurations. Describing that regime has been a
challenge, and progress was later achieved using the bag of tools of the statistical mechanics
of disordered systems, most notably replica methods. Exact results have been obtained, but
in only a few analytically tractable cases. The first of such cases are mean field type models,
notably the model (1) in the limit N → ∞. Saddle point equations in replica space [14–17]
lead to solutions exhibiting replica symmetry breaking (RSB) for μ < μc, which describe
the glass phase where the manifold is pinned. The critical mass μc corresponds to the Larkin
scale Lc = √

t/μc and the glass phase appears at scales exceeding Lc. A second set of
results were obtained using the functional renormalization group [2,18–20] and are valid in
an expansion around d = 4−ε (for any N ). While the resulting physical picture is somewhat
different, these could be reconciled [14,15]. Note also that the Larkin picture was fully con-
firmed by these studies. Finally, for d = 1 the problem can be mapped to stirred Burgers and
Kardar-Parisi-Zhang growth (see [21] for review of earlier works). For N = 1, a number of
exact results were obtained recently from an emerging integrability structure of the theory,
both in physics and mathematics. Besides proving the exact roughness ζ = 2/3 and free
energy fluctuation exponent, θ = 1/3, it was shown, e.g., that the probability density of the
free energy for a long polymer converges to the famous Tracy-Widom distribution both at
zero temperature [22], and at finite temperature in the continuum [23–27]. Finally, note that
the model (1)–(2) also arises in the study of the decaying Burgers equation with a random
initial conditions in dimension N , which exhibits interesting transitions and regimes, see e.g.
for N = 1 [28] and for large N [29].

1.2 Motivation and Goals of the Paper

While these results predict large scale properties of the low energy configurations, little is
known about the detailed statistical structure of the complex energy landscape of pinned
manifolds. This relates to the broad effort of understanding the statistical structure of station-
ary points (minima, maxima and saddles) of random landscapes which is of steady interest
in theoretical physics [30–39], with recent applications to statistical physics [10,34–36,38–
41], neural networks and complex dynamics [42–46], string theory [47,48] and cosmology
[49,50]. It is also of active current interest in pure and applied mathematics [51–60], For the
model (1)–(2) in the simplest case d = 0 (x is a single point), the mean number of stationary
points and of minima of the energy function was investigated in the limit of large N 
 1 in
[35,38,39], see also [37,50,52]. It was found that a sharp transition occurs from a ’simple’
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landscape for μ > μc (the same μc as given by the onset of RSB, see above), with typically
only a single stationary point (the minimum) to a complex (’glassy’) landscapes for μ < μc

with exponentially many stationary points. Similar transitions were found in related systems
upon applying various external perturbations [40,41,44] in particular in the mean number
of stationary points which was also studied recently for the case of an elastic string d = 1
in dimension N = 1 [10]. Relations with Anderson localization was discussed there in this
context.

An important quantity which characterizes the stability of local equilibria, and is crucial
both for equilibrium and slowly driven dynamics, is the Hessian matrix. In particular, the
question of whether the spectrum of the Hessian at low lying local minima is gapped (away
from zero) or not, the behavior of its mean density of eigenvalues near zero, and the nature of
the associated low lying modes, has been identified as a crucial feature to describe classical
[61–63] and quantum glasses [64–68]. Clearly, a ’gapless’ spectrum reflects the existence
of very ’flat’ directions in configuration space along which moving away from the local
minimum incurs very little ’cost’. This flatness, also known as a ’marginal stability’, is
ubiquitous in various types of glasses [62,63] and appears naturally in models exhibiting
a hierarchical structure of the energy landscapes [69,70]. The Hessian matrix was studied
recently numerically in the context of the depinning of an elastic line d = 1 in a one
dimension random potential, N = 1, in an effort to identify the “soft modes” which trigger
the avalanches. It was found that in the stationary state reached upon quasi-static driving, the
low-lying modes of the Hessian are localized, with a localization length directly related to the
Larkin pinning length [71]. Although studying the Hessian at equilibrium, and specifically
at the global minimum would be also very interesting, it is analytically challenging for d or
N small.

Recently, by combining methods of random matrix theory with methods of statistical
mechanics of disordered systems, we were able to study the Hessian at the absolute minimum
for the particle model (d = 0) in the limit of large N → ∞ [11]. The main goal of the
present paper is to extend this study to the pinned elastic manifold. Hence we will study the
NLd × NLd Hessian matrix

Kix, j y[u] = ∂2

∂ui (x)∂u j (y)
H[u] = δi j (μ1 − tΔ)xy + δxy

∂2

∂ui∂u j
V (u(x), x) (3)

in particular its density of eigenvalues ρ(λ) normalized as
∫

ρ(λ) dλ = 1. An important
feature of such matrix is its (block-)band structure visualized below:
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180 Y. V. Fyodorov, P. Le Doussal

(μ + 2t)1N
−t1N

−t1N

+W(1) −t1N

(μ + 2t)1N

+W(2)−t1N −t1N

−t1N

�

�

�

�

−t1N
(μ + 2t)1N

+W(L)

−t1N

Structure of the (NL × NL) Hessian matrixK in 1d discrete lattice

model with L internal sites and periodic boundary conditions.

Only non-zero N × N blocks are indicated.

where for r = 1, . . . , L we have introduced N × N random matrices W(r) with entries
W(r)

i j = ∂2

∂ui ∂u j
V (u(x), x)

∣∣
x=xr

.
Our main focus here is the problem where the Hessian Kix, j y[u0] is chosen at the global

minimal energy configuration u0 ≡ u0(x). At the same time it is worth noting another
interesting problem, where the Hessian is not conditioned by the global energy minimum,
but instead chosen at a generic point in configuration space, i.e. at an arbitrary fixed u(x). It
is easy to see from (3) and from the statistical translational invariance of the correlator in (2)
that the Hessian is then statistically independent of the choice of u(x), i.e. we may as well
chose it at u(x) = 0. The covariance structure of the random potential (2) implies, after a
simple differentiation that entries of the matrices W(r) are mean-zero Gaussian-distributed,
independent for different r and have the following covariance structure:

W(r)
i j W

(s)
kl = δrs

4

N
B ′′(0)

(
δi jδlk + δikδ jl + δilδ jk

)
(4)

The matrices of such block-band type, with W(r) in diagonal blocks replaced with GOE
matrices with i.i.d. entries, were introduced by Wegner [72] in his famous studies of the
Anderson localization, and are now known by the general name of Wegner orbital models.
Various instances of the models kept attracting attention in Theoretical and Mathematical
Physics literature over the years, see e.g. recent paper [73] and references therein. In par-
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ticular, the mean eigenvalue density for such type of models as N → ∞ is known to be
determined by the deformed semicircle equation rigorously derived in [74]. That equation
naturally generalizes the so-called Pastur equation of random matrix theory [75]. We will
see below that the difference between GOE covariance and our choice (4) is immaterial for
the calculation of the mean eigenvalue density which will be found to satisfy exactly the
same “deformed semicircle” equation. Moreover, when we condition the Hessian by being
at the global energy minimum the equation retains its validity, albeit with the renormalized
curvature parameter μ → μe f f , which should be determined by a separate minimization
procedure. The replacement μ → μe f f is crucial in determining the global position of the
support of the density of states, i.e. the position of the edge(s) and the value of the gap, for
the Hessian at the global energy minimum, but the general form of the density can be already
determined without that knowledge by studying the above mentioned equation.

Surprisingly, we were not able to trace the analysis of the density profile arising from that
equation in the literature for the most interesting case of infinite system of size L → ∞. As
it may have a separate interest and is quite instructive, we are going to fill in that gap in the
present paper and provide such an analysis for d = 1.

In the case of a continuousmanifold the HessianmatrixK becomes amatrix-valued differ-
ential operatorK acting in the space of N−component vectors f(x) := ( f1(x), . . . , fN (x))T

where, e.g. x ∈ [0, L]d , by the following rule:

Kf = (μ1 − tΔ)f + Ŵ f, Wi, j (x) = ∂2

∂ui∂u j
V (u(x), x) (5)

with appropriate boundary conditions (e.g. periodic, or Dirichlet).
Without conditioning by global minimum the covariance structure of Ŵ is a natural ana-

logue of (4):

Wi, j (x1)Wk,l(x2) = δ(x1 − x2)
4

N
B ′′(0)

(
δi jδlk + δikδ jl + δilδ jk

)
(6)

In particular, for d = 1 the operator can be visualized in the following form of an N × N
matrix:

K=

⎛

⎜⎜⎜⎜⎜⎜⎝

−t d2

dx2
+ μ + W1,1(x) W1,2(x) . . . W1,N (x)

W1,2(x) −t d2

dx2
+ μ + W2,2(x) . . . W2,N (x)

. . . . . . . . . . . .

. . . . . . . . . . . .

W1,N (x) . . . WN ,N−1(x) −t d2

dx2
+ μ + WN ,N (x)

⎞

⎟⎟⎟⎟⎟⎟⎠

(7)

Models of Such type are sometimes called the matrix Anderson models, and are essentially
continuous versions of Wegner orbital models. Note that in such a case the spectral density
in the infinite-volume limit can not be normalized.2 Again, we will show below that the
associated “deformed semicircle” equation for the mean eigenvalue density of such problem
can be solved as long as L → ∞ and yields an explicit form of the density profile.

2 Recall the disorder-free model with N = 1 where ρ(λ) = ∫
Rd

dk
(2π)d

δ
(
λ − μ − tk2

)
∝ t−1((λ −

μ)/t)
d−2
2 θ(λ − μ).
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182 Y. V. Fyodorov, P. Le Doussal

2 Summary of theMain Results

In this paper our main object of interest is the disorder-averaged resolvent (Green’s function)
of the Hessian, calculated at the absolute minimum u0 of the total energy:

G(x, y; λ,u0) = 1

N

N∑

i=1

(
1

λ − K(u0)

)

xi,yi
(8)

as well as its limit at coinciding points G(x, x; λ,u0), which relates to the mean spectral
density of the Hessian as

ρ(λ) = 1

π
lim

Im λ→0− Im G(λ,u0) , G(λ,u0) = 1

NLd

∑

x

G(x, x; λ,u0) (9)

Employing the replica trick, we first show that for N → ∞ (the limit being taken for a
fixed value of Ld ) the average Green’s function is given by

G(x, y; λ,u0) =
∫

k

eik(x−y)

λ − μeff + tΔ(k) − 4i pB ′′(0)
(10)

where the value of the parameter p is determined by the following self-consistent “deformed
semicircle” equation for the diagonal part

G(x, x; λ,u0) = i p =
∫

k

1

λ − μeff + tΔ(k) − 4i pB ′′(0)
(11)

which is essentially of the same form as one for the orbital model with lattice Laplacian [74].
The only quantity which contains all the information about the optimization leading to

the ground state u0 is the parameter μeff . Below μeff will be calculated in the various cases
(replica-symmetric, 1RSB and FRSB) in the framework of the replica theory. We recall
that the notation

∫
k applies both to the discrete models

∫
k = 1

Ld

∑
k and the continuum

limit
∫
k = ∫ ddk

(2π)d
. These equations are quite general and apply to basically arbitrary graph

Laplacian matrices tΔi x, j y (even not translationally invariant ones, provided the formula are
are generalized by replacing

∫
k

1
A → tr A−1, i.e. the trace in internal space of the inverse

matrix).

2.1 Spectral Density of the Hessian at a Generic Point

As has been already mentioned, with setting μe f f = μ the above expressions (10, 11)
provides the mean resolvent and the mean spectral density ρ(λ) for the manifold Hessian
around a generic point of the disordered landscape. Such object is interesting by itself and
we study the shapes of the spectral density in detail for several examples. Its generic feature
is the square-root singularity at the spectral edges, which is thus a universal characteristics
of the mean-field type spectral densities for disordered elastic systems of any dimension d .
The shape as a whole is not universal and essentially depends on the dimension and the type
of the Laplacian matrix (discrete or continuous).

As relatively few explicit formulas are available in the literature for eigenvalue densities
of disordered matrices and operators beyond Wigner semicircular, Marchenko–Pastur and
1D chains (see the book [76] for those and further examples) we want to emphasize that
in our model it turns out to be possible to find explicitly the spectral density for the 1D
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–1 1 2 3 4 5

0.2

0.4

0.6

Fig. 1 Scaling function rc(Λ) for the Hessian spectral density for the d = 1 continuum model plotted versus

Λ = t1/3 λ−μeff
3B′′(0)2/3 , as defined in (12)

matrix Anderson model (7), of infinite length L → ∞ and the Laplacian spectrum−Δ(k) =
k2, −∞ < k < ∞:

ρ(λ) = 1

2π(t B ′′(0))1/3
rc

(
Λ = t1/3

λ − μ

3B ′′(0)2/3

)
,

rc(Λ) = wr (Λ)2

4

√(
2

wr (Λ)

)3
− 1 (12)

where

wr (Λ) =
[
1 +
√
1 + Λ3

]1/3 +
[
1 −
√
1 + Λ3

]1/3
, (13)

We have plotted in the Fig. 1 the parameter free scaling function rc(Λ). The spectral edge
Λe is given in this case by Λe = −1. The function rc(Λ) reaches its maximum at Λ = 0
and then decays at Λ 
 1 as rc(Λ 
 1) ∼ 1√

3Λ
. The latter regime corresponds to the

spectral density ρ(λ) = 1
2π

1√
t(λ−μ)

of the disorder-free operator μ − d2

dx2
with the spectrum

λ = μ + tk2.
In the case of 1Ddisordered elastic discrete chainwith−Δ(k) = 2(1−cos k), 0 ≤ k ≤ 2π

the shape of the spectral density for the associated banded Hessian (and hence for the related
Wegner orbital model) can be shown to be of the form

ρ(λ) = t

2πB ′′(0)
r

(
Λ = λ − μ

2t
, y

)
, y = t2

B ′′(0)
(14)

but the function r(Λ, y) does not have a simple form for y ∼ 1. However, in the limiting
case of weak disorder y 
 1 a very explicit characterisation is again possible. In this case
the graph r(Λ, y) has two spectral edges at Λ(−)

e = − 3
2 y

−2/3 and Λ
(+)
e = 2 + 3

2 y
−2/3 and

the density profile in the vicinity of the edges is simply related to the density profile rc(Λ)

of 1D continuous system. Namely, in the vicinity of the left edge
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–1 1 2 3

0.05

0.10

0.15

Fig. 2 Blue: scaling function for the Hessian spectral density, r(Λ, y) versusΛ = λ−μ
2t for the infinite discrete

1D chain given by Eq. (14), for y = t2

B′′(0) = 10 (weak disorder). In the weak disorder limit, the central part

converges to the spectral density without disorder (indicated here in orange), while the two parts around the
edges converge, upon rescaling, to the density for the continuummodel plotted in Fig. 1, according to Eq. (15)

r(Λ, y) ≈ y−2/3 rc

(
2

3
y2/3Λ

)
, |Λ| ∼ y−2/3 (15)

and essentially the same profile in the vicinity of the upper edge |Λ−2| ∼ y−2/3. In between
the edges, for any finite 0 < Λ < 2 the profile for y >> 1 is given by the ”disorder-free”
shape r(Λ, y) � 1/(y

√
Λ(2 − Λ)). The numerically calculated spectral density for y = 10

is presented in Fig. 2 and shows all those features.
After this digression about the Hessian spectral densities at a generic point of the disor-

dered landscape, we return to our main task of analysing the Hessian spectra conditioned
by the requirement of sampling at the global minimum in the landscape, which requires the
determination ofμe f f . Before briefly summarizing our main results, we need to be more spe-
cific about the correlations of the landscape, i.e. the choice of B(q) in (2). The corresponding
discussion is given below.

2.2 Correlations of the Random Landscape andMain Features of the Phase Diagram

For a general classification of the functions B(q) corresponding to allowed covariances
of isotropic stationary Gaussian fields we refer to [11] and references therein. Here, for
applications to elastic manifolds we mainly consider the power-law class when the derivative
B ′(q) can be written as in [15]3:

B ′(q) = − B0

r2f (1 + q
γ r2f

)γ
, γ > 0 (16)

3 We follow the definitions and notations of [15] (Section II A and B) which are consistent with the original
paper [12]. The parameter γ is thus identical to the one defined in our previous work [11].
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As special limiting cases this class also includes the (i) exponential B(q) = B0e
−q/r2f as the

limit γ → +∞, and (ii) the log-correlated case for γ → 1. Here r f is the correlation length
of the random potential which enters in Larkin’s theory, and B0 has dimension of energy
square. For notational simplicity we will consider

B(q) = A(c + q)−γ+1 (17)

hence choosing c = γ r2f and A = B0cγ /((γ − 1)r2f ).
Let us recall the main features of the replica solution [12,15] for N → ∞ (restricting for

simplicity to d � 4). Let us first define the “Flory” roughness and the free energy fluctuation
exponents

ζ = ζF (γ ) = 4 − d

2 + 2γ
, θ = θF (γ ) = d − 2 + 2ζF (γ ) (18)

Then it was found that for μ < μc(T ), full replica symmetry breaking, FRSB, occurs
whenever θF (γ ) > 0, and 1-step replica symmetry breaking, 1RSB, occurs when θF (γ ) � 0.
The first case, FRSB, thus always occurs for manifold of dimensions 2 < d < 4, whereas
for 0 ≤ d < 2 it is possible whenever 0 < γ < γc(d) = 2

2−d . In that case the exponents
ζ, θ (which are defined in the limit μ → 0) are given by their Flory values. In the limit
μ → 0 the system was shown to remain in the glass FRSB phase at any temperature T (no
transition). The second case, 1RSB, occurs for d < 2 and γ > γc(d). In that case there
is a phase transition at Tc(μ) which survives for μ = 0. It is worth mentioning that in the
marginal case γ = γc(d) this transition is of a continuous nature.

The exponents are θ = 0 and ζ = 2−d
2 in both the high-T phase and the low-T 1RSB

phase, with however different amplitudes.4 The special case γ = γc(d) is called marginal
and exhibits features of both 1RSB and FRSB. Note that it also includes as a special limit
the case of d = 2 and the disorder with exponential covariance.

In [11], for the case of a single particle d = 0, we have distinguished long-range correlated
(Full RSB) 0 < γ < 1, and short-range correlated (1-RSB) γ > 1 landscapes. For the
manifold such as distinction thus also holds, however the critical value of γ is not unity
anymore, but equal to γc(d) = 2

2−d . In particular for d > 2 one is always in the LRC case.5

This is because the total energy now also includes the elastic energy, which increases the
correlations of the effective random landscape seen by the manifold.

2.3 Hessian Spectrum at the Point of Global EnergyMinimum

Our results here extend the ones of [11], which are recovered in the special case of d = 0.
There are many similarities with that case. The most important parameter in the theory is
the “Larkin mass” μc > 0 which controls the value of the parabolic confinement μ below
which the replica symmetry breaking (RSB) occurs at zero temperature. Its value turns out
to be given by the positive solution of

1 = 4B ′′(0)
∫

k

1

(−tΔ(k) + μc)2
(19)

which is controlled both by disorder strength and the elasticity matrix. For example, for 1D

continuous system a simple calculation gives μc =
(
B′′(0)√

t

)2/3
. Our analysis shows that in

4 This is an artefact of N = ∞ for 1RSB and may not survive for N = 1, except maybe in the boundary case
γ = γc(d) (certainly it survives for d = 0, γc = 1 the log-correlated case).
5 Note however that for d > 4 there is again a RS phase for weak disorder.
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the replica symmetric phase the lower spectral edge λ
(−)
e of the Hessian (which we associate

with the spectral gap) as a function of μ is given by

λ(−)
e = μ − μc + 4B ′′(0)

∫

k

[
1

μ − tΔ(k)
−
∫

k

1

μc − tΔ(k)

]
(20)

This formula immediately shows that for μ > μc the Hessian spectrum is always gapped
(from zero). Upon expanding for μ → μc and using (19) one immediately finds the gap
vanishing quadratically at μc. For μ < μc the Hessian spectrum is either gapped or extends
down to zero, depending if 1-step RSB or full-RSB occurs. In the first case, the gap vanishes
as (μc −μ)4 near the transition from below, with the super-universal exponent. For example,
for the continuum model in dimension d we get for μ = μc(1 − δ)

λ(−)
e = μc

36B(3)(0)4

(
4 − d

4

)3 (
B(4)(0)B ′′(0) − 2(3 − d)

4 − d
B(3)(0)2

)2
δ4 + O

(
δ5
)

(21)

In the second case of full RSB the gap is identically zero everywhere for μ ≤ μc.
We also obtain the average Green function (8) and find that at the edge of the spectrum

it decays exponentially as ∼ e−|x−y|/Lc , with the characteristic length precisely equal in all
cases to the Larkin length Lc introduced in the theory of pinning. For the continuum model
with short-range elasticity and weak disorder, Lc ∼ 1/μ1/2

c . This is thus reminiscent of the
results of [71] although obtained there in a slightly different context (depinning). Remarkably,
this property holds also for μ > μc, i.e. in the RS phase.

As a by product of these studies we arrived to a very precise criterion which allows to
determine which types of covariance functions B(q) in a given manifold dimension d will
lead to the full-RSB solution. It reads

A(q) = 2(3 − d)

4 − d

(
B ′′′(q)

)2 − B ′′(q)B ′′′′(q) < 0 ⇔ Full RSB (22)

which generalizes the criterion given in [77] for d = 0. Inserting B(q) for the power law
models (16) gives a criterion in agreement with one given in [12], namely that the full RSB
solution holds (i) for any value of γ if d � 2 and (ii) for γ � γc(d) = 2/(2 − d) if d � 2.

Finally, for d = 1 the above criterion specifies the covariance B(q) = A
c+q as the special

marginal case which shares simultaneously the features of 1RSB and FRSB, and for d = 2
the exponential B(q) ∼ e−aq plays a similar role. In particular, the Hessian spectrum is
gapless in those potentials. We study both cases in much detail and show that for them the
Parisi equations can be solved exactly and explicitly. Note that in N → ∞ class of models
these cases play the same role for d = 1 and d = 2 as the logarithmically correlated case
identified as marginal in d = 0 [77]. It is worth mentioning here that due to marginality
many special properties of logarithmically correlated potential in d = 0 survive for finite N ,
as was originally suggested in [78] and much studied in the last decade, see e.g. [79–81]. It
would be interesting to investigate whether some universality holds for the finite-N elastic
disordered systems in the above marginally correlated cases for d = 1, 2 as well.

Let us mention here some works on related models, although they are more similar to
the case d = 0, and not the manifold. In [41,50] the Hessian statistics is sampled over all
saddle-points or minima at a given value of the potential H(u) = E = const , a priori quite
different from imposing the absolute minimum. The spectrum of the soft modes was also
calculated in a mean-field model of the jamming transition, the ’soft spherical perceptron’.
The Hessian matrix in that model has the shape of a (uniformly shifted) Wishart matrix,
whose spectrum is given by the (shifted) Marchenko–Pastur law, while in [11] the Hessian
spectrum is given by a shifted Wigner semicircle. The model has two phases: ’ RS simple’
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and ’FRSB complex’ and the Marchenko–Pastur spectrum in that model was demonstrated
to undergo a transition from gapped to gapless, similar to what we find here for Gaussian
landscapes. Finally, it is worth mentioning a quite detailed recent characterization of the
energy landscape of spherical p-spinglass in full-RSB phase close to the global minimum,
see [82] and references therein.

The outline of this paper is as follows. In Sect. 3 we provide a derivation of the average
Green function, resolvent and the spectral density of the Hessian using two sets of replica.
The second set is necessary to specify that the Hessian is considered at the absolute energy
minimum. We obtain the general saddle point equations which determine these quantities.
In Sect. 4 we analyze the results. In the first Sect. 4.1 we obtain the spectral density and the
Green function keeping μeff as a free parameter. The general results only weakly depend on
this parameter, which simply globally shifts the support of the spectral density. In the second
part 4.2 we complete the study by calculating μeff from the explicit solution of the replica
saddle point equations. This leads to the determination of the spectral edges and of the gap,
in the three main distinct cases: replica symmetric, FRSB and 1RSB. The case of marginal
1RSB is given a special attention. Finally Sect. 5 contains the conclusion.

3 Derivation of the Average Green Function Using Replica

Below we use the following notational conventions. The sums over the internal points of the

manifold x, y, . . . are denoted as
∑

x ≡ ∑Ld

x=1, the sum over the first set of replica indices
α, γ, . . . are denoted

∑
α ≡∑m

α=1, the sums over the second set of replica indices a, b, c, . . .
are denoted

∑
a ≡ ∑m

a=1, and similarly for the products. The indices i = 1, . . . N and the
dot product is used in RN .

The notation Tr is the trace over all indices x, i and a or α, i.e. overRm × Ld orRn × Ld ,
e.g. TrA =∑xa Axa,xa . The notation tr is reserved for the traces over a or α only, i.e. over
R
m or Rn , i.e. trA =∑a Aaa .

3.1 Green’s Function and the First Set of Replica

As the starting point of our approach, we introduce the resolvent of the Hessian K (u) defined
in (3), for a given generic configurationu(x) (not necessarily theminimumof the total energy)
and in a given realization of the randompotential V (u(x), x). The associatedGreen’s function
is then defined via

G(x, y; λ,u) = 1

N

N∑

i=1

(
1

λ − K (u)

)

xi,yi
, G(λ,u) = 1

NLd

∑

x

G(x, x; λ,u) (23)

Such Green’s function admits then the following representation in terms of m replicated
Gaussian integrals over N -component real-valued vector fields φα(x), with α = 1, . . . ,m:

G(x, y; λ,u) = lim
m→0

∫

RNm
e− i

2 λ
∑

x,α φ2
α(x)e

i
2

∑
x,y,α φα(x)·K (u)·φα(y)

×
⎡

⎣ i

mN

∑

γ

φγ (x) · φγ (y)

⎤

⎦
∏

x,α

Dφα(x) (24)
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where we assumed that Im λ < 0 and set the factor ( i
π
)m/2 → 1 for m = 0. From this we

calculate the mean spectral density of the Hessian eigenvalues “at a temperature T ”, defined
as

ρT (λ) = 1

π
lim

Im λ→0− Im 〈G(λ,u)〉T (25)

where the thermal averaged value of any functional g(u) of a configuration u(x) at a tem-
perature T = β−1 is defined as 〈g(u)〉T := ∫ g(u)πβ(u)Du(x), with πβ(u) = Z−1

β e−βH[u]
being the Boltzmann-Gibbs weights associated with the configurations via the energy func-
tional (1). Our final aim is then to obtain the mean spectral density of Hessian eigenvalues at
the absolute minimum by setting temperature to zero:

ρ(λ) = lim
T→0

ρT (λ) = 1

π
lim

Im λ→0− Im G(λ,um) (26)

The problem therefore amounts to first calculating the disorder and thermal average

〈G(x, y; λ,u)〉T = lim
m→0

∫

RNm
e− i

2 λ
∑

x,α φ2
α(x) 〈e i

2

∑
x,y,α φα(x)·K (u)·φα(y)〉T

×
⎡

⎣ i

mN

∑

γ

φγ (x) · φγ (y)

⎤

⎦
∏

x,α

Dφα(x) (27)

where

〈e i
2

∑
x,y,α φα(x)·K (u)·φα(y)〉T = Z−1

β

∫

RN
Du(x) e

i
2

∑
x,y,α φα(x)·K (u)·φα(y)−βH[u] (28)

and then, by performing the zero-temperature limit, to capture the contribution from the
global minimum configuration only.

3.2 Average Green Function and Second Set of Replica

In the framework of the replica trick we represent the normalization factor Z−1
β in Eq. (28)

formally as 1/Zβ = limn→0 Zn−1
β and treat the parameter n before the limit as a positive

integer. After this is done, averaging the product of n integrals over the Gaussian potential
V (u) is an easy task. The calculation is very similar to the one for d = 0 in [11], (apart
from an additional factor of 2 for each derivative of B arising due to a slightly different
normalization of the covariance used in [11] ) and we simply quote the result referring to
[11] for more details. We obtain

〈e i
2

∑
x,y,α φα(x)·K (u)·φα(y)〉T = lim

n→0

∫ ∏

x,a

Dua(x) e−Ln,m [u,Œ] (29)

with

Ln,m[u, φ] = Lm[φ] + Ln,m[u, φ] (30)
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where the u-independent part of the action is given by

Lm[φ] =
∑

x

B ′′(0)
2N

⎡

⎣
(
∑

α

φ2
α(x)

)2
+ 2
∑

α,β

(
φα(x) · φβ(x)

)2
⎤

⎦

− i

2

∑

x,y,α

φα(x) · (μ1 − tΔ)xyφα(y) (31)

whereas both u- and φ-dependent part is

Ln,m[u, φ] = β

2

∑

x,y,a

ua(x) · (μ1 − tΔ)xyub(y) − N
β2

2

∑

x,a,b

B

(
(ua(x) − ub(x))2

N

)

+iβ
∑

x

(
∑

α

φα(x)2
)
∑

a

B ′
(

(ua(x) − u1(x))2

N

)

+2iβ

N

∑

x

∑

a

B ′′
(

(ua(x) − u1(x))2

N

)∑

α

((ua(x) − u1(x)) · φα(x))2

(32)

We can thus rewrite

〈G(x, y; λ,u)〉T = lim
m,n→0

∫

RNm

∏

x,α

Dφα(x)
∫ ∏

x,a

Dua(x) e− i
2 λ
∑

x,α φ2
α(x)−Ln,m [u,Œ]

× i

mN

⎡

⎣
∑

γ

φγ (x) · φγ (y)

⎤

⎦ (33)

Now we introduce auxiliary fields and their conjugate fields. We define for each value of
the argument x (which we omit for brevity) the differentials

dQ =
∏

1�a�b�n

dQab, dP =
∏

1�α�β�m

dPαβ, dR =
n∏

a=1

m∏

α=1

dRaα (34)

dσ =
∏

1�a�b�n

dσab, dτ =
∏

1�α�β�m

dταβ, dη =
n∏

a=1

m∏

α=1

dηaα (35)

and then define DQ(x) =∏x dQ(x), etc. This allows us to use the formal identity

1 =
∫ ∏

x

DQ(x)Dσ(x)DP(x)Dτ(x)DR(x)Dη(x) e− β
2

∑
x,a,b σab(x)(NQab(x)−ua(x)·ub(x))

×e
i
2

∑
x,α,β ταβ (x)(N Pαβ (x)−φα(x)·φβ(x))+ 1

2

∑
x,a,α ηαβ (x)(N Rαβ (x)−ua(x)·φα(x)) (36)

where the contours of integration are duly chosen. This identity can be then inserted inside
(33) effectively allowing to replace all scalar products ua(x) · ub(x), φα(x) · φβ(x) and
ua(x)·φα(x))by Qab, Pαβ and Ra,α respectively insideLn,m[u, φ], leaving a simple quadratic
form in the fields ua(x) and φα(x), which can be integrated out. Restricting for now, for
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simplicity, to the diagonal element of the resolvent we obtain

〈G(x, x; λ,u)〉T
= lim

m,n→0

∫ ∏

x

DQ(x)Dσ(x)DP(x)Dτ(x)DR(x)Dη(x)

[
i trP(x)

mN

]
e−NL[Q,σ,P,τ,R,η]

(37)

where we have defined the action

L[Q, σ, P, τ, R, η] = Lm[P, τ ] + Ln,m[Q, σ, P] + δL[Q, σ, P, τ, R, η] (38)

Lm[P, τ ] =
∑

x

B ′′(0)
2

[
(tr P(x))2 + 2tr

(
P(x)2

)]+ iλ

2
trP(x)

+1

2
Tr ln ((μ1 − tΔ)1m − τ1) − i

2

∑

x

tr(τ (x)P(x)) (39)

Ln,m[Q, σ, P] =
∑

x

βμ

2
trQ(x) − β2

2

n∑

a,b=1

B (Qaa(x) + Qbb(x) − 2Qab(x))

+1

2
Tr ln((μ1 − tΔ)1n − σ1)

+β

2

∑

x

tr(σ (x)Q(x)) + iβ
∑

x

trP(x)
n∑

a=1

B ′ (Qaa(x)

+Qa1(x) − 2Q11(x)) (40)

The last piece δL[Q, σ, P, τ, R, η] is given in Appendix A. Since it vanishes at the saddle
point we do not need to give it here.

We can now write the saddle point equations. It is easy to check that the equations admit
an x-invariant solution in all variables: i.e. Qab(x) = Qab, σab(x) = σab, Pαβ(x) = Pαβ ,
τab(x) = τab at the saddle point. We will consider only this solution on physical grounds.
Let us define again the quantity

μeff = μ − 2β
n∑

a=1

B ′ (Qaa + Q11 − 2Qa1) (41)

Taking first the functional derivativesw.r.t. ταβ(x) and Pαβ(x)we arrive at the saddle-point
equations

− i Pαβ = ((μ1 − tΔ)1m − τ1)−1
αx,βx (42)

ταβ = −4i B ′′(0)
(
Pαβ + 1

2
δαβ trP

)
+ (λ + μ − μeff )δαβ (43)

Moreover, similarly to d = 0 case treated in detail in [11], it is easy to check that the
invariance of the action under rotating matrices P and τ in the replica space implies that the
corresponding saddle point solutions must be actually proportional to the identity matrix:
Pαβ = pδαβ and ταβ = τδαβ . In the limit m → 0 one then finds that τ satisfies the equation

τ = −4i B ′′(0)p + λ + μ − μeff (44)
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whichwhen substituted to the corresponding equation for p yields the closed self-consistency
equation for the latter:

i p = −((μ1 − tΔ)1m − τ1)−1
xx

= −
∫

k

1

μ − tΔ(k) − τ
=
∫

k

1

λ − μeff + tΔ(k) − 4i pB ′′(0)
(45)

This condition has exactly the form of the “deformed semicircle” equation derived in [74] for
the block-banded Wegner orbital model, assuming the random matrices W (r), r = 1, . . . , L
on the main diagonal to be of standard GOE type. To that end it is worth noting that in the
action Eq. (39) eventually responsible for fixing the shape of the self-consistency equation
the difference between our choice for W (r), see (4), and the GOE appears only via the term
(trP)2 absent for GOE case. However for m → 0 that term gives contribution of the order
m2, hence is negligible in comparison with the dominant contributions of order m. Hence,
from the point of view of calculating the profile of the mean eigenvalue density the difference
between our Hessians and the Wegner orbital model is immaterial. In particular, in the case
of d = 0 one recovers the self-consistency condition found in [11]

i p = 1

λ − μeff − 4i pB ′′(0)
(46)

whose solution is the genuine semicircular density as typical for d = 0 random matrix
problems. The analysis of the solution to the self-consistency Eq. (45) for higher d , and
especially for d = 1 will be provided in detail below.

Along similar lines one can derive the average Green’s function at two different points
x �= y. Starting from its definition and using a source term, it is not difficult to see that in
the limit of large N employing the same saddle point solutions one arrives at the following
representation:

G(x, y; λ,u0) =
∫

k

eik(x−y)

λ − μeff + tΔ(k) − 4i pB ′′(0)
(47)

where p is an apriori complex number determined by the (self-consistent) equation for the
diagonal part.

Finally, using this saddle point, we see that the termwhich couples P and Q is proportional
to m and hence as m → 0 can be neglected in the saddle point equation for Q. The resulting
equations are identical to those obtained in [12,14,15] and we now briefly recall them here.
Taking the functional derivatives w.r.t. σab(x) and ταβ(x) yields

βQab = (((μ1 − tΔ)1n − σ1)−1
ax,bx =

∫

k
Gab(k) (48)

σab = 2β

(
∑

c

B ′(χac) − B ′(χab)

)
⇔ σab = −2βB ′(χab) and

∑

b

σab = 0

(49)

where we define, as in [12,14,15]

Gab(k) = ((μ − tΔ(k))1n − σ)−1
ab (50)

χab = T
∫

k
(Gaa(k) + Gbb(k) − 2Gab(k)) (51)

We will recall briefly the analysis of these equations below, as needed.

123



192 Y. V. Fyodorov, P. Le Doussal

4 Analysis of the Results

We now analyze the results from these saddle-point equations in two stages. First we analyse
the general form of the average Green function and the spectral density by simply assuming
that μeff takes some value at T = 0. That gives the shape of the spectral density ρ(λ), up to
a global shift of λ. In a second part, we recall the analysis leading to the various phases (RS,
FRSB and 1RSB) and obtain from it the corresponding possible values of μeff as a function
of μ, which allows to determine the location of the edge of the spectrum.

4.1 The Spectral Density and Green’s Function

4.1.1 General Formula, Larkin Mass and Lower Edge

We start with recalling the self-consistency equation for the diagonal part of the Green’s
function, the parameter p:

G(x, x; λ,u0) = i p =
∫

k

1

λ − μeff + tΔ(k) − 4i pB ′′(0)
. (52)

There are usually multiple solutions for p and we must choose the branch such that for
λ → ±∞ one has i p ∼ 1

λ
. For a discrete model the spectrum of the perturbed Laplacian

is bounded and large |λ| necessarily correspond to being outside of the spectrum. In the
continuum model the same holds for large negative λ. In the range of λ outside of the
spectrum, p is necessarily pure imaginary. When λ reaches the edges of the spectrum and
goes inside the spectral support, p develops a real part proportional to the mean spectral
density. Hence we can write for real p1, p2

p = p1 − i p2, ρ(λ) = 1

π
Im(i p) = 1

π
p1 (53)

which converts (52) after separating the real and imaginary parts, into two coupled equations
which determine p1 and p2 as functions of λ:

p2 =
∫

k

λ − μeff + tΔ(k) − 4p2B ′′(0)
(λ − μeff + tΔ(k) − 4p2B ′′(0))2 + [4p1B ′′(0)]2

:= F(λ, p2, p
2
1) (54)

p1 = 4p1B
′′(0)

∫

k

1

(λ − μeff + tΔ(k) − 4p2B ′′(0))2 + [4p1B ′′(0)]2
:= p1G(λ, p2, p

2
1)

(55)

The edge of the spectrum is for λ = λe such that p1 acquire a non zero value, hence it is
determined by eliminating p2 = pe2 in the system

pe2 =
∫

k

1

λe − μeff + tΔ(k) − 4pe2B
′′(0)

(56)

1 = 4B ′′(0)
∫

k

1

(λe − μeff + tΔ(k) − 4pe2B
′′(0))2

(57)

since at the edge one can set p1 = pe1 = 0. Note that there can be more than one edge, i.e.
more than one solution to this system. Note also that assuming the right-hand-sides in (54)
and (55) are analytic functions F,G of all arguments λ, p2 and u = p21, a straightforward
expansion in powers of λ − λe shows that just above the lower edge
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p21 ≈ (λ − λe)

∂G
∂ p2

|e ∂F
∂λ

|e −
(

∂F
∂ p2

|e − 1
)

∂G
∂λ

|e
(

∂F
∂ p2

|e − 1
)

∂G
∂u |e − ∂F

∂u |e ∂G
∂ p2

|e
(58)

implying a square-root singularity of the density of eigenvalues at the thresholdin the generic
case (where neither the numerator or denominator vanishes in (58)).

To further analyze these equations we introduce the Larkin mass μc > 0 defined as the
positive solution of

1 = 4B ′′(0)
∫

k

1

(−tΔ(k) + μc)2
(59)

Anticipating a little on the subsequent analysis, (59) precisely determines the range of curva-
tures when the replica-symmetric solution becomes unstable. Namely, it becomes unstable
in the interval 0 ≤ μ < μc, with μc determined by (59). The Larkin mass exists whenever
B ′′(0) > 1/(4

∫
k

1
−tΔ(k) ) and when this is the case, it is unique. In the opposite case, the RS

solution is stable for all values of μ. Note that μc depends only on B ′′(0) and on the graph
Laplacian elasticity matrix.

We now assume that we are in the first case and there exists a finite Larkin mass μc > 0.
It is then easy to find a solution for the spectral edge λe. One sees that pe2 is now determined
in terms of μc and that (56) is equivalent to

λe := λ−
e = μeff + 4pe2B

′′(0) − μc , pe2 = −
∫

k

1

−tΔ(k) + μc
(60)

which determines λe as a function of μc. It turns out (see below) that this is always the lower
edge, hence we denoted it λ−

e . We discuss below how to obtain the other edge(s) when they
exist.

4.1.2 Some Examples: Edges and the Spectral Density Shape

Let us study some examples, remembering that we denote
∫
k = 1

Ld

∑
k ≡ ∫ ddk

(2π)d
for either

discrete or continuum models.

1. First recall that for a single-site (equivalently, zero dimensional d = 0) system with
Ld = 1 the Eq. (52) gives

i p= 1

λ − μeff − 4i pB ′′(0)
⇔ i p = λ − μeff+i

√
16B ′′(0) − (λ − μeff )2

8B ′′(0)
(61)

Hence the Hessian spectral density from (53) is given by the semicircular law

ρ(λ) = 1

π
Im(i p) = 1

8πB ′′(0)
√
16B ′′(0) − (λ − μeff )2 θλ

([λ−
e , λ+

e ])

λ±
e = μeff ± 4

√
B ′′(0) (62)

where θλ([a, b]) = 1 if λ ∈ [a, b] and zero otherwise. This is precisely the result obtained
in [11]. On the other hand we can determine the edge using (56) and (57). First let us
examine the Eq. (59). In that case it reads

1 = 4B ′′(0)
μ2
c

(63)
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The positive root is μc = 2
√
B ′′(0) and from (60) we find

λ−
e = μeff − 4

B ′′(0)
μc

− μc = μeff − 4
√
B ′′(0) (64)

and recover the lower threshold (1). If we now use the negative root of (63), μc =
−2

√
B ′′(0) we obtain instead λ+

e = μeff + 4
√
B ′′(0), i.e. the upper edge !

It is easy to see that this is a general property. In other words the Eq. (59) may have
several roots. Let us call D the set on the real axis supporting the spectrum of −tΔ.
It is easy to see that for the continuum model, which has D = [0,+∞[, Eq. (59)
may have only a single root. In contrast, consider e.g. the infinite discrete lattice in
d = 1 with −tΔ(k) = 2t(1 − cos k) so that its spectrum is in D = [0, 4t]. Clearly
the r.h.s of (59) is infinite for μc ∈ −D = [−4t, 0] and diverges at the edges of this
interval. Hence one expects two roots, one for μc = μ+

c > 0, and, by symmetry, one
for μc = μ−

c = −4t − μ+
c . In the following we will always associate the positive root

μ+
c = μc with the Larkin mass. If the set −D consists of several intervals, or several

points, where the r.h.s. of (59) is infinite, there can be several additional solution to (59)
besides one associated with the Larkin mass. That one we know must be the largest one
since −tΔ is required to be positive definite. Hence it corresponds to the lower edge of
the Hessian.

2. As soon as we have L � 2 the spectral density for the Hessian is not a semicircle as
we now discuss. For a line d = 1 with L points and periodic boundary conditions the
eigenvalues of −tΔ are 2t(1 − cos 2π j

L ), j = 1, . . . , L − 1. The Eq. (59) becomes

L−1∑

j=0

1
(
μc + 2t

(
1 − cos 2π j

L

))2 = L

4B ′′(0)
(65)

It is easy to see that for very weak disorder, B′′(0)
t2L

� 1, there are 2L roots to this equation,

which we denote μc = μ
j,±
c , j = 0, . . . , L − 1 with

1

t
μ

j,±
c = −2

(
1 − cos

2π j

L

)
∓ 2

√
B ′′(0)
t2L

(
1 + O

(
B ′′(0)
t2L

))
(66)

which can be found by considering successively all the quadratic divergences in each
term in the sum in the left-hand side of (65) and approximating the sum accordingly. The
formula (60) for the corresponding edge becomes

λe = μeff − μc − 4B ′′(0)
L

L−1∑

j=0

1

μc + 2t
(
1 − cos 2π j

L

) (67)

Substituting here the values of μ
j,±
c found above we arrive, up to subdominant terms at

weak disorder, to the corresponding edge values

λ
j,±
e = μeff + 2t

(
1 − cos

2π j

L

)
± 4

√
B ′′(0)
L

+ . . . (68)

For L = 1 the above approximation is exact and one recovers the formula (1) valid for
any disorder. For L � 2 there are 2L edges and L bands at weak disorder. It is easy to see
why. When disorder is zero the Hessian is simply the Hessian of the elastic matrix and

its spectrum is the set of delta peaks at 2t
(
1 − cos 2π j

L

)
+ μ (in that case μeff = μ). As

123



Hessian at the Minimum for Manifolds in a High-Dimensional... 195

disorder increases, each of these delta peaks broadens, leading to a band, as described by
(68). One can expect that these bands will remain well separated as long as their width

8
√

B′′(0)
L is much smaller than their separations ≈ 4t

L . This gives the criterion

4LB ′′(0)
t2

� 1 (69)

to have separated bands. It is reasonable to expect that in that situation each band will
have a semi-circle form, since each basically solves independently the d = 0 equation.
To study the merging of such bands, let us consider the case L = 2 in more details (the
eigenmodes are then k = 0, π ). The equation becomes

μc = −2t + 2t z, y = 2t2

B ′′(0)
,

1

(1 − z)2
+ 1

(1 + z)2
= y (70)

Hence there are two cases. Either disorder is weak 2t2
B′′(0) > 2, and there are 4 real roots

z±,+ = ±
√

y + √
4y + 1 + 1

y
, z±,− = ±

√
y − √

4y + 1 + 1

y
(71)

with |z±,+| > 1 and |z±,−| < 1 always. Or disorder is strong and only the two roots
z±,+ exist. These roots correspond to edges of the spectrum of the Hessian

λe = μeff − μc − 4B ′′(0)
∫

k

1

−tΔ(k) + μc
= μeff + B ′′(0)

t

[
y(1 − z)

− 1

z − 1
− 1

z + 1

]
(72)

= μeff + B ′′(0)
t

[
y ∓ 1

2
z+,ε(2y − 1 + ε

√
1 + 4y)

]
(73)

There are thus 4 edges (weak disorder) and 2 edges (strong disorder). The lowest edge
is located at

λ−
e = μeff + B ′′(0)

t

[
y − 1

2
z++(2y − 1 +√1 + 4y)

]

= μeff + B ′′(0)
4t

(
w2 − √

w − 1(w + 3)3/2 − 1
)

, w = √1 + 4y

=
√

1 + 8t2

B ′′(0)
(74)

We can now study the spectral density for the case L = 2. It is given by ρ(λ) = 1
π
Im(i p)

where i p satisfies the cubic equation

2i p = 1

λ − μeff − 4i pB ′′(0)
+ 1

λ − μeff − 4t − 4i pB ′′(0)
(75)

The resulting density of states is plotted in Figs. 3 and 4. The evolution described above
from disjoint supports (weak disorder) to a single support (strong disorder), as well as
the transition at B ′′(0)/t2 = 1 is clearly visible.
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3. Our next example is the continuum 1D line of infinite length L → +∞. Since the
Laplacian spectrum for such a system is given by −tΔ(k) = tk2 with k ∈ [0,+∞[ for
such a case there is only one spectral edge in the system with disorder, the lower edge
λ−
e , determined from the Larkin mass μc, i.e. the unique positive solution of

1

4B ′′(0)
=
∫ ∞

−∞
dk

2π

1

(tk2 + μc)2
= 1

4t1/2μ3/2
c

(76)

leading to

μc =
(
B ′′(0)√

t

)2/3
, λ−

e = μeff − μc − 2
B ′′(0)√

t
μ

−1/2
c = μeff − 3

(
B ′′(0)√

t

)2/3

(77)

The spectral density in the interval λ > λ−
e is then given by ρ(λ) = 1

π
Im(i p) where the

complex p is obtained by solving the following equation:

i p =
∫ ∞

−∞
dk

2π

1

λ − μeff − tk2 − 4i pB ′′(0)
. (78)

Introducing new scaled variables y, p̃, λ̃ via

y = t2

B ′′(0)
, p = p̃

2y1/6
√
B ′′(0)

, λ − μe f f = λ̃
√
B ′′(0)
y1/6

(79)

and rescaling the integration variable as k → k y−1/3 the Eq. (78) takes the form

i p̃ = 1

π

∫ ∞

−∞
dk

λ̃ − 2i p̃ − k2
= −i√

λ̃ − 2i p̃
sgn

(
Im
√

λ̃ − 2i p̃

)
, Im

√
λ̃ − 2i p̃ �= 0

(80)

Taking the square and further introducing the variable w and parameter δ by

p̃ = − i

w
, λ̃ = 3δ1/3 (81)

the equation for w attains especially simple form:

w3 + 3δ1/3w − 2 = 0 (82)

The general theory of cubic equations then dictates that for δ < −1 the Eq. (82) has
only real solutions, hence p ∼ −iw−1 will be purely imaginary implying zero density
of eigenvalues. This parameter range fully agrees with the position of lower spectral
threshold λ−

e found in (77), which in the new variables reads λ̃−
e = −3y−1/6. As long as

δ > −1 there is one real root given by the Cardano formula in the form

wr =
[
1 + √

1 + δ
]1/3 +

[
1 − √

1 + δ
]1/3

(83)

which is positive and decreases from 2 to 0 as δ increases from −1 to +∞. There are
also two complex conjugated solutions w and w. To find their imaginary part we use the
Vieta’s formulas:

wr + w + w = 0, wr ww = 2
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which gives Re(w) = −wr
2 and Im(w) = ±

√
2

wr
− w2

r
4 . It is then easy to see that the

spectral density can be found explicitly and is given by:

ρ(λ) = 1

2π
√
B ′′(0)y1/6

Im
(
w−1) = − 1

2π
√
B ′′(0)y1/6

Im(w)

Re2(w) + Im2(w)

where we have to choose the sign of Im(w)which ensures positivity of the mean density.
Recalling that in terms of the original variables

δ = t

[B ′′(0)]2
(λ − μe f f )

3

27
=
(

−1 + λ − λ−
e

μe f f − λ−
e

)3
, y = t2

B ′′(0)

this finally implies

ρ(λ) = 1

2π(t B ′′(0))1/3
rc

(
Λ = t1/3

λ − μeff

3B ′′(0)2/3

)
, rc(Λ) = w2

r

4

√(
2

wr

)3
− 1

(84)

Wehaveplotted in theFig. 1 theparameter free scaling function rc(Λ) = √
U −U 4, U =

wr
2 with wr given by (83) and δ = Λ3. It has the following asymptotics for large Λ and
for Λ near the edge Λe = −1:

rc(Λ 
 1) = 1√
3Λ

− 5

54
√
3Λ7/2

+ O(Λ−13/2) (85)

rc(Λ + 1 � 1) = √
Λ + 1 − 5

18
(Λ + 1)3/2 + O

(
(Λ + 1)5/2

)
(86)

In particular, Eq. (84) then implies that

ρ(λ) � 1

2π(t B ′′(0))1/3

√
λ − λ−

e

μeff − λ−
e

(87)

showing the expected square-root singularity close to the spectral edge λ = λ−
e . More-

over, it is easy to see that drc
dU = 0 for U = 2−2/3, hence wr = 21/3 corresponding

according to (83) to δ = 0. We conclude that Λ = 0 is exactly the point of the maximum
for the scaled density profile rc(Λ), which is readily seen from Fig. 1.

4. Our last example is an infinite discrete lattice d = 1 with the number of sites L → ∞.
The Laplacian spectrum for such a system is given by −tΔ(k) = 2t(1 − cos k) with
k ∈ [0, 2π]. To determine the spectral edges we use the integrals

∫ 2π

0

dk

2π

1

cos k + x
= sgn(x)√

x2 − 1
,

∫ 2π

0

dk

2π

1

(cos k + x)2
= |x |

(x2 − 1)3/2
(88)

for real |x | > 1. This reduces finding the roots of (59) to solving the equation

1

4B ′′(0)
=
∫ 2π

0

dk

2π

1

(2t(1 − cos k) + μc)2
= |μc + 2t |

(μc(μc + 4t))3/2
(89)

for μc > 0 or μc < −4t . Denoting r = 1 + μc
2t and y = t2

B′′(0) we rewrite the above

equation as |r |
(r2−1)3/2

= y which implies a simple cubic equation w3 − y−2/3w − 1 = 0

forw = (r2−1)y2/3. Note that we have |r | > 1 for all allowed choices ofμc, hence need
to look for a real positive solutionw > 0 of this equation. According to general properties
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of cubic equations, for y > 2
3
√
3
our equation has only a single real root w = wc given

by the Cardano formula:

wc = Δ1/3 + 1

3y2/3
Δ−1/3, Δ = 1

2
+
√
1

4
− 1

27y2

which is obviously positive as needed for our goals. For the parameter μc we then have
two solutions. The positive one corresponds to the Larkin length:

μc = μ+
c = 2t

(√
1 + wc y−2/3 − 1

)
> 0 (90)

and the second solution μ−
c = −2t

(√
1 + wc y−2/3 + 1

)
≡ −4t − μc as expected by

symmetry.
In the case 0 ≤ y ≤ 2

3
√
3
the cubic equations has all three real roots. Introducing the

angle θ ∈ [0, π
2 ] such that cos θ = 3

√
3

2 y the roots can be conveniently written in the
so-called trigonometric form:

w(1)
c = 2√

3y1/3
cos

(
θ

3

)
> 0, w(2)

c = 2√
3y1/3

cos

(
θ + 2π

3

)
< 0

w(2)
c = 2√

3y1/3
cos

(
θ + 4π

3

)
< 0,

so only w
(1)
c can be used for the above procedure and yields μ±

c .
Finally, this gives us the two spectral edges as

λ±
e = μeff − μ∓

c − 4B ′′(0)
∫

k

1

2t(1 − cos k) + μ∓
c

= μeff − μ∓
c

−4B ′′(0)
sgn
(
μ∓
c + 2t

)
√

μ∓
c (4t + μ∓

c )
(91)

Let us give a simple example: t = 21/2, B ′′(0) = 33/2 which gives y = 2
33/2

, hence

Δ = 1/2 and wc = 22/3 which eventually gives for the Larkin length μ+
c = 2

√
2 and

μ−
c = −6

√
2.

To calculate the spectral density profile one needs the following generalization of (88):

1

2π

∫ 2π

0

dk

2t cos k + a
= sgn(|a + √

a2 − 4t2| − 2t)√
a2 − 4t2

(92)

valid for any real t > 0 and complex a such that |a + √
a2 − 4t2| − 2t �= 0, excluding

a real in the interval [−2t, 2t].
The spectral density in the interval λ−

e < λ < λ+
e is then given by ρ(λ) = 1

π
Im(i p)

where the complex p is obtained by solving the following equation, cf. (52):

i p =
∫ 2π

0

dk

2π

1

λ − μeff + 2t(cos k − 1) − 4i pB ′′(0)
(93)

= sgn(|a(p) +√a2(p) − 4t2| − 2t)√
a2(p) − 4t2

(94)
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where we denoted a(p) = λ − 2t − μeff − 4i pB ′′(0). We define the scaled variables

y = t2

B ′′(0)
, λ − μeff = 2tΛ, p =

√
y

2
√
B ′′(0)

P (95)

which brings Eq. (93) in the dimensionless form

i Py = s√
(Λ − 1 − i P)2 − 1

(96)

where s = ±1 with s = sgn(|Λ − 1 − i P +√(Λ − 1 − i P)2 − 1| − 1). The roots of
(96) must satisfy the following equation for P̃ = i P

P̃4 + 2(1 − Λ)P̃3 − (2 − Λ)ΛP̃2 − 1

y2
= 0 (97)

The spectral density is then given in terms of the function r(Λ, y) = Im(P̃) as

ρ(λ) = t

2πB ′′(0)
r

(
Λ = λ − μeff

2t
, y

)
, (98)

The parameter y reflects the strength of the disorder relative to the elasticity, so that the
larger is y the weaker is the disorder. For strong disorder (or vanishing elasticity), y → 0,
the system decouples in non-interacting zero-dimensional units and the spectral density
is given by the semicircular law, as can be seen e.g. setting t = 0 in (93). For a moderate
disorder y ∼ 1 the shape is not a semicircle any longer, but is qualitatively similar, as
can be seen in Fig. 5 where the scaling function r(Λ, y) is plotted for y = 1. However
with decreasing disorder/increasing elasticity the shape of the spectral density changes
qualitatively and develops a characteristic form with two maxima and a minimum in
between, see plot for y = 10 in Fig. 2.
Some hints towards the origin of such shape can be obtained by considering the limit of
vanishing disorder B ′′(0) → 0, i.e. y → +∞. In this limit one expects that the spectral
density should in a certain sense converge to the one of the purely elastic 1d system:

ρ(λ) =
∫ 2π

0

dk

2π
δ(λ − μeff + 2t(cos k − 1))

= 1

2t

∫ 2π

0

dk

2π
δ(Λ − (1 − cos k)) = 1

2π t

1√
Λ(2 − Λ)

, (99)

which implies that for y 
 1, r(Λ, y) � 1/(y
√

Λ(2 − Λ)). The correspondence with
the disorder-free result is visible on the Fig. 2. in the central part around the minimum.
To understand the two-maxima shape we investigate analytically the case of large but
finite y 
 1 more accurately. Rescaling P̃ = q/y the Eq. (97) takes the form:

1

y2
q4 + 2

y
(1 − Λ)q3 − (2 − Λ)Λq2 − 1 = 0 (100)

Now it is obvious that letting y → ∞ for a fixed 0 < Λ < 2 the above is reduced to the
quadratic equation with purely imaginary roots q = ± i√

(2−Λ)Λ)
. This solution yields

precisely the density for the pure elastic case (99). However, it is also evident that in
the vicinity of the points Λ = 0 or Λ = 2 such naive limit breaks down and requires
a separate treatment. We illustrate it by providing analysis in the vicinity of Λ = 0,
one for the region around Λ = 2 being fully analogous. A simple scaling argument
demonstrates that the relevant vicinity of Λ = 0 is of the width |Λ| ∼ y−2/3 so that it

123



200 Y. V. Fyodorov, P. Le Doussal
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Fig. 3 Density of states ρ(λ) for two coupled points, L = 2. We set t = 1. Left: weak disorder B′′(0) = 0.3,
the support splits in two disjoint intervals where the density of states is close to a semi-circle as for L = 1.
Right: critical disorder B′′(0) = 1 at which the two interval touch

makes sense to introduce a new parameter δ = ( 23 y2/3Λ
)3

and also introduce the scaled

variable w via q = y1/3

w
. Substituting this into (100) and taking the limit y → ∞ one

finds the equation for w exactly given by the Eq. (82) studied by us in much detail above
in our analysis of the 1d disordered continuum problem. We therefore conclude that
for y → ∞ and around Λ = 0 the scaled spectral density profile r(Λ, y) for the 1D
discrete model is simply given in terms of the scaled density profile of the continuum
model rc(Λ) obtained in (84) as r(Λ, y) = y−2/3rc

( 2
3 y

2/3Λ
)
. In particular, recalling

that rc(Λ = −1) = 0 in the continuum case, we find that the position of the left spectral
threshold in the discrete case for y >> 1 is given by Λ−

e = − 3
2 y

−2/3. Close to this

threshold the density increases as the square root
√

Λ − Λ−
e , eventually reaching its

maximal value r(0, y) = y−2/32−4/3
√
3 exactly at Λ = 0 and then decaying for larger

Λ >> y−2/3 in agreement with the asymptotics (85) as

r(δ 
 1) ∼ y−2/3 1√
3
( 2
3 y

2/3Λ
) = 1

y

1√
2Λ

which precisely matches the Λ << 1 behaviour from the ’central part’ r(Λ, y) �
1/(y

√
Λ(2 − Λ)). This demonstrates that for weak disorder, y 
 1, the shape of the

spectral density for the 1D infinite elastic lattice is given by (i) a central part which
converges to the pure, ”disorder-free”, density of states (ii) two edge regions, |Λ| ∼ y−2/3

and |2−Λ| ∼ y−2/3, where the divergent density of states of the pure system is converted
into a finite profile, identical upon rescaling to the one of the 1D disordered continuous
elastic line.

4.2 Phases from Replica, Determination of�eff and of the Gap

In the previous section we have obtained the spectral density and its support, in particular
the lower edge, for various cases. The formulas however contained a single as yet unknown
parameter μeff which corresponds to a global shift of the support of the Hessian spectral
density.

In this section our aim is to determine μeff , the missing information about the global
position of the Hessian spectrum. As μ is varied the system can be in different phases (RS,
1RSB, FRSB) and the formula leading toμeff must be detemined accordingly. In each casewe
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Fig. 4 Density of states ρ(λ) for two coupled points, L = 2. We set t = 1. Left: B′′(0) = 1.2. Right: larger
disorder B′′(0) = 4. The vertical bar arises from a switch in the solution of the cubic equation
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Fig. 5 Scaling function for the Hessian spectral density, r(Λ, y) versus Λ = λ−μeff
2t given by Eq. (98), for

intermediate disorder y = t2

B′′(0) = 1. The two colors correspond to two roots of the quartic Eq. (97)

first recall briefly the known replica saddle point solutions for the random manifold problem
[12,15], i.e. the solutions to the Eqs. (48)–(50).

4.2.1 Replica-Symmetric Phase

Let us start with the replica symmetric (RS) phase, which occurs for μ > μc. Let us look for
a replica symmetric solution of the saddle point equations (48)–(50).

σab = σcδab + σ, Gaa(k) = G̃(k), Ga �=b(k) = G(k) (101)

Note that the condition
∑

b σab = 0 in this parametrization reads σc + nσ = 0 which in
the replica limit n → 0 implies that we can choose σc = 0. We also have

[
G−1
]
a �=b =

−σ,
[
G−1
]
aa = μ − tΔ(k) − σ(1 − n) and the inversion of the RS matrix gives:
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Gaa(k) = μ − tΔ(k) − σ − σ(n − 2)

(μ − tΔ(k)) (μ − tΔ(k) − σn)
,

Ga �=b(k) = − −σ

(μ − tΔ(k)) (μ − tΔ(k) − σn)
, (102)

or equivalently in the replica limit n → 0

Gab(k) = 1

μ − tΔ(k)
δab + σ

(μ − tΔ(k))2
, χa �=b = 2T

∫

k

1

μ − tΔ(k)
(103)

with χaa = 0 by definition. The saddle point equation (50) leads then to the explicit formula
for σ , which determines completely the solution

σ = −2βB ′
(
2T
∫

k

1

μ − tΔ(k)

)
(104)

and Qab = T
∫
k Gab(k). As is well known [12] the RS solution is valid for μ > μc(T ) with

(see Eq. (17) in [15])

1 = 4
∫

k

1

(μc(T ) − tΔ(k))2
B ′′
(
2T
∫

k

1

μc − tΔ(k)

)
(105)

which gives, in the T = 0 limit, μc(T = 0) = μc > 0, i.e. the Larkin mass determined by

1 = 4B ′′(0)
∫

k

1

(μc − tΔ(k))2
(106)

as anticipated in the previous Section.
We can now determine μeff and the edges of the Hessian in the RS phase. From (41) we

obtain (for n = 0)

μeff = μ − 2

T

[
B ′(χ11) + (n − 1)B ′(χa �=b)

] → μ − 2

T

[
B ′(0)

−B ′
(
2T
∫

k

1

μ − tΔ(k)

)]

� T→0μ + 4B ′′(0)
∫

k

1

μ − tΔ(k)
(107)

Substituting this value ofμeff in (60) we thus obtain the final formula for the lower spectral
edge λ

(−)
e of the Hessian (which we associate with the spectral gap) as a function of μ in the

RS phase

λ(−)
e = μ − μc + 4B ′′(0)

∫

k

[
1

μ − tΔ(k)
−
∫

k

1

μc − tΔ(k)

]
(108)

This formula immediately shows that the gap vanishes quadratically at μc, i.e. upon expand-
ing for μ > μc

λ(−)
e = 4B ′′(0)

∫

k

1

(μc − tΔ(k))3
(μ − μc)

2 + O((μ − μc)
3) (109)

where the linear term cancels as a consequence of (106). In d = 0 we recover the similar
formula obtained in [11].

For the continuummodel−tΔ(k) = tk2 there is only one edge, the lower edge, which we
just determined. However, as extensively discussed in the previous Section, for other models
(e.g. discrete models) there may be several edges (and bands). As discussed there extensively
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all the edges λα
e are obtained by considering all the real roots μα

c of (106) and inserting them
in the formula (108). We refer to that Section for details. Let us simply note the case of the
discrete d = 1 model, where by symmetry the two roots of (106) are μc and −4t − μc. That
gives the upper edge for that model, and one can then write a single formula for both edges

λ(±),1d,discrete
e = μ + 2t + 4B ′′(0)

∫

k

1

μ − tΔ(k)

±
(
2t + μc + 4B ′′(0)

∫

k

1

μc − tΔ(k)

)
(110)

which gives simple formula for the midpoint and the band width.

4.2.2 Full RSB Phase

Let us now discuss the full RSB solution. We choose not to give the finite-n hierarchical
structure here as it is relatively cumbersome, but rather simply follow the n → 0 analysis6

in [12–15]. The off-diagonal part σa �=b is represented by a Parisi function σ(v), v ∈ [0, 1],
which usually is σ(v) = σc for v ∈ [1, vc], varies continously with v for v ∈ [vμ, v] and is
constant for 0 < v < vμ. It is determined by

σ(v) = − 2

T
B ′
(
2T
∫

k
(G̃(k) − G(k, v))

)
(111)

where from RSB replica matrix inversion one has

G̃(k) − G(k, v) =
∫

k

1

μ − tΔ(k) + Σc
+
∫ vc

v

dw
σ ′(w)

(μ − tΔ(k) + [σ ](w))2
(112)

where [σ ](v) is defined by

[σ ](v) = vσ(v) −
∫ v

0
dwσ(w), [σ ](vc) = Σc (113)

Taking in (111) the derivatives w.r.t. v and exploiting (112), one finds that for any interval
of v either (i) σ(v) is constant or (ii) it satisfies the marginality condition

1 = 4B ′′
(
2T
∫

k
(G̃(k) − G(k, v))

) ∫

k

1

(μ − tΔ(k) + [σ ](v))2
(114)

In particular at the breakpoint v = vc one has

1 = 4B ′′
(
2T
∫

k

1

μ − tΔ(k) + Σc

) ∫

k

1

(μ − tΔ(k) + Σc)2
(115)

which by comparison with RS stability condition (105) implies that

Σc(T ) = μc(T ) − μ (116)

and at T = 0, as a function of μc the Larkin mass determined by (106), one has

Σc = μc − μ . (117)

6 in particular the Section VIII B of [14] (note the small misprint in the definition of σ at the very beginning
of the section there, paragraph above (8.4): it should be TG−1

ab (k) − (k2 + m2)δab = −σab). Note that

f = f̂ = −B in [12] and we follow [12] for the definition of G(k) i.e. we do not absorb the T inside it as
done in [14,15].
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For use here and in the next Section let us define the notations for l � 1

Il(x) =
∫

k

1

(−tΔ(k) + x)l
, I ′

l (x) = −l Il+1(x) (118)

and somewhat abusively

I0(x) =
∫

k
log(−tΔ(k) + x), I ′

0(x) = I1(x) (119)

One can calculate the solution for [σ ](v) for arbitrary covariance B (see e.g. formula
(8.16) in [14]) as we now show. We assume that B ′′ is a monotonous decreasing function
(B ′′′ < 0). Inverting the marginality condition (114) and inserting in (111) leads to

σ(v) = − 2

T
B ′
(

(B ′′)−1
(

1

4I2 (μ + [σ ](v))

))
(120)

Taking a derivative of the above w.r.t. v with the help of the identities

d[σ ](v)

dv
= vσ ′(v),

d

dv
f −1 (φ(v)) = φ′(v)

f ′ ( f −1 (φ(v))
)

where f −1 is the functional inverse of f , we obtain after rearranging and assuming σ ′(v) �= 0
the formula

v = −4T
I 32 (μ + [σ ](v))

I3 (μ + [σ ](v))
B ′′′
(

(B ′′)−1
(

1

4I2 (μ + [σ ](v))

))
(121)

which determines by inversion [σ ](v) as a function of v, whichmust be an increasing function.
It is now convenient to introduce

A(v) = (B ′′)−1
(

1

4I2 (μ + [σ ](v))

)
, ⇒ I2 (μ + [σ ](v)) = 1

4B ′′(A(v))

and define the function F(b) via the relation

1

I3(x)
= F

(
1

4I2(x)

)
(122)

As the result, the relation (121) can be rewritten as

v = − T

16

B ′′′(A(v))F
(
B ′′(A(v))

)

[B ′′(A(v))]3

Taking yet another derivative w.r.t. v and noticing that d A
dv

< 0, this leads to the following
condition for FRSB solution to exist

d

dq

B ′′′(q)F
(
B ′′(q)

)

(B ′′(q))3
> 0 (123)

where we used that dq/dv < 0. More precisely the condition for FRSB to hold in an interval
[vμ, vc] is that (123) holds for q ∈ [q(vc), q(vμ)].

One may now notice that for a d−dimensional continuummodel with Laplacian spectrum
−tΔ(k) = t k2 and dk ∼ |k|d−1d|k| the behaviour of the integrals Il>d/2(x) in (118) for

x → 0 is dominated by the infrared (|k| → 0) limit and is given by Il>d/2(x) ∼ x
−
(
l− d

2

)

.
Taking d < 4 we then see that (122) implies in the limit of smallμ and small b the behaviour

F(b) ∼ b
6−d
4−d (124)
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The same behavior also holds for discretized models on an infinite d dimensional lattice.
Replacing F

(
B ′′(q)

)
in (123) with the small-argument asymptotics (124) leads then to the

full-RSB condition, which we gave in the Introduction, see (22).
Note that the free energy fluctuation exponent θ = θF = d − 2+ 4−d

1+γ
> 0 and the FRSB

self-energy behaves as [σ ](v) ∼ v2/θ at small v (for μ = 0).
Let us now calculate μeff for the FRSB solution. For this we first set v = vc in (112) and

(113) and get the relations

G̃(k) − G(k, vc) =
∫

k

1

μ − tΔ(k) + Σc
, Σc = vcσ(vc) −

∫ vc

0
dwσ(w) (125)

Now inserting the FRSB form into the definition (41) we get

μeff = μ − 2β

(
B ′(0) −

∫ vc

0
dvB ′

(∫

k
G̃(k) − G(k, v)

)
(126)

−(1 − vc)B
′
(∫

k
G̃(k) − G(k, vc)

))
(127)

which can be further rewritten using (125) and the definition of σ(v) in (111) as:

μeff = μ − 2βB ′(0) −
∫ vc

0
dvσ(v) + vcσ(vc) + 2βB ′

(
2T
∫

k

1

μ − tΔ(k) + Σc

)

(128)

= μ + Σc − 2

T

(
B ′(0) − B ′

(
2T
∫

k

1

μ − tΔ(k) + Σc

))
(129)

In the limit T → 0, and recalling that Σc = μc − μ we find

μeff = μc + 4B ′′(0)
∫

k

1

μc − tΔ(k)
(130)

This has the same form as the RS formula (107) where one replaces μ by the Larkin mass
μc, i.e. it can be interpreted as the mass μ freezing at μc, that is retaining for μ < μc its
critical value.

Let us now determine the lower edge of the Hessian. From (60) we obtain upon inserting
(130)

λ−
e = μeff − μc − 4B ′′(0)

∫

k

1

μc − tΔ(k)
= 0 (131)

Hence the lower edge of the Hessian remains frozen at zero within the FRSB phase for all
values of μ. For models with more than one edge, their positions can be found from the other
roots of the Eq. (59) as discussed in the previous Section. One should then insert them in
(60) and use (130) without inserting them in (130), the latter being defined in terms of the
Larkin length μc.

4.2.3 1-Step Replica Symmetry Breaking Phase

We now study SRC potentials which exhibit the 1RSB solution. For the continuum models,
the 1RSB solution holds for d � 2 and γ � γc(d) = 2/(2 − d).

Let us give a brief account of the 1RSB parametrization and the ensuing procedure. We
start with introducing two parameters σ1 and Σc in terms of which we construct a vc × vc
matrix σd with entries (σd)ab = −Σcδab + σ1. The full n × n matrix σ has n/vc identical
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diagonal blocks σd , all entries being equal to the value σ0 outside those blocks. The constraint
Σbσab = 0 then yields the relation in the n → 0 limit:

− Σc + vcσ1 + (n − vc)σ0 = 0 ⇒ vc(σ1 − σ0) = Σc (132)

Inversion of the matrix G−1 = μ − tΔ(k) + σ produces n × n matrix G with the diagonal
vc × vc blocks Gd having entries (Gd)ab = (G̃ − G1δab + G1 and outside those blocks G
has identical entries G0. The entries in the limit n → 0 remembering (132) are given by
relations:

G0 = σ0

(μ − tΔ(k))2
, G̃ − G0 =

(
1 − 1

vc

)
1

μ − tΔ(k) + Σc
+ 1

vc

1

μ − tΔ(k)
(133)

and

G̃ − G1 = 1

μ − tΔ(k) + Σc
, (134)

which according to (51) leads to

χ0 = 2T

vc

(∫

k

1

μ − tΔ(k)
−
∫

k

1 − vc

μ − tΔ(k) + Σc

)
, χ1 = 2T

∫

k

1

μ − tΔ(k) + Σc

(135)

Todetermine the equilibriumvalues of the parameters involvedwe rely upon the expression
for the free energy Φ(T ) associated with the model given7

Φ(T ) = 1

2T
(vc B(χ0) + (1 − vc)B(χ1))

+ T

2

1 − vc

vc

∫

k

(
Σc

μ − tΔ(k) + Σc
− log

(
μ − tΔ(k) + Σc

μ − tΔ(k)

))
(136)

Taking a derivative of the free energy w.r.t. Σc leads to

Σc = −2
vc

T
(B ′(χ1) − B ′(χ0)) (137)

Let us consider the T = 0 limit. Denoting

vc = vT , Q := 2

v
(I1(μ) − I1(μ + Σc)) (138)

in terms of the integrals defined in (118) and noticing that in this limit χ0 → Q and
B(χ1)/2T → B ′(0)I1(μ + Σc) one gets

Φ(0) = B ′(0)I1(μ) + v

2

(
B(Q) − B(0) − QB ′(0)

)− 1

2v
Fμ(Σc) (139)

where we have defined

Fμ(x) = I0(μ + x) − I0(μ) − x I1(μ + x) (140)

with Fμ(0) = F ′
μ(0) = 0 and F ′′

μ(0) = I2(μ).
Upon derivation of the zero-temperature free energy w.r.t. Σc (cancelling the common

factor I2) and v one obtains the following system of equations:

Σc = 2v(B ′(Q) − B ′(0)) (141)
1

v2
Fμ(Σc) = B(0) + QB ′(Q) − B(Q) (142)

7 see Eq. (170) in Section III.D p 17 or the arXiv version. in the paper [15] (up to an irrelevant constant).
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which should be augmented with the definition of Q in (138). For small Q > 0 we have
Σc � 2vB ′′(0)Q and substituting in (138) we then find that the transition to the phase with
nonzero value of Q occurs at μ = μc determined by

1 = 4B ′′(0)I2(μc) (143)

which identifies with the definition of the Larkin mass, cf. (59).
We can now give the formula for μeff in the 1RSB phase. From (41) we have, inserting

the one-step RSB ansatz

μeff = μ − 2

T
(B ′(0) − vc B

′(χ0) − (1 − vc)B
′(χ1)) (144)

which in the limit T → 0 yields

μeff = μ + 4B ′′(0)I1(μ) + 2v(B ′(Q) − B ′(0) − QB ′′(0)) (145)

Recalling from (60) that

λe = μeff − 4B ′′(0)I1(μc) − μc (146)

we finally obtain, within the 1RSB phase

λe = μ − μc + 4B ′′(0)(I1(μ) − I1(μc)) + 2v(B ′(Q) − B ′(0) − QB ′′(0)) (147)

providing the expression for the position of the lower spectral edge in the 1RSB phase.
We now expand below and near the transition: we insert Σc from the first equation in

the second and third, which gives two coupled equations for Q and v. In these equations we
insert, with δ > 0,

μ = μc(1 − δ), Q =
∑

n�1

Qnδ
n, v =

∑

n�0

vnδ
n (148)

and solve order by order. It is convenient in the calculation to use that Il(x) =
(−1)l−1 I (l)

0 (x)/(l − 1)! for l � 1. We give only the lowest order

v0 = − B ′′′(0)
16B ′′(0)3 I3(μc)

, Q1 = −8μc B ′′(0)2 I3(μc)

B ′′′(0)
(149)

recalling that B ′′′(0) < 0. To this order one finds that the edge λe vanishes to order O(δ2).
To find the first non-vanishing order, O(δ4) one needs to calculate v1, Q2, v2, Q3 itera-
tively. Performing the calculation using the Mathematica software we finally find, after some
rearrangments using (143), up to O

(
δ5
)
terms

λe = μc

36B(3)(0)4

(
μc I3(μc)

I2(μc)

)3 (
B(4)(0)B ′′(0) − 3(1 − I2(μc)I4(μc)

2I3(μc)2
)B(3)(0)2

)2
δ4

(150)

This result is very general, for any discrete or continuummodel. For the d = 0 ’single particle’
model, Il(μc) = μl

c for l � 1 and (150) reduces exactly to the formula (76) obtained in our
previous work [11].
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We can now specify to the continuum model by setting −tΔ(k) = k2 (we set t = 1 for

simplicity) and recall that
∫
k denotes

∫ ddk
(2π)d

. The Eq. (141) hold with

Fμ(Σc) = μd/2F
(

Σc

μ

)
, F(x) =

∫
ddk

(2π)d

(
ln

(
1 + x

1 + k2

)
− x

1 + k2 + x

)

(151)

Q = 2

v
μd/2−1G

(
Σc

μ

)
, G(x) =

∫
ddk

(2π)d

(
1

k2 + 1
− 1

k2 + 1 + x

)
(152)

Restricting our consideration to d < 4 one can see that F and G are defined by a UV
convergent integral, so that we can set the UV cutoff kmax to infinity.

We can check that the ratio entering in (150) are

μc I3(μc)

I2(μc)
= 4 − d

4
,

I2(μc)I4(μc)

2I3(μc)2
= 6 − d

3(4 − d)
(153)

hence we obtain for the continuum model in dimension d

λe = μc

36B(3)(0)4

(
4 − d

4

)3 (
B(4)(0)B ′′(0) − 2(3 − d)

4 − d
B(3)(0)2

)2
δ4 + O

(
δ5
)

(154)

Let us study d = 1, 2 in more details. In d = 2 for the continuum model we have

F(x) = 1

4π
(x − log(1 + x)), G(x) = 1

4π
log(1 + x),

I1(μ) − I1(μc) = 1

4π
log

μc

μ
(155)

and the transition occurs at

μc = B ′′(0)
π

(156)

From the last equation in (141) we find that Σc = μ(e2πQv − 1), and substituting into the
other two equations we obtain the system

μ(e2πQv − 1) = 2v(B ′(Q) − B ′(0)) (157)
1

2πv
(B ′(Q) − B ′(0) − μπQ) = B(0) + QB ′(Q) − B(Q) (158)

The second equation allows to obtain v = v(Q) and inserting in the first one it leads to an
equation for Q.

Let us now specify to the exponential case B(q) = e−cq which we expect to be marginal
at the boundary with full RSB. One finds that the solution is remarkably simple. For μ <

μc = c2/π it reads

v = c

2π
, Q = 1

c
log

c2

μπ
(159)

Inserting into (147) we find, for the exponential case, that the edge of the spectrum of the
Hessian is exactly at zero

λe = 0 (160)
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for all μ � μc. This is the confirmation of the case being marginal for d = 2, i.e. it can be
obtained as a limiting case from the FRSB side. It is interesting to note that its exact solution
is also very simple.

Let us now consider the marginality for d = 1 when

F(x) = 2 + x

2
√
1 + x

− 1, G(x) = x

2(1 + x + √
1 + x)

,

I1(μ) − I1(μc) = 1

2
√

μ
− 1

2
√

μc
(161)

and I2(μc) = 1
4μ

−3/2
c , leading to μc = (B ′′(0))2/3. Let us choose

B(q) = A

c + q
(162)

Then

μc = (2A)2/3

c2
, v0 = (2A)−1/3, Q1 = c

2
(163)

We must now solve the equations

Σc = 2vA

c2

(
1 − c2

(c + Q)2

)
(164)

1

v2

(
2μ + Σc

2
√

μ + Σc
− μ1/2

)
= AQ2

c(c + Q)2
(165)

Qv = μ−1/2 − (μ + Σc)
−1/2 (166)

It is convenient to introduce the following variables and parameters:

c

c + Q
= x,

√
μ + Σc = y, Qv = z, Ω = 2A

c3

in terms of which the above system takes the form

y2 = μ + Ω zx(1 + x) (167)

(y − √
μ)2

y
= Ω z2x2 (168)

z = y − √
μ√

μy
(169)

Substituting the last of those equations to the second one and remembering that for Σc > 0
we have y >

√
μ we see that the second equation takes the form y = Ω

μ
x2 implying further

that z = 1√
μ

− μ

Ωx2
. Substituting these relations into the first equation we see that it can be

brought to the form
(

Ω

μ
x2
)2

− μ = √
μ
1 + x

x

(
Ω

μ
x2 − √

μ

)
⇔

(
Ω

μ
x2 − √

μ

)(
Ω

μ
x2 −

√
μ

x

)
= 0

The first solution x2 = μ3/2

Ω
is however not admissible since it corresponds to y = √

μ and
therefore to Σc = 0. The only nontrivial solution as μ is decreased below μc is provided

then by the remaining root x = μ1/2

Ω1/3 and in the original variables finally yields the relations
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v = (2A)−1/3, Q + c = (2A)1/3√
μ

, μ + Σ = (2A)2/3

c2
(170)

Substituting in (147) we again find λe = 0, confirming marginality for this case.

4.3 Spatial Structure of the Green Function, Pinning and Localization

One of the interest in the manifold problem compared to the point (d = 0) is the rich
internal space structure. The hierarchical construction of the Gibbs measure encoded in the
RSB solution was discussed in the context of the manifold in the Appendix of [12] (see
also discussion in [2,3]). In that picture the Gibbs measure is a superposition of Gaussians,
with power law distribution of weights, each centered around distinct seed configurations
uα(x), with fluctuations controled by an “effective mass” (each Fourier mode has its own
decomposition into states). The picture is either one-step (1RSB) or is hierarchically repeated
(FRSB). It was shown that the closeby states (at v = vc) correspond typically to the scale of
the Larkin length (with effective mass μ + Σc = μc), while the large scale statistics (e.g. of
u(x)−u(0) at large x) is controled, throughout the glass phase, by the small [σ ](v) behavior
(with effective mass μ + [σ ](v)). Hence in the FRSB phase it is the small v behavior,
corresponding to distant states, which leads to the non-trivial roughness exponent. Here
we study the Hessian at the global minimum and its “soft modes” contain information the
structure of the states (we saw in particular that the gap is zero from themarginality condition).

We can thus now ask about the spatial structure contained in the averaged Green function.
Let us examine again the formula (47). If we choose λ = λ−

e , i.e. at the lower edge we can
write

G(x, y; λ = λ−
e ,u0) =

∫

k

eik(x−y)

λ−
e − μeff + tΔ(k) − 4i pB ′′(0)

= −
∫

k

eik(x−y)

−tΔ(k) + μc

(171)

where we used (60). Hence we see that the averaged Green function decays exponentially
∼ e−|x−y|/Lc , with the characteristic length given by the Larkin length Lc. For the continuum
model with short-range elasticity and weak disorder, Lc ∼ 1/μ1/2

c . This is very reminiscent
of the result found numerically in [71] in the context of depinning. Remarkably however,
here this property holds also for μ > μc, i.e. in the RS phase.

Note that in the standard interpretation of the localization theory the decay rate of the
disorder-averaged Green’s function in the bulk of spectrum defines the so-called mean-free
path and generically has little to do with the true localization length. The situation at the
spectral edge may however be different as, in contrast to the bulk, in that region of spectrum
the Green function is not expected to show fast oscillations with random phase in every
disorder realization, whose averaging gives rise to the decaying mean. We therefore expect
that the decay rate at the edge may have relation to the localization properties of the lowest
eigenmode of the Hessian.

5 Conclusion

In this paper we have extended our previous work on the spectrum of the Hessian matrix
at the global minimum of a high dimensional random potential, to the case of many points
coupled by an elastic matrix. This is of interest in several contexts, in particular for disordered
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elastic systems pinned in a random environment (see e.g. the recent works on characterizing
the energy landscape complexity for such systems [10,83]). We have calculated the averaged
Green function and its imaginary part, the spectral density, of the Hessianmatrix. Technically
this was achieved using a saddle point method and two sets of replica, one to express the
Green function, the second to impose the constraint of global minimum. The latter requires
a replica symmetry breaking solution for the saddle point equations, either of the 1 step
kind (1RSB) or with full replica symmetry breaking (FRSB). We have derived the criterion
according to which one has the former or the latter, which generalizes the concept of short
range (leading to 1RSB) or long range (FRSB) disorder to the case of the elastic manifold.

The main difference with the case of the particle d = 0 in a random potential is that the
spectral density of the Hessian is not a semi-circle anymore. We have calculated its form in
a number of examples and obtain the values of the edges. We have shown how it can evolve
from a many band to a single band as the disorder is increased. In all generic cases however it
retains a semi-circle shape near its edges. Especially complete and explicit characterisation
of the arising spectral density has been achieved in the 1D continuous system of infinite
length.

Concerning the position of the lower edge, we have shown that qualitatively the scenario
found for the particle remains valid for the manifolds. For short range disorder cases and
μ > μc the Hessian spectrum is gapped away from zero. At μ = μc the gap vanishes, i.e.
the lowest eigenvalue is zero. For μ < μc the saddle-point solution is 1RSB and we find that
the gap is non zero and vanishes as ∼ (μc − μ)4 near the transition. For long range disorder
cases we find that the gap vanishes identically for μ ≤ μc, reflecting the marginality of the
FRSB solution. We also identified and studied the cases of marginally correlated disorder in
d = 1 and d = 2 which can be of separate interest.

A new feature which emerges in the study of the manifold is the information about the
internal spatial dependence of the averaged Green function. We found that near the edge it
decays over a length scale identical to the so-called Larkin length, related to μc, which plays
a central role in the theory of pinning. Below the Larkin scale the system responds elastically,
while above the Larkin scale, metastability sets in leading to glassy non linear response. Our
result in the high embedding dimension limit, are reminiscent to what was found in numerical
simulations for elastic strings at the depinning transition, where the localization length of the
low lying modes of the Hessian was found to be equal to the Larkin length.

Many questions remain. One is to understand the statistics of the lowest eigenvalues.
Clearly it cannot be of the Tracy Widom type since it is bounded by zero. The question of
its universality remains open. One possible way to tackle this difficult problem is to study
the large deviations for the minimal eigenvalue. Another interesting problem is to generalize
counting analysis of the minima and saddle-points from the particle case d = 0 [35,38,39]
to the present manifold model with d ≥ 1. Progress in those directions is reported elsewhere
[83].

Finally, the most interesting but very challenging problem is to study the present model
by taking limits N → ∞ and L → ∞ in a coordinated way, and scaling the coupling
t accordingly to enter the regime when Anderson localization effects in Hessian spectrum
should be dominant. It remains to be seen if field-theoretical/supersymmetric methods which
proved to be instrumental in getting insights into spectra and eigenvectors of matrices of
banded type [84,85] could be used successfully in the present problem.
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A Analysis of ıL[Q,�,P, �,R,�]
We give here the last piece of the replicated action, omitted in the text.

δL[Q, σ, P, τ, R, η]
= 1

2
Tr ln

(
(μ1 − tΔ)1n − σ1 η

ηT (μ1 − tΔ)1m − τ1)

)
(172)

−1

2
Tr ln((μ1 − tΔ)1m − τ1) − 1

2
Tr ln((μ1 − tΔ)1n − σ1) (173)

+2iβ
n∑

a=1

B ′′
(
Qaa + Qa1 − 2Q11

2

)(
(RRT )aa + (RRT )11 − 2(RRT )a1

)
(174)

−1

2

∑

x

tr(η(x)R(x)) (175)

At the saddle point R = 0 hence it vanishes. The main argument for that is very similar to
the discussion in [11].
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