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ARTICLE

Ecosystem-wide metagenomic binning enables
prediction of ecological niches from genomes
Johannes Alneberg 1, Christin Bennke2, Sara Beier 2,3, Carina Bunse4,5,6, Christopher Quince7,

Karolina Ininbergs8,10, Lasse Riemann 9, Martin Ekman8, Klaus Jürgens2, Matthias Labrenz2,

Jarone Pinhassi4 & Anders F. Andersson 1✉

The genome encodes the metabolic and functional capabilities of an organism and should be

a major determinant of its ecological niche. Yet, it is unknown if the niche can be predicted

directly from the genome. Here, we conduct metagenomic binning on 123 water samples

spanning major environmental gradients of the Baltic Sea. The resulting 1961 metagenome-

assembled genomes represent 352 species-level clusters that correspond to 1/3 of the

metagenome sequences of the prokaryotic size-fraction. By using machine-learning, the

placement of a genome cluster along various niche gradients (salinity level, depth, size-

fraction) could be predicted based solely on its functional genes. The same approach pre-

dicted the genomes’ placement in a virtual niche-space that captures the highest variation in

distribution patterns. The predictions generally outperformed those inferred from phyloge-

netic information. Our study demonstrates a strong link between genome and ecological

niche and provides a conceptual framework for predictive ecology based on genomic data.
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The ecological niche, as defined by Hutchinson1, is an n-
dimensional space where the dimensions are environ-
mental conditions and resources that define the require-

ments of a species to persist. Studies on community assembly
have shown that species composition is not independent of
phylogeny; a phenomenon commonly observed in both macro-
and microorganism communities is phylogenetic clustering2,3, i.e.
that the species of a community are more closely related than
expected by chance. Likewise, a correlation between phylogenetic
relatedness and ecological similarity has been demonstrated for
both macro- and microorganisms4,5. A natural explanation for
these observations is that closely related species encode similar
sets of genes (trait conservation), and hence are equipped to
survive and reproduce under similar conditions (environmental
filtering)6,7. Consequently, the genome should define the funda-
mental niche of an organism, and in conjunction with abiotic and
biotic factors, be a strong predictor of its realised ecological niche.

For prokaryotes, where a large number of genomes are avail-
able, computational methods have been developed that can infer
phenotypes of varying complexity directly from the genome.
Thus, not only the proteome8 and the metabolome9 can be pre-
dicted, but also specific traits10,11 such as if the organism thrives
under oxic or anoxic conditions12, what substrates it utilises, what
temperature range it prefers13, if it is pathogenic, if it is resistant
to specific antibiotics and if it is oligotrophic or copiotrophic14.
However, it remains to be shown that the distribution pattern of
an organism, which reflects its ecological niche, can be predicted
directly from the genome. This would be an important step
towards building species distribution models that integrate
genetic and environmental information, which would potentially
lead to models with increased accuracy. The prerequisites for
modeling species distributions based on genomic data would be
the availability of a large number of genomes from within an
ecosystem, together with quantitative data on the abundances of
the corresponding organisms across various niche-gradients in
the system.

Microorganisms play key roles in marine and freshwater eco-
systems by driving the biogeochemical cycles and by forming the
base of the food web15. Sequencing-based approaches have con-
tributed fundamentally to the understanding of aquatic ecosys-
tems by informing us on how ecosystem functions are distributed
across time, space and taxa16,17. Shotgun metagenomics offers
extensive cataloguing of metabolic and functional capabilities of
communities, and combined with genome binning algorithms
ecosystem processes can be linked to individual populations18.
This circumvents the need for cultivation, which is important
since only a small fraction of aquatic microorganisms can be
readily isolated. Large-scale metagenomic binning has been
conducted on samples spanning the global ocean19,20 and on a
collection of temperate lake samples21. We recently reconstructed
a set of genomes from the Baltic Sea, one of the world’s largest
brackish ecosystems, and showed that a global brackish micro-
biome exists with bacterioplankton that are closely related to but
genetically distinct from their freshwater and marine relatives22.
In this study we have conducted large-scale metagenomic binning
to obtain an extensive catalogue of microbial genomes sampled
across the Baltic Sea in space and time. We show that we can
predict the placement of these genomes along principal niche
gradients of the ecosystem based solely on what genes they
encode.

Results
A catalogue of Baltic Sea bacterioplankton genomes. We con-
ducted genome binning on 123 metagenome samples from the
Baltic Sea, a semi-enclosed sea with several established

environmental gradients23. Most pronounced are the horizontal
salinity gradient, extending from near-freshwater conditions in
the north to marine conditions in the southwest, and the vertical
oxygen gradient, with oxygenated surface water and sub- or
anoxic deep waters over extended areas. Microbial communities
of the Baltic Sea are known to be highly structured along these
gradients24–26 and also to display pronounced seasonal
dynamics5,27. Our samples cover variation in geography, depth,
season and size fraction, being mainly comprised of samples
collected during two trans-Baltic cruises and from time series
samplings at two stations (the Linnaeus Microbial Observatory
[LMO] and the Askö station) (Fig. 1a).

Each metagenome sample was assembled and binned indivi-
dually, but using abundance information from across all samples
for the binning. Genome binning on this large sample set was
facilitated by using Kallisto for contig quantifications28. Kallisto,
originally developed for RNA-seq quantification, only requires a
fraction of the time necessary for exact read-alignment methods
while producing quantifications highly correlated to those
(Pearson r= 0.95; Supplementary Fig. 1). Furthermore, a highly
parallel and improved implementation of the binning algorithm
CONCOCT29 was used. Bins that passed quality control were
considered metagenome-assembled genomes (MAGs), using
≥75% completeness and ≤5% contamination as criteria30. This
generated 1,961 MAGs with an average estimated completeness
and contamination of 90.9% and 2.5%, respectively. Additional
evaluation of the binning procedure was facilitated by an internal
standards genome of an organism not expected to be present in
this environment (the hyperthermophile Thermus thermophilus)
which was added to a subset of the samples prior to sequencing. A
MAG representing this genome was obtained from 28 of the
29 samples to where it had been added, verifying the sensitivity of
the assembly and binning method used (Supplementary Table 1).
Together, the MAGs recruited on average 32% of the samples’
shotgun reads using 97% nucleotide identity as threshold (Fig. 1b).
Excluding samples from the largest (3.0 μm) and smallest (<0.1
μm) size fractions, containing mainly eukaryotic cells and viruses,
respectively, increased the recruited proportion to 36%. This is
substantially higher than in a recent study based on the Tara
Oceans dataset, where 6.8% of the reads could be mapped to the
reconstructed MAGs19. Thus, the reconstructed genomes repre-
sent a large fraction of the planktonic prokaryotes in the Baltic
Sea and will provide an important resource for future studies on
brackish ecosystems. It also provides an unprecedented oppor-
tunity to investigate links between genome and ecosystem.

Since each sample was assembled and binned individually,
several MAGs may represent the same species, and the MAGs
were therefore clustered based on sequence identity at an
approximate species level of 96.5% average nucleotide identity
(ANI)31. The distribution of ANI values between MAGs
confirmed clustering at this level to be appropriate, with a large
number of MAG pairs with ANI > 97% but a sharp drop below
this point (Fig. 1c). Accordingly, the 1961 MAGs found here,
together with 83 MAGs that we previously recovered from one
year of seasonal data from station LMO (representing 30 clusters,
of which 27 were rediscovered here)22, formed a total of 355
Baltic Sea clusters (BACLs). Plotting the number of obtained
BACLs as a function of number of samples indicates that
additional BACLs remain to be detected, although the curve has
started to plateau (Fig. 1c).

Phylogenomic analysis of the MAGs using the Genome
Taxonomy Database (GTDB)32 showed that the obtained MAGs
were widely taxonomically distributed (Table 1, Supplementary
Fig. 2 and Supplementary Data 1), indicating a low phylogenetic
bias of the binning method. The largest number of MAGs were
recovered from Actinobacteria, Bacteroidetes, Cyanobacteria,
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Fig. 1 Sampling stations and summary of metagenome binning results. aMap of sampling locations. The included sample sets are indicated with different
symbols. The marker colour indicates the salinity of the water sample while the size indicates the sampling depth. The contour lines indicate depth with 50
m intervals. Three of the sample sets have previously been published: Askö Time Series 201160 (n= 24), Redoxcline 201433 (n= 14) and Transect 201433 (n=
30); and two are released with this paper: LMO Time Series 2013–2014 (n= 22) and Coastal Transect 2015 (n= 34). The map was generated with the
marmap R package77 using the ETOPO1 database hosted by NOAA78. b Proportion of metagenome reads recruited to the metagenome-assembled
genomes (MAGs), summarized with one boxplot per filter size fraction. c Distribution of pairwise inter-MAG distances. Only average nucleotide identity
(ANI) values >0.9 are shown. Minimum and maximum within-cluster identity for multi MAG Baltic Sea clusters (BACL) were 96.8% and 100.0%,
respectively. Only four BACLs had any MAG with >96.5% identity to any MAG in another BACL. d Rarefaction curve showing number of obtained BACLs
as a function of number of samples. Boxplots show distributions from 1000 random samplings.

Table 1 Taxonomic distribution of MAGs.

Phylum Class Order Family Genus Species BACL MAG

Bacteria
Actinobacteria 3 8 14 24 34 68 405
Bacteroidetes 2 8 18 34 41 87 524
Chloroflexi 3 3 3 3 3 5 12
Cyanobacteria 2 4 5 8 9 16 66
Desulfobacteraeota 1 1 1 1 1 1 1
Eisenbacteria 1 1 1 1 1 1 1
Epsilonbacteraeota 1 1 1 1 1 2 3
Firmicutes 1 2 2 2 2 3 9
Gemmatimonadetes 1 1 1 1 1 1 3
Marinimicrobia 2 2 2 2 2 2 2
Myxococcaeota 1 1 1 1 1 1 1
Nitrospinae 1 1 1 2 2 2 11
Oligoflexaeota 1 1 1 1 1 1 9
Planctomycetes 4 6 9 10 10 28 155
Proteobacteria 2 20 34 57 61 101 612
SAR324 1 1 1 1 1 1 1
Verrucomicrobia 2 7 11 14 14 25 101
Unclassified Bacteria 1 1 1 1 1 4 10
Archaea
Crenarchaeota 1 1 1 1 2 2 23
Nanoarchaeota 1 1 1 1 1 1 1
Thermoplasmataeota 1 1 1 1 1 2 11
Total 33 72 110 167 190 354 1961

Number of unique taxonomic entities assigned at the respective levels. Not all MAGs have obtained a taxonomic classification down to the species level, counts for these are based on the most detailed
level for which they have been assigned at.
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Planctomycetes, Proteobacteria (mainly Alpha- and Gammapro-
teobacteria) and Verrucomicrobia. This is consistent with
previous marker gene and metagenomics studies showing that
these bacterial groups are key plankton components in the Baltic
Sea24–26,33. As many as 320 out of the 352 BACLs obtained here
could not be classified to the species-level, despite the fact that the
GTDB also includes species-level clades consisting solely of
genomes from uncultured organisms (MAGs and single-
amplified genomes). The corresponding numbers for genus-
and family-level were 180 and 56. Thus, to our knowledge, the
dataset contains substantial novel genomic information. This is
also evident by plotting the phylogenetic distances between the
BACLs and their nearest neighbors in GTDB, where especially
phyla that are represented by a low number of BACL, such as
Eisenbacteria, Myxococcaeota and SAR324, display large dis-
tances to their nearest GTDB neighbors (Fig. 2).

Ecological niche distributions. We used the different metage-
nomic sample sets to investigate how the BACLs were distributed
along various niche gradients in the Baltic Sea ecosystem (Fig. 3).
Based on the surface samples from the Transect 2014 cruise,
spanning the salinity gradient from marine to near-freshwater
conditions, we derived a salinity niche-parameter for the BACLs
by calculating the ratio of their abundances in the high (>14 PSU)
vs. low (<6 PSU) salinity samples. Consistent with previous stu-
dies24–26,33, Actinobacteria and Betaproteobacteria where biased
toward the lower range of the salinity gradient, while Alpha- and
Gammaproteobacteria where biased toward the upper range
(Fig. 3b). By taking the ratio between the surface and mid layer
samples from the same cruise, we could compare the populations’

relative abundances in sunlit vs. dark conditions (Fig. 3d). As
expected, phototrophic Cyanobacteria had a preference for the
upper sunlit water layer. In contrast, Planctomycetes, and even
more so Crenarcheaota and Thermoplasmataeota, showed a bias
towards deeper water layers. Other taxa such as Actinobacteria
and Bacteroidetes displayed more variability in their depth pre-
ferences, likely reflecting niche-partitioning within these phyla.
Finally, we used the data from different filter-size fractions from
the Askö Time Series 2011 to assess the ratio between abundance
on >3.0 μm and 0.8–3.0 μm filter fractions (Fig. 3g). Actino-
bacteria, Alpha- and Gammaproteobacteria were highly under-
represented within the 3.0 μm fraction, consistent with these cells
being primarily free-living and rarely particle-associated34,35. For
Cyanobacteria, BACL annotated as Nostocales and Pseudana-
baenales, ie. filamentous cyanobacteria, were enriched on the 3.0
μm filter, consistent with these forming filaments that were
captured on the filter, while picocyanobacteria had distinctively
lower 3.0 μm/0.8 μm ratios. Bacteroidetes and Planctomycetes
displayed large variations, consistent with the fact that some
organisms from these groups are known to exist on particles36,37.

Predicting niche from genome. We then proceeded to investigate
if the BACLs’ distributions along the above described niche gra-
dients could be directly predicted from their genomes. The large
number of BACLs allowed us to use a machine learning approach,
where we conducted training and predictions on separate sets of
BACLs. The encoded genes in each MAG were functionally
annotated using eggNOG orthologous groups38 and a gene (egg-
NOG) profile was calculated for each BACL based on the mean
profile of its MAGs (see Methods). We used various machine
learning approaches (ridge regression39, random forest40 and
gradient boosting41) to predict the placement of each BACL along
the niche gradients based on its gene profile. For all methods and
for all three niche gradients, the gene profile-predicted and actual
placements of BACLs were significantly correlated (Spearman
rank correlation, ρ= 0.70–0.81, all P < 10−16; Fig. 3c, e, h; Sup-
plementary Table 2).

While the above illustrates that bacterioplankton population
distributions can be predicted along specific a priori defined niche
gradients, it is reasonable to assume that each population is in fact
regulated by a multitude of abiotic and biotic factors. Defining
and measuring these factors, such as the availability of specific
dissolved organic matter compounds42 or the presence of specific
viruses or predatory protists43, remains a major challenge in
microbial oceanography. These factors will collectively determine
a population’s abundance in a sample, and thus its abundance
profile across multiple samples. Consequently, if two populations
display similar abundance profiles across samples they are likely
regulated in similar ways and hence likely to share the same
ecological niche. Analysing abundance profiles does not require
prior knowledge on regulating factors, as long as the samples
cover sufficient variation in these, and it allows a quantitative
assessment of niche sharing between populations. We retrieved
the abundance profile for each BACL over all the metagenome
samples (see Methods), and created a low dimensional virtual
niche space by running ordination on these profiles (Fig. 4a–d).
The first principal coordinates, or dimensions, in this space
explain most of the variation in abundance profile and should
thus correspond to the highest ecological variation. Among the
environmental parameters measured, temperature, oxygen and
silicate concentration were the most highly correlated to the first
three dimensions, respectively (Fig. 4c, d). However, dimensions
of lower rank did not correlate to any of the measured variables,
and are presumably driven by other factors. We used machine
learning to predict the placement of each BACL in this niche
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Fig. 2 Phylogenetic distances between BACLs and nearest GTDB
neighbors. Each circle is a BACL represented by a MAG and the placement
along the x-axis indicates phylogenetic distance to the nearest reference
genome in the GTDB tree. Distributions are plotted separately for each
phylum, with median values indicated by verticallines.
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space based on its gene profile, again conducting training and
predictions on separate BACLs. As for the a priori defined niches,
predicted values were significantly correlated to the real values for
the first ten principal coordinates of the niche space (Fig. 4e–g
and Supplementary Table 2).

Gene content vs. phylogenetic signal. Since phylogeny is known
to be related to both gene content44 and abundance distribution5,
it is possible that the machine learning models are merely picking
up a phylogenetic signal. Therefore, we also predicted the pla-
cement of BACLs in the niche space using phylogenetic infor-
mation, applying a method based on ancestral state estimation45.
This method also gave significant correlations to the real values,
however with lower correlations for 8 of the first 10 principal
coordinates compared to gene-content-based predictions with the
machine learning approach that worked best (gradient boosting;
Supplementary Table 2). Thus, the gene-based models appear to
pick up genetic signals that are directly related to ecology and not
only to phylogeny. To further investigate how ecology is reflecting
phylogeny as compared to gene content, we correlated pairwise
dissimilarity in abundance profile to either pairwise phylogenetic
distance or gene profile dissimilarity. A weak but highly sig-
nificant correlation was found between abundance profile

dissimilarity and phylogenetic distance (Fig. 5a), similar to what
was previously observed in a time-series analysis of bacter-
ioplankton5. However, this correlation was slightly weaker than
between abundance profile dissimilarity and gene profile dis-
similarity (Fig. 5b), despite that pairwise dissimilarity in gene
profile was highly correlated with phylogenetic distance (Fig. 5c).
The stronger correlation between abundance profile and gene
content was confirmed by partial correlations, where abundance
profile dissimilarity remained correlated with gene content dis-
similarity when controlling for phylogenetic distance (partial
Mantel test, Spearman ρ= 0.21, P= 10−4, number of permuta-
tions= 104), while the correlation between abundance profile
dissimilarity and phylogenetic distance disappeared when con-
trolling for gene content dissimilarity (ρ=−0.06, P= 1).

The above gene profile-based niche predictions were conducted
using the whole community of BACLs for defining the niche
space. We finally performed the same type of analysis, but now
generating the virtual niche space and running the machine
learning on one taxonomic division at a time, to see if we could
resolve more subtle differences in niche based on more subtle
differences in gene content. For the clades with most BACLs
(Actinobacteria, Bacteroidetes, Alpha- and Gammaproteobac-
teria) the first three principal coordinates could be predicted fairly
well, with mean correlation coefficients between predicted and
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real values of 0.61 using gradient boosting (Supplementary
Table 3). Again, gene-content-based predictions were generally
better than predictions based on phylogenetic information
(Supplementary Table 3).

Discussion
The results presented here demonstrate a strong link between an
organism’s encoded genes and its ecological niche. Already in the
early days of microbial genomics, a relationship between gene
content and phylogeny was demonstrated44 and phylogenetic
relatedness has been correlated with ecological relatedness in
both macro- and microorganisms3–5,46–50. Moreover, genomic

approaches have correlated variation in gene content in natural
microbial populations to varying environmental conditions51–53,
and clustering prokaryotes based on what genes they encode has
been shown to form groups with shared functional and envir-
onmental attributes54. However, to our knowledge, our study is
the first systematic prediction of ecological niche as manifested in
species distributions based solely on genomic information. The
placements along the first dimensions in the virtual niche space
and along the a priori defined gradients could be estimated with
correlation coefficients of ~0.7, meaning that around 50% of the
variation along these dimensions could be explained by gene
content alone. Since the placement along the first principal
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Fig. 4 Observed and predicted distributions of BACLs along principal axes of abundance variation. a BACL abundance profiles (one BACL per line; the
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Fig. 5 Relationships between ecology, phylogeny and gene-content. a Abundance profile dissimilarity (y-axis) vs. phylogenetic distance (x-axis).
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coordinates of the niche space were generally better predicted
using gene content than phylogenetic information, our results
indicate that gene content is superior to phylogenetic information
for predicting ecological niche, highlighting the importance of
genomic data for advancing the field of microbial ecology. This
was also supported by the direct correlations between abundance
profile distances and phylogenetic and gene content distances,
respectively. The stronger association between ecology and gene
content may appear logical, given that gene content does not
strictly follow phylogenetic trajectories due to lateral gene transfer
events55,56. On the other hand, although the MAGs used for the
analysis were estimated to be of rather high quality, the gene
content-based models should suffer from some extent of
incompleteness and impurities in the genomic information due to
shortcomings of the assembly and binning processes. In our
analysis we predicted the abundance distributions of species-level
genome clusters. As methods for strain-level genome recon-
structions develop57,58 the approach can likely be improved by
using more precise information on gene content and abundance
distributions of individual strains, since even a single gene can
have dramatic effect on niche. Also, genes were grouped in rather
broad orthologous groups, that are sometimes functionally het-
erogeneous. Follow-up studies could address if higher accuracy
predictions may be achieved by using more refined gene function
definitions, or even genotypic variation. Despite the room for
further methodological improvements, our analyses demonstrate
a strong link between an organism’s gene content and its ecology.
The approach developed here may in the future be applicable in
environmental management, for example for predicting the
abundance distributions of alien species arriving in a new eco-
system. It is also possible that species distribution models (SDM),
that today are typically built on environmental data alone59, can
be improved by incorporating genomic information. Whilst we
applied the approach to prokaryotes, it should be applicable also
for microbial eukaryotes as more genomic information is gath-
ered for these.

Methods
Sample retrieval and DNA sequencing. Samples included within this study are
divided into five sample sets named Askö Time Series 2011, Redoxcline 2014,
Transect 2014, LMO Time Series 2013–2014 and Coastal Transect 2015(Fig. 1a).
Metagenome data for three of these have previously been published: Askö Time
Series 201160, Redoxcline 201433, Transect 201433; and two are new to this pub-
lication: LMO Time Series 2013–2014 and Coastal Transect 2015. For the published
sample sets, only a brief description of sample retrieval is given here. For detailed
descriptions, the reader is directed to the respective publication.

The Askö Time Series 201160 samples (n= 24) were collected on six occasions
between 14 June and 30 August in 2011. On each occasion, the samples were
sequentially filtered through 200, 3.0, 0.8 and 0.1 µm filters. DNA was sequenced
from the 3.0, 0.8 and 0.1 µm filters, as well from the water passing the 0.1 µm filter.

The Redoxcline 201433 samples (n= 14) target the transition between oxic and
anoxic water and were collected on three occasions in 2014, from the Gotland Deep
on October 18 (n= 2) and October 26 (n= 8) and from the Boknis Eck61 station
on September 23 (n= 4). The October 18 samples were captured on a 0.2 µm filter
without pre-filtration while all other samples were filtered either on 3.0 µm filter
without pre-filtration (n= 6), or on a 0.2 µm filter using 3.0 µm filter for pre-
filtration (n= 6).

The Transect 201433 samples (n= 30) were collected during a cruise in June
2014. Samples were taken from three different depths, spanning the oxygenated
zone, at ten stations covering the horizontal salinity gradient. Samples were
captured on a 0.2 µm filter without pre-filtration.

The LMO Time Series 2013–2014 samples (n= 22) were collected from the
Linnaeus Microbial Observatory station 10 km east of Öland (Latitude 56.938436,
Longitude 17.06204) from January 2013 to December 201462. 10 liter samples from
surface water (2 m depth) were collected using a Ruttner sampler and transported
to the laboratory in carefully acid rinsed polycarbonate containers. 3–5 liter of
seawater were filtered through 0.22 µm filters (Sterivex, Millipore) to harvest cells,
following pre-filtration through 3.0 µm filters (Poretics polycarbonate, GVS Life
Sciences). DNA was extracted using the protocol by Boström et al.63, as modified
by Bunse et al.64.

The Coastal Transect 2015 samples (n= 34) were collected during a cruise with
the R/V Poseidon (Cruise POS488) organised by the Leibniz Institute for Baltic Sea

Research, Warnemünde, in August/September 2015 from stations located closer to
the coastline compared to the Transect 2014 stations. 1 liter samples were collected
from surface water (1.7–4.0 m depth) and cells were captured on 0.2 µm filters
without pre-filtration. DNA was extracted as earlier described for the Transect 2014
samples33.

All sequencing libraries were prepared with the Rubicon ThruPlex kit (Rubicon
Genomics, Ann Arbor, Michigan, USA) according to the instructions of the
manufacturer and sequenced at the National Genomics Infrastructure (NGI) at
Science for Life Laboratory, Stockholm, Sweden, using HiSeq 2500 high-output
producing an average of 44 million pair-end read pairs per sample.

Sequence preprocessing, assembly and quantification. All samples were pre-
processed by the same procedure, removal of low quality bases using cutadapt65

with parameters “-q 15,15” followed by adapter removal with parameters “-n 3
–minimum-length 31 -a AGATCGGAAGAGCACACGTCTGAACTCCAGTC
AC -G ^CGTGTGCTCTTCCGATCT -A AGATCGGAAGAGCGTCGTGTAGGG
AAAGAGTGT”. These settings ensured that reads shorter than 31 bases after
adapter trimming were discarded. Furthermore, the read files were screened for
artificial PCR duplicates using FastUniq66 with default parameters.

After preprocessing, the samples were individually assembled using
MEGAHIT67 version 1.1.2 with the –meta-sensitive option. For each sample,
contigs longer than 20 kb were then cut up from the start into non-overlapping
parts of 10 kilobases, such that the last piece was between 10 and 20 kilobases long.
This was performed using the script “cut_up_fasta.py” from the CONCOCT29

repository https://github.com/binpro/CONCOCT.
The process continued sample-wise with quantification of each processed

assembly file using all read files. The cut-up contigs, as well as all short contigs,
were used as input to the index method of Kallisto28 version 0.43.0. The
quantifications were performed using the “quant”method of Kallisto on each of the
124 samples in a cross-wise manner, resulting in 124 × 124= 15376 runs. To
transform the estimated counts, which is reported by Kallisto, into approximate
coverage values, these count values were multiplied by 200 (a simplification,
representing the read pair length) and divided by the contig length. This step was
performed using the script “kallisto_concoct/input_table.py” from the toolbox
repository https://github.com/EnvGen/toolbox (https://doi.org/10.5281/
zenodo.1489089).

One of the Transect 2014 samples (P1994_109) was accidently not assembled
and MAGs were not binned from it, but the sample was included in the
quantification of contigs of other samples. Hence binning was done on 123 samples
but using quantification information from 124 samples.

Binning and quality screening. The SpeedUp_Mp branch of CONCOCT was
used for binning of the individual samples. Bin assignments by CONCOCT for cut-
up contigs were re-evaluated so that all parts of long contigs were placed in the
same bin by majority vote. This was done using the script “scripts/concoct/mer-
ge_cutup_clustering.py” within the toolbox repository https://github.com/envgen/
toolbox (https://doi.org/10.5281/zenodo.1489089). Based on this second bin
assignment, all individual bins were extracted as fasta-files, using the original pre-
cut-up contigs. To identify prokaryotic Metagenome Assembled Genomes
(MAGs), these bins were evaluated using CheckM30 version 1.0.7. Bins with an
estimated completeness of ≥75% and estimated contamination ≤5% were approved
and considered prokaryotic MAGs, fulfilling the criteria of being “substantially
complete” (≥70%) and having ‘low contamination’ (≤5%), according to the con-
trolled vocabulary of draft genome quality30.

Fragment recruitment. Proportion of metagenome reads recruited to MAGs was
calculated by randomly sampling 1000 forward (R1) reads from each sample and
matching against the contigs of all MAGs, including also the LMO 2012 MAGs22,
with BLASTN, using ≥97% identity and alignment length ≥90% of read length as
thresholds for counting a read as matching.

Clustering and taxonomic annotation of MAGs. Sequence similarity between all
MAGs (including those retrieved here and those retrieved in a previous study from
station LMO22) was estimated using fastANI68 using the default k-mer length of 16.
These sequence similarity estimates were used to cluster the MAGs at 96.5%
identity level using average-linkage hierarchical clustering using SciPy version
0.17.0. Taxonomic assignment for all prokaryotic MAGs was performed using the
classify_wf method of Genome Taxonomy Database Toolkit32 (GTDB-Tk) using
release version 80 of the database and version 0.0.4b1 of the toolkit. Each cluster of
prokaryotic MAGs was assigned an identifier BACLX, following the nomenclature
established in Hugerth et al.22.

When analysing how BACLs were distributed over niches in the ecosystem and
predicting niches, a single MAG was chosen as representative for each MAG cluster.
This choice was based on the estimated completeness and contamination levels,
where the MAG with highest completeness after subtracting its contamination was
chosen. The selected MAGs had a mean estimated completeness and contamination
of 92.2% and 2.2%, respectively.
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Evaluation of binning based on internal standard. Comparisons between the
obtained internal standard genome bins and the reference genome (Thermus
thermophilus str. HB8; accession number GCF_000091545.1) were performed
using the dnadiff script from MUMmer version 3.23, comparing to the main
reference genome and the two plasmids separately.

Genome annotations. Genes were predicted in the MAGs with Prodigal (v.2.6.3),
running the program on each MAG separately in default single genome mode.
Functional annotation of genes were conducted using eggNOG mapper version
1.0.369. Gene profiles were obtained by counting the number of occurence of each
eggNOG with a “@NOG” suffix in each genome. In total 35,593 such unique
eggNOGs were found, of which 4115 were COGs. The gene profile of a BACL was
calculated by taking the average of the gene profiles of the MAGs in the BACL.
Pairwise dissimilarities of gene profiles between BACLs were calculated using
Spearman rank correlations, where the gene profile dissimilarity= (1− ρ)/2, and
where ρ is the Spearman correlation coefficient.

Abundance profiles. The abundance of a MAG in a sample was calculated by
taking the average of the Kallisto estimated contig abundances, weighted by the
contig lengths, and converted into a coverage per million read-pairs value by
dividing by the number of million read-pairs that were mapped from the sample.
The abundance profile of the representative MAG for a BACL was used as
abundance profile for the BACL (abundance profiles were highly correlated
between MAGs within BACLs, average Spearman correlation coefficient= 0.98).
Pairwise dissimilarities of abundance profiles between BACLs were calculated using
Spearman rank correlations, analogously to how gene profile dissimilarities were
calculated. Ordination of abundance profiles was conducted using Principal
Coordinates Analysis (PCoA) on the abundance profile dissimilarity matrix using
‘Cailliez’ correction with the R70 package ape71. To relate the PCoA coordinates to
environmental factors (the arrows of Fig. 4c, d), the Spearman correlation coeffi-
cients between each BACL abundance profile and each of the measured environ-
mental parameters were first calculated. Next, the Spearman correlation between
these correlation coefficients and the BACLs positioning along the PCoA coordi-
nates were calculated. The end-point of the arrow is proportional to the latter
correlation: An arrow pointing far to the right indicates that BACLs to the right in
the plot are positively correlated with the environmental factor, while those to the
left are negatively correlated. An arrow pointing far to the left indicates that BACL
to the left in the plot are positively correlated, while those to the right are negatively
correlated.

Phylogenetic distances. Phylogenetic distances between MAGs were calculated
using the R package ape based on the GTDB phylogenetic trees (one for Bacteria
and one for Archaea) with MAGs inserted using GTDB-Tk32 using release version
80 of the database and version 0.0.4b1 of the toolkit. Phylogenetic distances
between each bacterial-archaeal pair was set to an arbitrary level of 5 (higher than
any of the distances observed within each domain-specific tree). Phylogenetic trees
were visualised with GraPhlAn72.

Ecological predictions. In order to lower the risk of miscalculating abundances
due to non-specific contig quantifications, BACLs including any MAG with >0.95
ANI to any MAG of another BACL were excluded, leaving 342 BACL for the
analysis. All of these were included for the predictions of PCoA coordinate scores
(or the subset of these that had the correct taxonomic annotation, when performing
taxon-specific predictions). For predicting the a priori defined niches, BACLs
among these that displayed low abundances were further removed: When pre-
dicting abundance ratio between high and low salinity samples from the Transect
2014 cruise, only BACLs displaying a highest relative abundance of >0.01 coverage
per million read-pairs among these samples were included (n= 243). When pre-
dicting the average log ratio between the abundance in surface and abundance in
mid layer water in the Transect 2014 cruise, only BACLs displaying a highest
coverage of >0.05 coverage per million read-pairs among these 20 samples where
included (n= 246). When predicting the average log ratio between the abundance
on 3.0 μm and abundance on 0.8 μm filters for the Askö Time Series 2011 sample
set, only BACL displaying a highest coverage of >0.01 coverage per million read-
pairs among these 12 samples where included (n= 227). The same inclusion cri-
teria were used when plotting BACLs along these niche gradients in Fig. 3.

Ecological predictions were conducted using either gene profiles or phylogenetic
information. For gene profile-based predictions, gene profiles (calculated as
described above) were filtered to only include those eggNOGs that were present in
at least 10% of all BACL, resulting in profiles of 3476 eggNOGs of which 2360 were
COGs. Gene profile-based predictions were conducted using ridge regression,
random forests and gradient boosting. Ridge regressions were performed using the
R package glmnet39 with the alpha parameter set to 0. The hyperparameter lambda
was tuned using cross validation within each training set, and the lambda value
giving the minimum mean error was used. Random Forest regressions were
conducted using the R package randomForest73, using number of trees set to 2000
(other parameters kept at default values). Gradient boosting regressions were
conducted using the R package gbm74 using a gaussian loss function. The
parameter settings for number of trees (‘n.trees’), learning rate (‘shrinkage’),

maximum depth of each tree (‘interaction.depth’) and minimum number of
observations in the terminal nodes (‘n.minobsinnode’) were optimised manually
based on the success of predicting the scores of the first PCoA coordinate (with all
BACL) using different settings. These setting (n.trees= 10000, shrinkage= 0.001,
interaction.depth= 2, n.minobsinnode= 1) were subsequently used for all
predictions.

Predictions based on phylogenetic information were conducted using the R
package picante45 using ancestral state estimation to infer unknown trait values for
taxa based on the values observed in their evolutionary relatives75,76. The GTDB
trees with inserted MAGs were used for this purpose, by first removing all branches
corresponding to other genomes than the BACL representative MAGs.

For ridge regression and gradient boosting we used 10-fold cross-validation
between the predicted and observed values. In other words, the set of BACLs were
randomly partitioned into ten equally sized subsets. Of the 10 subsets, a single
subset was kept as the validation data, and the remaining nine subsets were used as
training data. The cross-validation process was then repeated ten times, with each
of the ten subsets used once as the validation data. This way, the prediction for each
BACL was validated once. For random forests we compared the out-of-bag
predictions with the observed values, where the out-of-bag predictions are the
predictions based on trees trained on BACLs other than the BACLs under
validation. For validations, predicted values were compared with actual values
using Spearman rank correlation for all types of predictions.

Statistics and reproducibility. Spearman rank correlation was used to evaluate
ecological niche predictions and (partial) Mantel test to assess correlations between
abundance profile dissimilarity, gene profile dissimilarity and phylogenetic
distance.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The contigs from the individual samples and the MAG sequences were submitted to
ENA hosted by EMBL-EBI under the study accession number PRJEB34883. Note that
contigs stemming from the internal standards genome (Thermus thermophilus) are
included in the contigs for the Transect 2014 samples. The preprocessed sequencing reads
from the LMO Time Series 2013–2014 and Coastal Transect 2015 samples were submitted
to ENA under the same study accession number (PRJEB34883). The preprocessed
sequencing reads from the Transect 2014and Redoxcline 2014 samples were published
elsewhere33 and are available at ENA under the study accession number PRJEB22997.
The raw sequencing reads from the Askö Time Series 2011 were published elsewhere60

and are available at NCBI under the study accession number SRP077551.
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