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Abstract: The characterisation of loss in optical waveguides is essential in understanding
the performance of these devices and their limitations. Whilst interferometric-based methods
generally provide the best results for low-loss waveguides, they are almost exclusively used
to provide characterization in cases where the waveguide is spatially single-mode. Here, we
introduce a Fabry-Pérot-based scheme to estimate the losses of a nonlinear (birefringent or
quasi-phase matched) waveguide at a wavelength where it is multi-mode. The method involves
measuring the generated second harmonic power as the pump wavelength is scanned over the
phase matching region. Furthermore, it is shown that this method allows one to infer the losses
of different second harmonic spatial modes by scanning the pump field over the separated
phase matching spectra. By fitting the measured phase matching spectra from different titanium
indiffused lithium niobate waveguides to the model presented in this paper, it is shown that one
can estimate the second harmonic losses of a single spatial-mode, at wavelengths where the
waveguides are spatially multi-mode.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical waveguides have enabled the expansion of optical networks in a very short time. Naturally,
this technology is advancing in order to include, for example, high power, high efficiency and/or
quantum applications [1,2]. For the most demanding applications, such as squeezing in fibre
networks [3] or on-chip entanglement [4], the losses of the waveguide are of critical importance.
Therefore, the reliable characterisation of these losses is a critical issue.

A number of methods for loss characterization and variants of these methods exist. These
methods can be categorised into a few broad schemes: cut-back methods, fluorescence/scatter
imaging, resonance techniques and optical transmission measures. These various methods
perform differently under given circumstances. Interferometric methods tend to have greater
precision as the losses decrease and so are more suited for characterisation of low loss waveguides
[5–7]. Additionally, these methods generally do not require additional processing steps because
the facets’ Fresnel reflections can be used for characterisation.
Unfortunately, such resonance-based methods are generally unsuitable in waveguides that

are spatially multi-mode for the probe field. This is due to the fact that it is experimentally
very difficult to couple light into the waveguide such that only a single propagation-mode of the
waveguide is excited. These different spatial modes have disparate dispersion properties, leading
to different free spectral ranges (FSRs) for the various spatial modes. The resulting transmitted
power will consist of multiple resonance conditions with unknownmagnitude and phase, generally
making the problem intractable. Under certain conditions the losses can still be obtained from
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such a measurement, but this requires the fulfillment of a number of conditions which are, in
general, not satisfied [8]. Alternatively, it may also be possible to use a Fourier decomposition
method [9]. Application of this method in multi-mode systems requires that the higher order
spatial modes do not couple, a condition that is often met, but also requires moderately high
cavity finesses. The second condition makes this method more suitable for systems with high
refractive index, such as semiconductor waveguides, where the Fresnel reflection is greater, and
is not directly applicable to many waveguiding platforms such as lithium niobate.
For this reason, devices implementing multi-colour processes, such as difference or sum-

frequency generation, typically have their losses characterised at the longest wavelength, where
the waveguide is single-mode. This value is often used to estimate or bound the losses at shorter
wavelengths. However, one cannot know a priori the exact relationship between the losses at
different wavelengths. This is problematic when the losses at the shorter wavelengths are critical,
for example in frequency converters that aim to produce a field close to the transparency cut-off
region of a particular material [10].
Here we present a method for loss characterisation in such systems by measuring the phase

matching spectrum of the second harmonic (SH) process as the pump (fundamental) wavelength
is varied over the phase matching spectrum. The resulting phase matching spectrum is compared
to theory in order to estimate the losses of the second harmonic field. Additionally, this method
allows one to probe the second harmonic losses for any second harmonic spatial mode whose
corresponding phase matching spectrum can be probed with the given pump field. The approach
is quite general and can be applied to both birefringent and quasi-phase matched systems.
One could extend the theory to other processes such as sum frequency generation and type II
second-harmonic generation processes.

2. Measurement strategy and theory

In the standard low-finesse Fabry-Pérot loss measurement the power transmitted through a
waveguide is recorded when scanning a probe field over wavelengths where the system is
single-mode [5]. Given that one knows the reflectance of the end facets to a high precision, the
interference effects observed in the transmitted power can be used to determine the losses inside
the resonator at the same wavelength as the probe field.
The general strategy employed in the method presented here is that, in addition to first

determining the losses at the fundamental wavelength using the standard method, we also measure
the interferometric fringing that one observes in the generated second harmonic field when
scanning the pump over the wavelengths where phase matching occurs. One can then fit the
obtained phase matching spectrum to a model of this system and gain information about the
losses of the second harmonic field. A single spatial-mode for the second harmonic field is
guaranteed due to the fact that the single-mode pump field is phasematched to only a single
second harmonic spatial-mode over the wavelength region of interest. The unique dispersion
properties of different spatial modes generally ensures that this is the case.

The system is modeled using an extension of the second harmonic generation theory presented
by Berger [11]. In this method, the internal second harmonic fields are first described and
thereafter solved simultaneously in order to find a self-consistent cavity solution. In order to
arrive at an analytic expression it is assumed that the pump field, at the fundamental frequency, is
not depleted by the nonlinear process. This assumption is trivial to establish experimentally by
correctly choosing the power in the pump field. It may be possible to remove this restriction by
considering a numerically based iterative approach [12]. However, this will further complicate
the treatment and will not provide an analytic expression.
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The circulating fundamental field amplitude travelling in the cavity in the forward direction
Ef
ω(0) is given by the usual Fabry-Pérot resonance condition

Ef
ω(0) = Ein

τω,0

1 − ρω,0ρω,L · e−i2kωL · e−αωL (1)

where kω [m−1] is the wavevector of the fundamental field, αω [m−1] are the intensity losses for
the fundamental field, ρω,0/L is the complex reflectivity for the input/output facet at ω and τω,0
is the complex transmission of the input facet at ω. Note that from these definitions one can
also express the circulating fundamental field amplitude travelling in the backwards direction,
Eb
ω(L) = ρω,LEωeikωL.
With the non-pump depletion approximation, the generated second harmonic field amplitude

can be calculated from [12] as

dE2ω
dz
= iγ[Eωe−αω z/2]2ei∆kz −

α2ω
2

E2ω , (2)

where Eω/2ω(z) is the fundamental/second harmonic field amplitude at position z, α2ω [m−1]
represents the (intensity) losses of the second harmonic field, γ [m/V] is the nonlinear coupling
coefficient determining the strength of the nonlinear process, the wave vector mismatch between
the fundamental and second harmonic field is defined by ∆k = 2kω − k2ω + kQPM [m−1], and
k2ω [m−1] is the wave vector of the second harmonic field. The term kQPM = 2π/Λ is required
only when analysing periodically poled structures, with period Λ. Note that the effect of losses
in the fundamental field in Eq. (2) have been included by considering a spatially dependent
fundamental amplitude in the form Eωe−αω z/2.
Integration of Eq. 2 with initial conditions (Eω(z0),E2ω(z0)) over a crystal length L yields

the component of the second harmonic amplitude after passing through the length z due to the
nonlinear interaction

E2ω(z) = SHz (Eω(z0),E2ω(z0)) , (3)

= 2iγ
e(α2ω−2αω+2i∆k)z/2 − 1
α2ω − 2αω + 2i∆k

E2
ωe−α2ω z/2 + E2ωe−α2ω z/2. (4)

To derive an expression for the circulating second harmonic field amplitude, one defines the
second harmonic field amplitudes travelling in the forward direction at the left and right sides of
the sample, Ef

2ω(0) and Ef
2ω(L), and in the backwards direction at the left and right sides of the

sample, Eb
2ω(0) and Eb

2ω(L), respectively, as illustrated in Fig. 1. The relation between these four
amplitudes can be described by the following system:

Ef
2ω(L) = SHL

(
Ef
ω(0),E

f
2ω(0)

)
eik2ωL, (5)

Eb
2ω(L) = ρ2ω,LEf

2ω(L), (6)

Eb
2ω(0) = SHL

(
Eb
ω(L),Eb

2ω(L)
)

eik2ωL, (7)

Ef
2ω(0) = ρ2ω,0Eb

2ω(0), (8)

where Eb
ω(L) = ρω,LEf

ω(0)e−ikωLe−αωL/2. The total circulating second harmonic field at steady-
state can be found by simultaneously solving these equations, thereby ensuring self-consistency
of the SH field amplitude.
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Fig. 1. Sketch detailing the forward and backward propagating waves used for the theoretical
treatment of the waveguide resonator.

Solving this set of equations, propagating through the right side mirror in order to find the
second harmonic field exiting the cavity and substituting (1) we find the output second harmonic
field amplitude as

Eout
2ω = τ2ω,LEf

2ω,L

= τ2ω,Lγ(Ein
ω)

2
τ2ω,0

(1 − ρω,0ρω,Le−2ikωL−αωL)2
×

iLsinc
(
(∆k − iα2ω/2 + iαω)L

2

)
e
(∆k−iα2ω /2+iαω )L

2 ×

1
1 − ρ2ω,0ρ2ω,Le−i2k2ωL−α2ωL×(
1 + ρ2ω,0ρ

2
ω,Le−ik2ωLe−i2kωLe−α2ωL/2−αωL

)
e−α2ωL/2−ik2ωL.

(9)

This equation is split into four terms in order to highlight the factors that contribute to the observed
interference fringes, as noted by Berger [11]. The first term represents the Fabry-Pérot interference
of the fundamental field; the second term is the spectrum of the second harmonic signal generated
in a single pass; the third term is the Fabry-Pérot interference of the second harmonic field and
the final term represents the phase mismatch between the nonlinear polarization and the second
harmonic field over half of a cavity round trip, or equivalently, the phase between the forward
and backwards propagating second harmonic waves.

The second harmonic power exiting the system when pumped at wavelength λ is then given by
squaring the field (9), I2ω(λ) = |Eout

2ω(λ)|
2.

The profile of I2ω(λ) depends on the complex facet reflectivities ρ = |ρ|eiφ at z = 0 and z = L,
the fundamental and SH losses αω/2ω , on the cavity length L and on the poling period Λ, if
present. Qualitatively, one can observe that these parameters affect the shape of I2ω(λ) in different
ways: the length L of the sample affects the width of the spectrum and the free spectral range
(FSR) of the primary frequency component of the fringing, the contrast of the fringes depends on
the magnitude of both the fundamental and second harmonic losses and the complicated internal
structure of the fringing is dependent on the facet reflectivities and the crystal length. However,
due to the three different phase factors present in Eq. (9), the shape of the fringes of the phase
matching spectrum changes dramatically within the main phase matching peak. This problem
is revealed in Fig. 3, where it can be seen that the different phases found for the two spatial
modes leads to interference fringes with very different symmetry and structure of the interference
envelope. Therefore, the contrast of the interference fringes is somewhat ill-defined for the given
data. Because of this, a new approach is required. In the following section it is shown that it
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is possible to find an optimized fit to these free variables, thereby providing an estimate of the
value of α2ω .

3. Fitting procedure

The fit of the theory to the measured data is undertaken in steps in order to constrain the range
of some of the parameters to physically acceptable values. First, both the model I2ω(λ) and
the measured data Imeas(λ) are normalized to have unitary maximum intensity. Next, the loss
of the fundamental field αω is fixed to the value measured using the standard low-finesse loss
technique [5]. This measurement is performed scanning the fundamental field over wavelengths
slightly shifted away from phase matching so that the second harmonic process does not influence
the measurement. Next, the initial estimate L0 of the sample length is retrieved from the free
spectral range of the fundamental field. In particular, by Fourier transforming Imeas(λ), the optical
path length of the resonator is estimated from the FSR of the primary frequency components,
corresponding to the interference of the fundamental field (1). From this value, the initial estimate
L0 of the waveguide physical length can be inferred, without requiring additional measurements.
Finally, an initial estimate Λ0 for the poling period is retrieved from the central phase matching
wavelength λpm, estimated from the data using a weighted average of the recorded wavelengths,
where the second harmonic spectral intensity is used as weights. The retrieved Λ0 is close to the
value defined during the lithography step but varies slightly since it absorbs small errors in the
refractive index models available.
After determining the center values of these parameters, the theoretical phase matching

spectrum I2ω(λ) is then fitted to the measured data Imeas(λ). At this stage, there are a total of
9 free parameters that determine the shape of the SH intensity I2ω(λ), namely four reflectivity
amplitudes |ρ|ω/2ω,0/L, four reflectivity phases φω/2ω,0/L andα2ω . One can theoretically constrain
the facet complex reflectivities to those estimated using Fresnel coefficients, as is done when
estimating the fundamental losses αω; however, leaving them as a free parameter of the fit
provides a check for the quality of the end facets. If the reflection coefficients converge to the
expected values, as was observed for all investigated waveguides, this provides confidence that the
end facets are of high quality, validating the retrieved values for the fundamental losses αω . Prior
to the final fit, it is helpful to find a first estimate for the phases φ, to avoid the fitting procedure
becoming stuck in a local minimum. For this reason, the phases φ are first optimised assuming
|ρ|ω/2ω,0/L as given by the Fresnel coefficients, and α2ω = αω as a rough estimate of what one
might expect to find for the second harmonic losses. The phases φ thusly retrieved are used
as initial parameters in the second step of the fit, where the model I2ω(λ) is fitted again to the
measured data. At this stage, the length L, the poling period Λ, the second harmonic losses α2ω ,
the modules and phases of the facet reflectivities ρω/2ω,0/L are considered as fitting parameters.
The length L is constrained to a 500µm range around L0, the poling period Λ is constrained to be
within 1% of Λ0, while the phases retrieved in the first step of the optimisation are used as initial
parameters for the fitting algorithm.

The fitting routine solves a nonlinear least square minimisation problem using the Trust Region
Reflective algorithm that minimizes the mean squared error (MSE) between the model I2ω(λ) and
the data Imeas(λ). Due to the complexity of the model, the initial values for the reflectivities of the
facets and α2ω are initialised with random weights and the minimisation is repeated 10 times to
find the best set of parameters. To obtain physically meaningful results, we bound the parameters
of the fit during the minimisation. In particular, the phases of ρ are constrained between [0,2π]
and the reflectivities are permitted to vary by a few percent from the calculated values obtained
by the Fresnel equation. Moreover, as some measured spectra showed asymmetries attributable
to waveguide inhomogeneities [13], only the central lobe of the second harmonic spectrum was
used during the fit.
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Note that the length and the poling period are allowed to vary slightly in this fit in order allow
some flexibility, required due to phase matching distortions in the measured data. Furthermore,
the mirror reflectivities are treated as complex numbers in order to account for an unknown phase
shift on reflection at the end facets of the sample. This phase shift can be extended in order to
include the unknown phase shifts present in a quasi-phase matched sample. In such samples the
length of the first and final domains are generally unknown and will impart an unknown phase
shift on the two fields, which can be absorbed by the phase term in the complex reflectivities.
As a final note, the model presented in Eq. (9) requires the refractive indices of both

the fundamental and second harmonic fields as the fundamental pump field is varied - the
Sellmeier equation. For the titanium-indiffused lithium niobate waveguides investigated here
these dispersion relations have been calculated using a finite element solver written in Python
implementing the model described in [14]. This model provides a very accurate description of
the dispersion, with a predicted poling period within 0.25µm of the nominal one (1% error). In
contrast, the bulk model for lithium niobate crystals [15] predicts poling periods 1.3µm away
from the nominal ones (8% error).

4. Results

We apply the described measurement technique in order to retrieve the SH losses of a 31.2mm
long 7µm-wide titanium indiffused waveguide designed for single spatial-mode operation in the
1450nm-1600nm wavelength band. The system utilises a 16.8 µm poling period to achieve type
0 quasi-phase matching for second harmonic generation in the TM00 spatial mode when pumped
with a fundamental field at 1525nm. This system also supports second harmonic generation in
the TM01 mode with a pump field at 1480nm. The losses αω of each of these phase matching
processes at the fundamental wavelength are first found slightly off phase matching. At around
1525nm the fundamental field losses were found to be 0.21 ± 0.04 dB/cm and at around 1481nm
the losses were found to be 0.24 ± 0.07 dB/cm. The losses at the second harmonic wavelength
were bounded by performing a simple transmission measurement of a 760nm field. The ratio
of the power exiting the coated outcoupling lens to the power entering the coated incoupling
lens reveals that the total coupling and waveguide losses were less than ∼3.0 dB/cm, taking into
account the effect of the Fabry-Pérot resonance due to the Fresnel reflections of the polished
end-facets.
Subsequently, the phase matching spectra of the second harmonic field are recorded as the

fundamental wavelength is scanned over the phase matching profile for the TM00 and TM01
second harmonic modes, using the setup shown in Fig. 2. The measured phase matching spectra
and the fits found using the procedure described in the previous section are illustrated in Fig. 3a.
An excellent qualitative fit between the measured profile and the theory is observed. The

frequency of the fringing and the envelope of this central region overlap well. In particular, the
insets show zoomed-in regions of the fits that highlight the fact that even the highly complex
structure of the interferences is reproduced by the theory. It can be seen, however, that the
presence of waveguide imperfections affects the fit of the “side lobes” of the profile. This effect
is particularly relevant for the TM00 mode, as can be seen from Fig. 3. The reason is that the
dispersion of the TM00 is more sensitive to waveguide variations than the higher order modes
for the waveguides under consideration. The minimisation routine results in losses of 1.2± 0.2
dB/cm for the TM00 second harmonic mode and losses of 1.3± 0.1 dB/cm for the TM01 mode,
where the errorbar have been derived considering a 1% variation of the MSE.

In order to check the validity of the fit, in particular the performance of the chosen minimisation
routine, we also show the variation of the MSE for both of these fits as the second harmonic losses
are varied, holding all other parameters constant. The MSE’s found in this way are illustrated in
Fig. 4.
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Fig. 2. Setup for the measurement of the second harmonic. The light from an IR laser
tunable in the range 1460nm-1640nm (EXFO TUNICS) passes through a chopper used
in conjuction with a lock-in amplifier to enhance the second harmonic readout. The IR
field then passes through a Faraday isolator (F.I.) that suppresses any backreflection from
the sample. A polariser is used in front of the sample to set the input polarisation of the
fundamental field. Anti-reflection (AR) coated 8mm focal length aspheric lenses are used
for the in- and out-coupling. Finally, the second harmonic light is measured via a silicon
photodiode connected to a lock-in amplifier.

Fig. 3. Measured (blue line) and theoretical fit (orange dotted) for the TM00 and TM10
second harmonic spatial mode phase matching spectra. The insets in the top right show the
measured intensity distributions of these spatial modes, while the insets in the top left show
a zoom-in on the central lobe.

The fitting technique employed here is highly sensitive to the shape of the MSE as a function of
α2ω . In particular, the MSE must exhibit a global minimum for the fit to converge to a reasonable
value for the SH losses, as is the case for the waveguide analysed in Figs. 3 and 4.

However, a global minimum for the MSE was not always observed. This was seen when
investigating a 10mm long waveguide from a second 7µm-wide titanium indiffused waveguide.
The process under investigation was again a quasi-phase matched, type 0 second harmonic
generation in the TM00 spatial mode with Λ=16.8 µm. This waveguide was found to have losses
αω=0.20±0.04 dB/cm near to the phase matching wavelength of 1527nm. As was done for the
longer sample, a field transmission measurement was used to bound the losses of the tested
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Fig. 4. Mean squared error of the sum squared residuals between the model and the data for
the TM00 and TM01 second harmonic spatial modes.

waveguides at 760nm to less than ∼2.5 dB/cm. Using the method described in the previous
section, the fit yielded vanishingly small (below 10−4 dB/cm) second harmonic losses.
Although the second harmonic losses inferred from the minimum of the MSE provided

unphysical results, we show that it is nevertheless still possible to find an upper bound for the
second harmonic losses. The behaviour of the MSE is again investigated by varying the second
harmonic losses α2ω in the resulting fit while holding all other parameters constant. The MSE
obtained as the second harmonic losses are varied is shown in Fig. 6, while the resulting modified
fits for a select number of second harmonic loss values are illustrated in Fig. 5. In contrast to the
previously investigated waveguide, the MSE for this waveguide does not show a global minimum.
Instead, the MSE asymptotes to some value at low second harmonic losses and begins to increase
rapidly for second harmonic losses greater than 0.3 dB/cm. Figure 5 shows this behaviour in
more detail. The modified fit reproduces the measured interference fringes with losses up to
α2ω . 0.1 dB/cm, while the modified fit becomes noticeably worse with high second harmonic
loss values of 10 dB/cm. An upper bound on the second harmonic losses can thus be found
by choosing a threshold value in relation to the asymptote in the MSE. For example, setting a
10% threshold for the variation of the MSE with respect to its minimum value provides an upper
bound of α2ω ≤ 0.35 dB/cm for the second harmonic losses in this waveguide. This result and
the previously determined losses for the first waveguide are summarised in Table 1.

Table 1. Measured loss values of waveguide 1 (WG1) and waveguide 2 (WG2).

SH spatial mode WG1 TM00 WG1 TM01 WG2 TM00

Fund. Loss 0.21±0.04dB/cm 0.24±0.07dB/cm 0.20±0.04dB/cm

Harm. Loss 1.2±0.2dB/cm 1.3±0.1dB/cm ≤ 0.35dB/cm

It is unclear why a global minimum for the MSE is not found in certain cases. Numerical
investigations have shown that the presence of a global minimum in the MSE is mostly correlated
to the overall propagation losses of the second harmonic field inside the resonator. In general, it
is possible to observe a global minimum for waveguides with second harmonic losses above 0.5-1
dB. At the same time, these numerical simulations show almost no correlation between the the
presence of the global minimum and the facet reflectivities or sample length. It is likely that the
chosen cost function is not sufficiently sensitive to small changes in the second harmonic losses,
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Fig. 5. Central portion of the measured (blue) and fitted (orange) phase matching profiles. It
can be qualitatively seen that the fit works very well for low losses but that both the structure
and envelope of the fit for higher second harmonic losses is degraded. The bottom row
shows a zoom-in on the region around 1527.2nm, highlighting the ability of the model to fit
the fine structure of the measured spectrum.

Fig. 6. Mean squared error between the measured and fitted central portion of the phase
matching profiles as the second harmonic losses are increased. It can be clearly seen that the
mean squared error increases rapidly with losses greater than ∼0.1 dB/cm. Of note is that
the mean squared error does not increase with vanishingly small second harmonic losses.
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particularly in the presence of experimental imperfections. A more advanced fitting scheme
or a different cost function may be able to predict the second harmonic losses with reduced
uncertainty, but this is left as future work.

Finally, we characterised several additional waveguides in both samples to certify the validity of
the presented method. In particular, we estimated the losses of the TM00 mode in six waveguides

Fig. 7. Fitted phase matching spectra and relative MSE for the TM00 mode of a subset
of the measured waveguides. Figures (a)-(d) correspond to 1cm-long waveguides, while
Figures (e)-(f) correspond to 3cm-long waveguides. The inferred losses are reported in
Table 2.
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in the 1cm-long sample and the losses of both TM00 and TM01 modes in eight waveguides in
the 3cm-long sample. Of the twenty-two measured spectra, fourteen show very good agreement
between the fitted spectrum and the measured one. A subset of these measurements can be seen
in Fig. 7, and the related losses are reported in Table 2. The quality of the fit is different for
the 1cm- and the 3cm-long waveguides. On the one hand, the fits of the 1cm-long waveguides
always show an excellent agreement with the measured data, even though a minimum for the
MSE was not always found. Preliminary investigations reveal that this is likely due to a low
value of the propagation losses, as discussed in the previous paragraph. On the other hand, the
fits of the 3cm-long waveguides always yield an MSE with a clear global minimum. However,
the fitted spectra do not always follow the measured ones, as can be seen from the example in
Fig. 5. Preliminary investigations show that this is caused by attempting to fit to a distorted phase
matching curve, which are caused by the presence of waveguide inhomogeneities.

Table 2. Measured losses for the fundamental and second harmonic field of the spectra shown in
Fig. 7.

WG (a) (b) (c) (d) (e) (f)

L 1cm 1cm 1cm 1cm 3cm 3cm

αFF [dB/cm] 0.38±0.04 0.4±0.1 0.41±0.09 0.12±0.02 0.37±0.07 0.14±0.05

αSH [dB/cm] ≤0.23 ≤0.23 0.9±0.1 0.61±0.09 0.8±0.2 0.6±0.2

For waveguides (a) and (b), the upper bounds for αSH have been estimated considering a 10% variation of MSE with
respect to its minimum.

5. Conclusion

In this paper we have introduced a new method for characterizing the loss of spatially multi-mode
waveguides. A model is introduced that describes the expected phase matching spectrum of
the generated second harmonic power, including interferences due to the Fabry-Pérot effect
from the uncoated end facets. Experimental data is obtained by scanning the wavelength of the
fundamental pump field over the phase matching spectrum corresponding to a chosen, single
spatial-mode of the second harmonic field. In this way it is possible to determine the losses of a
chosen spatial-mode of the second harmonic. The presented technique is then applied to fourteen
waveguides of different lengths. For the 1cm-long waveguides, the fitting routine is able to match
the measured SH spectra, even though it provides only an upper bound for the SH losses. For the
3cm-long waveguides, it finds a reasonable estimate of the SH losses, but the quality of the fit is
lower, due to distortions of the phase matching spectra. The presented approach is very general
and can be extended to other nonlinear processes in virtually any high quality waveguide system.
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