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Abstract
We study, by extensive numerical simulations, the dynamics of a hard-core tracer particle(TP) in
presence of two competing types of disorder—frozenconvection� ows on a square random Manhattan
lattice and a crowdeddynamicalenvironment formed by a lattice gas of mobile hard-core particles.
The latter perform lattice random walks, constrained by a single-occupancy condition of each lattice
site, and are either insensitive to random� ows(model A) or choose the jump directions as dictated by
the local directionality of bonds of the random Manhattan lattice(model B). We focus on the TP
disorder-averaged mean-squared displacement,(which shows a super-diffusive behaviour� t4/ 3, t
being time, in all the cases studied here), on higher moments of the TP displacement, and on the
probability distribution of the TP positionXalong thex-axis, for which we unveil a previously
unknown behaviour. Indeed, our analysis evidences that in absence of the lattice gas particles the latter
probability distribution has a Gaussian central part ( )� _ � �uexp 2 , whereu�= �X/ t2/ 3, and exhibits
slower-than-Gaussian tails ( � � )� _ � �uexp 4 3 for suf� ciently larget andu. Numerical data convincingly
demonstrate that in presence of a crowded environment the central Gaussian part and non-Gaussian
tails of the distribution persist for both models.

1. Introduction

In many realistic systems encountered across several disciplines—e.g. physics, chemistry, molecular and cellular
biology,—random motion of tracer particles takes place in presence of disorder, either temporal or spatial,
which may originate from a variety of different factors[1–13]. Understanding the impact of disorder on
dynamics is thus a challenging issue, which has important conceptual and practical implications.

Quenched(frozen) spatial disorder which entails a temporal trapping of a tracer particle(TP) at some
positions, often produces an anomalous sub-diffusive behaviour, especially in low-dimensional systems. Here,
the TP trajectories are spatially more con� ned than the trajectories of a standard Brownian motion. As a
consequence, the disorder-averaged mean-squared displacement(DA MSD) behaves as ( )�˜ � § � _�HX t t2 , with t
being time and� —the dynamical exponent which is less than unity. Here and henceforth, the bar denotes
averaging over thermal histories while the angle brackets stand for averaging over disorder. Striking examples of
such a dynamical behaviour are provided by, e.g. the so-called Sinai diffusion in one-dimensional systems[14]
(see also[3–6]) in which the DA MSD grows as ( )�˜ � § � _X t tln2 4 (i.e. formally,� �= �0), Sinai diffusion in presence
of a constant external bias[15,16] or migration of excited states along a one-dimensional array of randomly
placed donor centres[1,6]. In this latter example the dynamical exponent� is non-universal and equals the
mean density of donor centres times the characteristic length-scale of the distance-dependent(exponential)
transfer rate. If this product is less than unity, a sub-diffusive motion takes place. Two other examples concern
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diffusion in the‘impurity band’ [17] and the so-called Random Trap model[18–20]. Here, as well,� is non-
universal and is less than unity in some region of the parameter space. In higher-dimensional systems, diffusion
in presence of such a disorder typically becomes normal(see, however,[17,21,22]) and the disorder affects only
the value of the diffusion coef� cient. Diffusion is also normal in the asymptotic large-t limit in one-dimensional
systems with a periodic disorder. Here, however, the value of the diffusion coef� cient may exhibit strong
sample-to-sample� uctuations and thus have non-trivial statistical properties, such that the averaged diffusion
coef� cientwill not be representative of the actual behaviour(see, e.g.[23]). The large-t relaxation of the diffusion
coef� cient to its asymptotic value may shed some light on the kind of disorder one is dealing with[24].

Random frozen convection(velocity) � ows most often produce a super-diffusion with� �> �1. To name just
two such situations, we mention a model in which a TP is passively advected by quenched, layered, randomly-
oriented� ows(say, along thex-axis) and undergoes a normal diffusion in the direction perpendicular to them(
i.e. along they-axis), as well as its generalisation—a random Manhattan lattice(see� gure1), in which the
orientation of convection� ows randomly� uctuates both along the streets and avenues(i.e. along bothx- andy-
axes). The former model was introduced originally for the analysis of conductivity of inhomogeneous media in a
strong magnetic� eld[25] and of the dynamics of solute in a strati� ed porous medium with� ow parallel to the
bedding[26]. In such a setting, usually referred to as the Matheron—de Marsily(MdM) model according to the
names of authors of[26], the TP dynamics in the� ow direction(along thex-axis) is characterised by a super-
diffusive law of the form ( )�˜ � § � _X t t2 3 2, i.e.� �= �3/ 2. Many interesting generalisations and more details on the
available analytical and numerical results can be found in[27–36]. Diffusion of a single TP on a square random
Manhattan lattice has been analysed in[27,28]. It was shown, by using simple analytical arguments and a
numerical analysis, that in this case the DA MSD also exhibits a super-diffusive behaviour, but with a somewhat
smaller dynamical exponent� �= �4/ 3, i.e. the DA MSD of thex-component of the TP position obeys

( )�˜ � § � _X t t2 4 3. This model has been also widely studied in different contexts in mathematical literature(see, e.g.
[37]). A generalisation of a random Manhattan lattice was invoked as an example of a plausible geometric
disorder in a recent analysis of the localisation length exponent for plateau transition in quantum Hall effect
[38]. This latter setting, however, is clearly more complicated than the MdM model with the layered� ows and
the theoretical progress here is rather limited; the behaviour beyond the temporal evolution of a DA MSD is still
largely unknown.

Dynamical disorder emerges naturally when the TP’s transition rates� uctuate randomly in time, as it
happens, for instance, in physical processes underlying the so-called diffusing-diffusivity models[39–45] or the
dynamic percolation[46–48]. Another pertinent case concerns the situations when the TP evolves in a
dynamical environment of mobile steric obstacles—interacting crowders which impede its dynamics(see, e.g.
[10–12]). A paradigmatic example of such a situation is provided by a TP diffusion in lattice gases of hard-core
particles, which undergo the so-called simple exclusion process(see[13] for a recent review), i.e. perform lattice
random walks subject to the constraint that each lattice site can be at most singly occupied. It is well-known that
in such an environment the particles’ dynamics is strongly correlated. These correlations are especially
important and cause an essential departure from standard diffusive motion in two cases:(a) in one-dimensional

Figure 1.Random Manhattan lattice and the TP trajectories. Panel(a). A realisation of a random Manhattan lattice—a square lattice
decorated in a random fashion with arrows, indicating the possible jump directions. Jumps against an arrow are not permitted in our
model. The directionality of each arrow is� xed along each street(East–West) and an avenue(North–South) along their entire, in� nite
in both directions length, and� uctuates randomly from a street(an avenue) to a street(an avenue). The pattern of arrows is frozen and
does not vary with time. A square(blue) indicates the TP instantaneous position, while the circles(red) denote the instantaneous
positions of the LG particles. Panel(b). Five individual TP trajectories on a random Manhattan lattice in absence of the LG particles.
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geometry—the so-called single-� les, in which the particles cannot bypass each other and the initial order of
particles is preserved at all times; and(b) on rami� ed comb-like structures consisting of an in� nitely long single-
� le backbone with in� nitely long single-� le side branches, which permit for some re-ordering of particles. In
single-� les, the TP mean-squared displacement exhibits an anomalous sub-diffusive behaviour( ) �_X t t2 1 2.
This striking result was� rst obtained analytically by Harris[49] (see[50,51] for a review), and holds also for all
the cumulants ofX(t) [52,53] and in case of multiple TPs[54–56]. On crowded comb-like structures, the TP
mean-squared displacement exhibits a variety of sub-diffusive transients and, in some cases, an ultimate sub-
diffusive behaviour[57]. On higher-dimensional lattices, the TP dynamics becomes diffusive in the large-t limit
with the effective diffusion coef� cient being a non-trivial function of the density of crowders and other pertinent
parameters[58–64]. This non-trivial behaviour of the diffusion coef� cient is associated with the enhanced
probability of backward jumps—in a crowded environment, for any particle it is more probable to return back
to the site it just left vacant, than to keep on going farther away[58–64].

Meanwhile, a considerable knowledge is accumulated through case-by-case theoretical and numerical
analyses of the TP dynamics in a variety of model systems with either quenched or dynamical disorder(see, e.g.
[1–13] and references therein). On contrary, still little is known about the TP diffusion in situations in which
several types of disorder are acting simultaneously. To the best of our knowledge, the only work addressing
speci� cally this question is recent[51], which focused on the TP random motion in single-� les of hard-core
particles having a broadscale-freedistribution of waiting times, e.g. due to a temporal trapping of particles. Using
some subordination arguments and numerical analysis, it was shown that here a combined effect of the disorder
in transition rates and of the dynamical environment leads to a severe slowing-down of the TP random motion.
Namely, the DA MSD of the TP follows ( ) ( )�˜ � § � _X t tln2 1 2 , i.e. exhibits an essentially slower growth with time
than the one taking place in systems in which either type of disorder is present alone. In case when a
characteristic mean waiting time exists, i.e. the distribution is not scale-free, but the second moment diverges,
the DA MSD grows faster than logarithmically, ( )�˜ � § � _�HX t t2 with � �< �1/ 2, but still slower than the above
mentioned Harris’ law.

This paper is devoted to a question of the TP dynamics in presence of two interspersed types of disorder,
which act concurrently and compete with each other. We consider the TP random motion subject toquenched
random convection� ows, which prompt a super-diffusive behaviour of the TP, in adynamicalenvironment
which is damping its random motion. More speci� cally, we study here by extensive numerical simulations the
dynamics of a TP which evolves on a square random Manhattan lattice of frozen(i.e. not varying in time)
convection� ows in presence of a lattice gas(LG) of mobile hard-core particles. The latter are either insensitive to
convection� ows, performing standard random walks among the nearest-neighbouring sites of a lattice with the
probability 1/ 4 to go in any direction(Model A), or follow the convection� ows(similarly to the TP) by choosing
randomly between the two directions prescribed by a local directionality of bonds of the random Manhattan
lattice(Model B). In the latter case the backward jumps of any LG particle are completely suppressed. The
backward jumps of the TP are forbidden in both models. For both models, the TP and the LG particles obey a
simple exclusion constraint, which effectively correlates the TP random motion and the evolution of LG
particles. We focus on such characteristics of the TP dynamics as its DA MSD, and generally, the moments of
arbitrary order, the distribution of its position at time momentt averaged over disorder, as well as the time
evolution of the kurtosis of this distribution. We also address a question of the sample-to-sample� uctuations
and analyse the MSD of the TP and the probability distribution of its position for several� xed realisations of
disorder.

The paper is outlined as follows: in section2we de� ne the model under study and introduce basic notations.
In section3we discuss dynamics of a single TP in absence of the LG particles, appropriately revisiting the
arguments presented in[27,28]. We also present here results of numerical simulations for the DA MSD and for
higher moments of the TP displacement, as well for the disorder-averaged probability distribution of the TP
position along thex-axis, for which our analysis predicts a previously unknown form. This sets an instructive
framework for the analysis of the TP dynamics in presence of LG particle. We close section3addressing the issue
of sample-to-sample� uctuations and also examine the spectral properties of the TP trajectories, which reveal
several interesting features. In section4we consider the TP dynamics in presence of LG particles for both Model
A and Model B. Finally, in section5we conclude with a brief recapitulation of our results.

2. Model

Consider a two-dimensional random Manhattan lattice(see� gure1), i.e. an in� nite in both directions square
lattice with unit spacing, decorated with arrows in such a way that directionality of each of them is� xed along
each street(East–West) and an avenue(North–South) for their entire length, but whose orientation varies
randomly from a street(an avenue) to a street(an avenue).
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Let an integern, ( )� ‰ � �� d � dn , , numerate the columns(avenues) of the lattice, and an integerm,
( )� ‰ � �� d � dm , ,—the rows(streets), respectively. Then, the pattern of arrows in a given frozen realisation of

convection� ows is speci� ed by assigning to each lattice site(with integer coordinates(n,m))a pair of quenched
random, mutually uncorrelated‘bias’ variables� n and� m. We use a convention that� n�= �+ 1 if an arrow points
to the North, and� n�= �� 1, otherwise; and� m�= �+ 1 if an arrow points to the East, and� m�= �� 1, otherwise. We
focus solely on the case when there is noglobalbias; that being,� n and� massume the values± 1 with equal
probabilities, which implies that� I � [�˜ � § � � � ˜ � § � �0n m . Furthermore, we stipulate that there are no correlations
between the directions of arrows atnandn�, and atmandm�, i.e.

( )

� I � I � E

� [ � [ � E

� ˜ � § � �

� ˜ � § � �
�a �a

�a �a

,

, 1
n n n n

m m m m

,

,

where�Ea b, is the Kronecker-delta, such that� a, b�= �1 fora�= �b, and equals zero otherwise.

2.1. A single tracer particle
At time momentt�= �0(t is a discrete time variable,t�= �0, 1, 2,K ), we introduce the TP at the origin of the lattice
and let it move, at each tick of the clock, according to the following rules:

– at each discrete time instantt, we toss a two-sided‘coin’ � t which can assume,(with equal probabilities= 1/
2), the values+ 1 and� 1.

– being at position ( )
�G

��R X Y,t t t , (whereXt andYt are the projections of
�G
Rt on thex- andy-axes), the TP is

moved, after choosing the value of� t, to a new position

( )
� G � G�G

�E� � � ���R R , 2t t t1

where the vectorial increment
�G
�Et is de� ned as

( ) ( )
( )

�G � G � G
�E

�Y
�[

�Y
�I��

��
��

��
e e

1

2

1

2
, 3t

t
Y x

t
X yt t

with
�G
ex and

�G
ex being the unit vectors in thex- andy-directions, respectively. The expression(2) can also be

conveniently rewritten in form of two coupled, nonlinear recursion relations for the integer-valued components
Xt andYt:

( ) ( )
( )

�Y
�[

�Y
�I� � � �

��
� � � �

��
� � � �X X Y Y

1

2
,

1

2
. 4t t

t
Y t t

t
X1 1t t

Therefore, once(with probability 1/ 2) � t�= �1, the TP is moved onto the neighbouring site along thex-axis in the
direction prescribed by�[Yt

, and does not change its position along they-axis. Conversely, if� t�= �� 1, the TP is
moved on a unit distance along they-axis in the direction prescribed by�IXt

, and does not change its position
along thex-axis. We recall that the ensuing motion of the TP as de� ned by the recursion relations(4) is super-
diffusive, with the dynamical exponent� �= �4/ 3[27,28].

We note parenthetically that it may apparently be possible to� nd an equivalent two-dimensional model in
the continuum space and time limit, write down coupled Langevin equations for the time evolution of the
components and, eventually, de� ne the associated Fokker–Planck equation obeyed by the probability� t(X,Y) of
� nding the TP at position(X,Y) at time momentt for a given realisation of disorder. We will address this
question in our following work. Second, it was claimed in[27,28] that at a coarse-grained level the TP dynamics
on a random Manhattan lattice becomes equivalent to a Brownian motion in continuum, in a divergenceless
random velocity� eld with power-law decay of the velocity correlation function. We however remark that going
to a continuum limit necessitates a generalisation of the model studied here; in our settings, the jumps against an
arrow are not permitted which tacitly presumes that the force acting on the particle along a given bond is
in� nitely large. Therefore, one has to allow for the jumps against an arrow and let them occur with a smaller(but
� nite) probability, than the probability of the jumps along an arrow. This is tantamount to considering� nite
forces. We, however, do not expect any substantial change in the dynamics in the� nite force case, as compared
to our model.

The algorithm of our numerical simulations of the TP dynamics on a random Manhattan lattice follows the
relations(4). We generate trajectories along thex- abdy-axes of a given lengtht, for a given set of thermal
variables{ � t} and a given realisation of‘bias’ variables� n and� m. The obtained individual trajectories are stored
and the characteristic properties of interest—the moments of the TP displacement and the distribution function
of the TP position—are evaluated by averaging over different realisations of trajectories. Averaging is� rst
performed over 104trajectories generated for a� xed realisation of a random Manhattan lattice, and then the
procedure is repeated for 2�× �105realisations of disorder. Simulations are performed for lattices containing
L�× �Lsites withL�= �2�× �106. Care is taken that neither of the TP trajectories reaches the boundaries of the
lattice within the observation time, such that the� nite-size effects do not matter. For the lattice size used in our
numerical modelling, this permits us to safely explore the TP dynamics for times up tot�= �106. Lastly, we also
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analyse the sample-to-sample� uctuations and, in particular, address a question of the TP dynamics in presence
of a single� xed realisation of disorder. In this case, for a given random realisation of disorder we run 2�× �107

trajectories.

2.2. The TP dynamics on a crowded random Manhattan lattice
The TP dynamics on a random Manhattan lattice populated withN�� �1 lattice gas particles is analysed
numerically. Due to a signi� cant number of the particles involved, we are only able to consider square lattices
with the maximal linear extentL�= �2�× �103. This means that the maximal timet, until which the� nite-size
effects can be discarded, is of order of 4�× �103. Moreover, due to computational limitations, we record only 50
TP trajectories for each given realisation of disorder, and average over 103realisations of disorder. Such a
statistical sample appears to be suf� ciently large to probe the behaviour of the DA MSD of the TP, but does not
permit us to make absolutely conclusive statements about the shape of the distribution function. Nonetheless,
our numerical data rather convincingly demonstrate that the overall behaviour of the latter is very similar to the
one observed for the TP dynamics in absence of the LG particles, in which case a more ample statistical analysis
has been performed.

The simulations are performed as follows: we� rst place the TP at the origin of a lattice and then distribute
N�� �1 hard-core particles among the remaining sites by placing a LG particle at each lattice site, at random, with
probability� �= �N/ L2. The latter parameter de� nes the mean density of particles in the system; in our
simulations, we study the TP dynamics for nine values of� , � �= �0.1, 0.2, 0.3,K , 0.9.

After the particles are introduced into the system, they are let to move randomly subject to a single-
occupancy constraint. We distinguish between two possible scenarios:

2.2.1. Model A.
In model A we suppose that all the LG particles are notsensitiveto the frozen pattern of convection� ows and
perform symmetric random walks, subject to the constraint that there may be at most a single particle(i.e. either
the TP or a LG particle) at each lattice site. On contrary, for the TP the choice of the jump direction is dictated by
the arrows present at the site it occupies at time momentt. As described above, the TP chooses at random
between the two arrows outgoing from the site it occupies. In this case, the TP(which exhibits a super-diffusive
motion in absence of the LG particles) is not identical to the LG particles and moves in a quiescent‘� uid’ of hard-
core particles which exerts some frictional force on it. Note that here the backward jumps are forbidden for the
TP only.

More speci� cally, at each step we select at random a particle, which can be either a TP or a LG particle, and let
it choose the jump direction: if the selected particle is a TP, it chooses at random between the two arrows.
Conversely, a LG particle chooses at random one among four neighbouring sites with probability= 1/ 4. The
jump of a TP or a LG particle is ful� lled, once the target site is empty at this time instant; otherwise, the particle
remains at its position. The timet is increased by unity after repeating such a procedureN times, such that allN
particles present in the system, on average, have a chance to change their positions.

We have already mentioned that in this model the dynamics of LG particles is rather non-trivial due to an
enhanced probability of backward jumps; it means that a particle which jumps onto an empty target site will
most likely return on the next time step to the site it just left vacant, then will keep on going away from it. Even in
absence of the TP and random convection� ows acting on it, this circumstance results in a non-trivial
dependence of the self-diffusion coef� cientDtpof any tagged particle on the overall density of the LG particles.
This dependence is known only in an approximate form(see, e.g.[13] and[58–64]). The available exact results
concern the leading, in the dense limit� �; �1, behaviour of the self-diffusion coef� cientDtp�; �(1�� �� )/ (4
(� �� �1)) [65] and of the mobility	 tp�; �
 (1�� �� )/ (4(� �� �1)) [66] of a tagged particle subject to a vanishingly
small external force, with
 being the reciprocal temperature. The appearance of the Archimedes’ irrational
number‘� ’ seems astonishing and points on a non-trivial behaviour.

2.2.2. Model B.
In this model, we suppose that all the particles in the system are identical. It means that both the TP and the LG
particles move on the lattice subject to a single-occupancy constraint and obey the rules of the random
Manhattan lattice, by following the jump directions prescribed by the arrows.

Note that in this model the backward jump probability is equal to zero for all the particles, both for the LG
particles and the TP. As a consequence, we expect that here the environment in which the TP moves is a kind of a
‘turbulent’ � uid, in which all the particles exhibit a super-diffusive motion. Hence, we may expect that the
environment becomes perfectly stirred at suf� ciently large times, such that the timet gets simply rescaled by the
frequency( )�S��1 of successful jump events,(which is not the case for Model A). We are going to verify if this is
the case in what follows.
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3. Dynamics of a single tracer particle

3.1. Disorder-averaged mean-squared displacement
In order to calculate the DA MSD of a single TP moving on a random Manhattan lattice in absence of the LG
particles, we suitably revisit the arguments presented in[27,28]. The latter were based on an estimate of typical
� uctuations of sums of quenched random variables� n and� m, and a plausible closure relation. Here, we pursue a
bit different line of thought.

First, we‘solve’ the recursions in equations(4) to get, fort�� �1

( ) ( )
( )� œ � œ

�Y
�[

�Y
�I��

��
��

��

�U
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��

��

��
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X Y

1

2
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1

2
, 5t

t

Y t

t
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0

1

0

1

with the initial conditionX0�= �Y0�= �0. Expressions(5) de� ne the TP positionsXt andYt for anyt, for � xed
realisations of thermal noises� t and‘biases’ � n and� m.

We concentrate on thex-component and write down formally its squared value:

( ) ( ) ( )
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Let the bar denote averaging over� � -s, which amounts to averaging over thermal histories, and the angle
brackets—averaging over random variables� n and� m, i.e. averaging over quenched disorder. Consider the
averaged� rst sum in the right-hand-side(rhs) of equation(6). Noticing that�[ �w

�U
1Y

2 , i.e. is not� uctuating, we
realise that the averaged� rst sum is simply

( ) ( )
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Hence, the contribution of the averaged� rst sum to the DA MSD of the TP along thex-axis is that of a standard,
discrete-time random walk(with the diffusion coef� cientD�= �1/ 4) on a two-dimensional undecorated square
lattice.

Focus on the summand in the second term in the rhs of equation(6) and write down formally its averaged
value:

( ) ( )
( )

� Y � Y
� [ � [

� � � �� U � U�a
� U � U�a

2
1

2

1

2
. 8Y Y

Note that we are allowed to perform averaging over�Y�U�adirectly, due to the fact that both�U�aY andY� are statistically
independent of a random variable�Y�U�a. Indeed, �U�aY depends on�Y�U�a��1, �Y�U�a��2,K , � 0, whileY� , with � U � U�� �a, depends
on� � �� �1, �Y�U�a��2,K , � 0.

Note that only the product� [ � [
� U � U�aY Y is dependent on random convection� ows. Averaging this product over

quenched disorder, we� nd that, in virtue of the de� nition in equation(1), expression(8) takes the form

( )� E � E�Y�U � U � U�a, 9Y Y,1 ,

i.e. it is an averaged over thermal noises product of the indicator functions of two events:(a) Y� + 1�= �Y� and(b)
� � � �� U � U � U�� �aY Y Y1 . As a consequence, the expression9is the joint probability

( � � � )� U � U � U� � � a � � � � � �� U � U � UP Y t Y t Y t; 1; of the events that the TP trajectoryYt, withYt= 0�= �0,(a) paused at its
(unspeci� ed) position att�= �� and(b) returned at time momentt�= �� � to the position it occupied att�= �� .

The probability ( � � � )� U � U � U� � � a � � � � � �� U � U � UP Y t Y t Y t; 1; decouples into the product of the probability that the
trajectoryYt appeared at an unspeci� ed positionY� at time momentt�= �� , which equals unity since averaging
over� k with kä (0,� �� �1) implies averaging over all possibleY� ; the probability thatYt paused att�= �� , which
equals 1/ 2; and the probability thatYt returned toY� �= �Y� + 1within � U � U� a � � � �1steps. Making a plausible
assumption that the dynamics, at least in the asymptotic limit� l � dt , does not depend of the starting point, we
thus� nd that the expression(9) reduces to

( ) ( )��� U � U�a�� ��P Y
1
2

0 , 101

where ( )��� U � U�a�� ��P Y 01 is the probability that they-component of the TP trajectory returns toY�= �0,(not
necessarily for the� rst time), on the( )� U � U� a � � � �1 -th step. Here, ( )P Yt ( ( )P Xt ) is a marginal distribution
obtained from the full probability distribution functionPt(X,Y) of � nding the TP at site(X,Y) at time momentt
by summing the latter over allX(Y), that is

( ) ( ) ( ) ( ) ( )� œ � œ� � � �
�����d

�d

�����d

�d

P Y P X Y P X P X Y, , , . 11t
X

t t
Y

t

6

New J. Phys.22(2020) 033024 C Mejía-Monasterioet al



Summing up the presented above reasonings, we arrive at the following representation of the DA MSD:
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Further on, the probability ( )��� U � U�a�� ��P Y 01 is evidently a decreasing function of the difference� U � U� a � � � �1. Very
general arguments(see also the numerical results presented in� gure3, panel(a)), suggest that ( )��� U � U�a�� ��P Y 01

decays as a power-law:

( )
( )

( )
� U � U

� � � _
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� U � U �H�a�� ��P Y
A

0
1

131 2

in the limit ( )� U � U� a � � � � � l � d1 , whereAis the amplitude and� is the dynamical exponent, both to be de� ned.
Supposing that� �< �2(� �= �2 corresponds to ballistic motion), we expect that both the inner sum(over�U�a) and
the outer one(over� ) in equation(12) will be dominated by the upper summation limit. As a consequence, in
the large-t limit
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and hence, in the large-t limit the expression(12) attains the form

( )( )
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X
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2 2 1 2 2 2
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2
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In line with the arguments presented in[27,28], we recall that the dynamical exponent� de� nes the
characteristic extent of the trajectoryYt; that being,�˜ � § � � �HY m tt

2
2 , wherem2is as yet unknown proportionality

factor. By symmetry, one expects thus that the DA MSD along thex-axis, i.e.�˜ �§Xt
2 , obeys exactly the same law,

which entails the following closure relation:

( )( )
( )

� H � H
� _ � �

� � � �
�H

�H��
m t

t At
2 2 1 2 2 2

. 162

2 2

Inspecting the behaviour of the latter expression in the limit� l � dt , we infer that the contribution of the� rst
term in the rhs of equation(16) becomes negligible in the limit� l � dt , so that the dominant contribution is
provided by the second term. Comparing the power-law on the left-hand-side(lhs) of equation(16) with the
second term on the rhs of this equation, we� nd that the exponent� obeys

( )� H � H� � � �2 2, 17

which yields� �= �4/ 3—the value which has been previously conjectured and veri� ed numerically in[27,28].
Therefore, our reasonings correctly reproduce the value of the dynamical exponent� . However, inferring a

numerical value of the prefactorm2from equation(16), (which predictsm2�� �9A/ 8), should lead to a somewhat
higherm2than the actual one, because the rhs in equation(14) evidently overestimates the value of the double
sum in the lhs of this equation. The point is that the algebraic form in equation(13) is only valid for such
realisations of the TP trajectories, for which the sum of the number of jumps and of the number of the pausing
events is even. Otherwise, ( )��� U � U�a�� ��P Y 01 is exactly equal to zero. As a consequence, equation(16) overestimates
m2.

Lastly, we note that a similar type of arguments was invoked to characterise a decay of the number of tree-like
clusters with a growing pattern height in a process of ballistic deposition of sticky particles on a line[67]. Both
the decay and the ensuing thinning of the forest of such clusters appear to be controlled by a random wandering
of the inter-cluster boundaries with the super-diffusive exponent� �= �4/ 3.

In � gure2, panel(a), we present numerical results(open circles) describing the time evolution of the DA
MSD of a single TP. The dashed line indicates the super-diffusive power-law behaviour of the form
�˜ � § � _X m tt

2
2

4 3, withm2�= �0.556. This estimate ofm2is based on the� tting of the full probability distribution,
which is discussed below in section3.2. We observe that the super-diffusive behaviour sets in from rather early
times and the transient diffusive law, as predicted by the� rst term in the rhs of equation(16), is not observed.
Next, the inset in the panel(a) illustrates the convergence of the dynamical exponent� t, de� ned by

( ( ) ( ))

( ) ( )
( )�H��

� ˜ � § � � � ˜ � §

��

X X

z t

ln ln

1 ln
, 18t

t t
2 2

z

to its asymptotic value 4/ 3. Such a representation of� t (as compared to the standardly used one,
( ) ( )�H� � � ˜ � §X tln lnt t

2 ) is particularly well-suited for a numerical analysis of the dynamical exponent in an
expected power-law dependence on time with an unknown numerical prefactor, since the latter cancels out
automatically. In equation(18) the parameterzis a trial exponent, 0�< �z�< �1, which rescales time in the second
term; in principle,zcan be chosen rather arbitrarily; we usez�= �0.9. We also observe that� t converges to its
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asymptotic value very rapidly, in line with the behaviour of the DA MSD. In panel(b) of � gure2we plot the
reduced moments � ��� ��X tt

q q2 3for q�= �1, 2, 3 and 4 as functions of time. We observe that the reduced
moments saturate as some constant valuesmqas time progresses, indicating that the moments themselves obey

� ��� � � � �X m tt
q

q
q2 3(see equation(20)). Here, the dashed lines indicate our estimates for the values of the

numerical prefactorsmq(see equation(21)).

3.2. Probability distribution and moments of arbitrary order
In � gure3we depict different facets of the numerically evaluated full probability distributionPt(X,Y) and of the
marginal distributionPt(X), (see equation(11)). Panel(a) presents the time evolution ofPt(X�= �Xå) for six� xed
values ofXå:Xå�= �0, 60, 1000, 1400, 1800 and 3000(curves from top to bottom, with lighter colours
corresponding to smaller values ofXå). Our numerical results show that, unequivocally,Pt(0) obeys a power-law
of the formPt(0)�; �A/ t2/ 3, which is fully in line with our above analysis. The decay amplitude is de� ned with a
good accuracy byA�� �0.568. Moreover, comparing our numerical results with the formPt(0)�; �A/ t2/ 3, we
conclude that the latter provides a very accurate estimate forPt(0) starting from rather short times—the dashed
line representingA/ t2/ 3and the numerical data(light blue curve) are almost indistinguishable. In turn,
Pt(X�= �Xå) for Xå�= �60, 1000, 1400, 1800 and 3000 converges ultimately toPt(0)�; �A/ t2/ 3, which is, of course,
not an unexpected behaviour. The panel(b) presents the time evolution ofPt(0,0)—the probability of being at
the origin at time momentt. We observe that the power-law form( ) �� �aP A t0, 0t

4 3(with � a � xA 0.555)
describes the numerical data fairly well. Note also that this form implies that a random walk on a random
Manhattan lattice is not certain to return to the origin.

Further on, in� gure3, panels(c) and(d), we plott2/ 3Pt(X) andt4/ 3Pt(X,Y) with Y�= �0 as functions of the
scaled variableu�= �X/ t2/ 3. The data collapse evidenced by our numerical results for both the central part of the
distribution and for its tails, suggests, again rather unequivocally, that the marginal distributionPt(X) of the TP
position along thex-axis at(suf� ciently large) timet has the following form:

�
�
�

( )
( ) � �

( � � ) � �
( )��

� � � �

� � � �
P X

t

A au u

B b u u
1 exp for 1

exp for 1
, 19t 2 3

2

4 3

whereB�� �1.249,a�� �1.049 andb�� �1.730. We observe, as well, that the full distributionPt(X,Y) (with Y= 0)
exhibits essentially the same functional behaviour as a function ofu, (see� gure3, panel(d)), as the marginal
distributionPt(X) and only the values of the parameters are slightly different. We therefore conclude that(a) the
central part of both distributions is a Gaussian, with the variance which grows super-diffusively witht, and(b)
the tails of both distributions deviate from a Gaussian and have a form( � � )� _ � �uexp 4 3 , i.e. are‘heavier’ than a
Gaussian. The presence of such tails also manifests itself in the anomalously high asymptotic value� 3.5 attained
by the kurtosis of the marginal distributionPt(X) (see the dashed curve in� gure7, panel(d)). Recall that the
kurtosis of a Gaussian distribution is equal to 3.

We note that the large-u tail ofPt(X) andPt(X,Y�= �0) has a very different form, as compared to the
prediction made in[27,28]. Assuming the validity of the usual relation between the shape exponent� and the

Figure 2.Disorder-averaged mean-squared displacement of the TP and higher moments of X (t). Panel(a). Disorder-averaged mean-
squared displacement�˜ �§Xt

2 of the TP in absence of the dynamical environment(LG particles). The open circles depict our numerical
results, while the dashed(red) line indicates the prediction�˜ � § � �X m tt

2
2

4 3with m2�= �0.556(see equations(20) and(21)). A super-
diffusive behaviour sets in from rather short times and the diffusive transient(see the� rst term in the rhs of equation(12)) is not
observed. The inset displays the rate of a convergence of the time-dependent dynamical exponent� t, equation(18), to its asymptotic
value 4/ 3. Panel(b). Reduced moments� ��˜ �§X tt

q q2 3as functions of time. The dashed lines(from top to bottom) correspond to
m4�= �1.038,m3�= �0.687,m1�= �0.590 andm2�= �0.556(see equation(21)).
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dynamical exponent� , � �= �1/ (1�� �� ), it was conjectured that the shape exponent should be� �= �3. Our data
shows that this is not the case and, surprisingly enough, the distribution in the second line in equation(19) has
exactly the same shape exponent� �= �4/ 3 as the one appearing in the MdM model with random layered
convection� ows(see[27–30]). To the best of our knowledge, the form in equation(19) is a novel result.

Capitalising on the expression in equation(19), we estimate the behaviour of the moments ofPt(X) of
arbitrary orderq. Multiplying both sides of equation(19) by� �X q, changing the integration variable for
u�= �X/ t2/ 3, and integrating the expression in the� rst line overuä (� 1, 1) and in the second line—over

( )� ‰ � �� d � �u , 1 and( )�d1, , we get

� � ( )� ˜ � § � �X m t , 20t
q

q
q2 3

with

� �
�
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A
a

q q a
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b

q
b1 1,

3
2

3 1

4
, , 21q q q1 2 3 1 4

where� (a,b) is the incomplete Gamma-function. Note that here we discard the transient region between two
asymptotic regimes, supposing that the second regime is valid starting from� � ��u 1. This is, of course, not true
and hence,mqin equation(21) overestimatesthe actual value of the numerical prefactormqin equation(20). We
however believe that such an estimate is quite plausible and would not incur any signi� cant error. The plot of the
numerical results for the� rst four moments together with the estimates formqpresented in� gure2, panel(b),
shows that it is indeed the case.

We close this section with two following remarks:(a) the value ofm2deduced from equation(16), i.e.
m2�� �9A/ 8�� �0.639, slightly overestimates the value ofm2obtained from equation(21), i.e.m2�= �0.556. This is
completely in line with our argument that the second term in the rhs in equation(16) provides an upper bound
on the actual value ofm2. (b) For the kurtosis� of the marginal distributionPt(X), i.e.

( )/�L� � � ˜ � § � ˜ � §X X , 22t t
4 2 2

Figure 3.Probability distribution of the TP position. Panel(a). Temporal evolution of the marginal distributionPt(X�= �Xå),
equation(11), for six� xed values ofXå�= �0, 60, 1000, 1400, 1800 and 3000(solid curves from top to bottom with lighter curves
corresponding to smaller values ofXå). The dashed line denotes the power-lawA/ t2/ 3with A�� �0.568. Note thatPt(0)�; �A/ t2/ 3

provides a very accurate estimate forPt(0) starting from rather short times;Pt(X�= �Xå) for Xå�> �0 converges ultimately toPt(0). Panel
(b). The probabilityPt(0, 0) of being at the origin at time momentt. Thick blue curve presents the numerical data. A dashed line is a
power-lawA�/ t4/ 3with A��� �0.555. It provides a fairly good estimate for the numerical data starting fromt�� �102. Panel(c). The
marginal distributionPt(X), multiplied byt2/ 3, is plotted as a function of the scaled variableu�= �X/ t2/ 3. Panel(d). The full distribution
Pt(X,Y) with Y�= �0, multiplied byt4/ 3, is plotted as a function of the scaled variableu�= �X/ t2/ 3. In panels(c) and(d) the histograms
show the results of numerical simulations: light brown, green and blue colours correspond to the numerical data fort�= �104, 4�× �104

andt�= �105, respectively; thin solid curves are the Gaussian function ( )��A auexp 2 , and the dashed curves—a stretched-exponential
function of the form ( � � )��B b uexp 4 3 . Vertical dotted line in panel(c) is a guide to an eye which indicates the crossover valueu�= �1
between the two asymptotic regimes. Purple circles in the panel(c) depict our data for a shorter time—t�= �103. A deviation from the
stretched-exponential form signi� es that the anomalous tails ofPt(X) appear only for suf� ciently large values oft.
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