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Abstract

We study, by extensive numerical simulations, the dynamics of a hard-core tracer {@aYicle

presence of two competing types of disordéozerconvection ows on a square random Manhattan
lattice and a crowdeadlynamicagnvironment formed by a lattice gas of mobile hard-core particles.

The latter perform lattice random walks, constrained by a single-occupancy condition of each lattice
site, and are either insensitive to randoows(model A or choose the jump directions as dictated by

the local directionality of bonds of the random Manhattan lafiicedel B. We focus on the TP
disorder-averaged mean-squared displacertvenich shows a super-diffusive behaviotft 3 t

being time, in all the cases studied hesa higher moments of the TP displacement, and on the
probability distribution of the TP positioK along thex-axis, for which we unveil a previously

unknown behaviour. Indeed, our analysis evidences thatin absence of the lattice gas particles the latte
probability distribution has a Gaussian central paekp( u?), whereu = X/ t?3 and exhibits
slower-than-Gaussian taileexpg(  u #/3)for suf ciently largeé andu. Numerical data convincingly
demonstrate that in presence of a crowded environment the central Gaussian part and non-Gaussian
tails of the distribution persist for both models.

1. Introduction

In many realistic systems encountered across several diseipgdiigephysics, chemistry, molecular and cellular

biology—random motion of tracer particles takes place in presence of disorder, either temporal or spatial,

which may originate from a variety of different factdrsl 3. Understanding the impact of disorder on

dynamics is thus a challenging issue, which has important conceptual and practical implications.
Quenchedfrozer) spatial disorder which entails a temporal trapping of atracer paTiejat some

positions, often produces an anomalous sub-diffusive behaviour, especially in low-dimensional systems. Here,

the TP trajectories are spatially more cned than the trajectories of a standard Brownian motion. As a

consequence, the disorder-averaged mean-squared displa@mdsD) behaves aX2(t) § t! witht

being time and —the dynamical exponent which is less than unity. Here and henceforth, the bar denotes

averaging over thermal histories while the angle brackets stand for averaging over disorder. Striking examples o

such adynamical behaviour are provided by, e.g. the so-called Sinai diffusion in one-dimensiondlisfstems

(see alsfB-6]) in whichthe DAMSD grows aX?(t) § In*t (i.e.formally, = 0), Sinaidiffusionin presence

of a constant external bigk5, 16) or migration of excited states along a one-dimensional array of randomly

placed donor centrgs, 6]. In this latter example the dynamical exponeignon-universal and equals the

mean density of donor centres times the characteristic length-scale of the distance-dépgpdeentigl

transfer rate. If this product is less than unity, a sub-diffusive motion takes place. Two other examples concern

©2020 The Authdg). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
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Figure 1. Random Manhattan lattice and the TP traject&#@®(a). A realisation of arandom Manhattan lattiea square lattice
decorated in arandom fashion with arrows, indicating the possible jump directions. Jumps against an arrow are not permitted|in our
model. The directionality of each arrow ieed along each strg@ast\Wes) and an avenu@orth-South along their entire, innite

in both directions length, anductuates randomly from a strg@h avenugto a streefan avenu The pattern of arrows is frozen and
does notvary with time. A squa(telue) indicates the TP instantaneous position, while the ci(eelsdenote the instantaneous
positions of the LG patrticles. Paf@l Five individual TP trajectories on arandom Manhattan lattice in absence of the LG particles.

7]

diffusioninthe'impurity band [17] and the so-called Random Trap mofie#-20]. Here, as well,is non-
universal and is less than unity in some region of the parameter space. In higher-dimensional systems, diffusion
in presence of such a disorder typically becomes nde®al howevell 7, 21, 27]) and the disorder affects only
the value of the diffusion codfient. Diffusion is also normal in the asymptotic latdjesit in one-dimensional
systems with a periodic disorder. Here, however, the value of the diffusionienéfmay exhibit strong
sample-to-sampleuctuations and thus have non-trivial statistical properties, such that the averaged diffusion
coef cientwill not be representative of the actual behayisee, e.d.23). The largetrelaxation of the diffusion
coef cienttoits asymptotic value may shed some light on the kind of disorder one is dealifigfjvith

Random frozen convectidmelocity ows most often produce a super-diffusion witk 1. To name just
two such situations, we mention a model in which a TP is passively advected by quenched, layered, randomly-
oriented ows(say, along the-axi§ and undergoes a normal diffusion in the direction perpendicular to them
i.e. along thg-axig, as well as its generalisatiea random Manhattan lattiqsee gurel), in which the
orientation of convectionows randomly uctuates both along the streets and ave(ileeslong botlx- andy-
axe$. The former model was introduced originally for the analysis of conductivity ofinhomogeneous media in a
strong magneticeld[25 and of the dynamics of solute in a strad porous medium withow parallel to the
beddind 26]. In such a setting, usually referred to as the Matherda Marsil(MdM) model according to the
names of authors ¢26], the TP dynamics in theow direction(along thex-axig is characterised by a super-
diffusive law of the fornix2(t) § t¥2i.e. = 3/2.Manyinteresting generalisations and more details onthe
available analytical and numerical results can be foufa¥i36]. Diffusion of a single TP on a square random
Manhattan lattice has been analysg@in2g]. It was shown, by using simple analytical arguments and a
numerical analysis, thatin this case the DA MSD also exhibits a super-diffusive behaviour, but with a somewhat
smaller dynamical exponent= 4/ 3,i.e. the DA MSD of the-.component of the TP position obeys
X2(t) § t¥3 This model has been also widely studied in different contexts in mathematical litésatyre.g.
[37). Ageneralisation of arandom Manhattan lattice was invoked as an example of a plausible geometric
disorder in arecent analysis of the localisation length exponent for plateau transition in quantum Hall effect
[39. This latter setting, however, is clearly more complicated than the MdM model with the |lagerednd
the theoretical progress here is rather limited; the behaviour beyond the temporal evolution of a DAMSD is still
largely unknown.

Dynamical disorder emerges naturally when thsTinsition ratesuctuate randomly intime, as it
happens, forinstance, in physical processes underlying the so-called diffusing-diffusivity3aetigler the
dynamic percolatiofd6-48). Another pertinent case concerns the situations when the TP evolvesina
dynamical environment of mobile steric obstaelésteracting crowders which impede its dynanfgee, e.g.
[10-17). A paradigmatic example of such a situation is provided by a TP diffusion in lattice gases of hard-core
particles, which undergo the so-called simple exclusion pr(eseEs3] for arecent revieyyi.e. perform lattice
random walks subject to the constraint that each lattice site can be at most singly occupied. Itis well-known that
in such an environment the particl@ynamics is strongly correlated. These correlations are especially
importantand cause an essential departure from standard diffusive motion in twdqaaseste-dimensional
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geometry—the so-called singleles, in which the particles cannot bypass each other and the initial order of
particles is preserved at all times; énydn rami ed comb-like structures consisting of aniiitely long single-

le backbone with innitely long single-le side branches, which permit for some re-ordering of particles. In
single- les, the TP mean-squared displacement exhibits an anomalous sub-diffusive bekajour t /2,
This striking result wasrst obtained analytically by Harfi$9] (sed50, 51] for a review, and holds also for all
the cumulants oK(t) [52, 53 and in case of multiple TRS4-56. On crowded comb-like structures, the TP
mean-squared displacement exhibits a variety of sub-diffusive transients and, in some cases, an ultimate sub-
diffusive behavioUi7]. On higher-dimensional lattices, the TP dynamics becomes diffusive in theliange-
with the effective diffusion coefient being a non-trivial function of the density of crowders and other pertinent
parameterf58-64]. This non-trivial behaviour of the diffusion coefent is associated with the enhanced
probability of backward jumpsin a crowded environment, for any particle itis more probable to return back
to the site it just left vacant, than to keep on going farther §a&y54).

Meanwhile, a considerable knowledge is accumulated through case-by-case theoretical and humerical
analyses of the TP dynamics in a variety of model systems with either quenched or dynamica(skésnelgr
[1-13 and references thergifOn contrary, still little is known about the TP diffusion in situations in which
several types of disorder are acting simultaneously. To the best of our knowledge, the only work addressing
speci cally this question is recelfitl], which focused on the TP random motion in singlies of hard-core
particles having a broatale-fregistribution of waiting times, e.g. due to a temporal trapping of particles. Using
some subordination arguments and numerical analysis, it was shown that here a combined effect of the disorder
in transition rates and of the dynamical environment leads to a severe slowing-down of the TP random motion.
Namely, the DAMSD ofthe TP follow®Z2(t) § InY/4t),i.e. exhibits an essentially slower growth with time
than the one taking place in systems in which either type of disorder is present alone. In case when a
characteristic mean waiting time exists, i.e. the distribution is not scale-free, but the second moment diverges,
the DAMSD grows faster than logarithmicaly2(t) § t'with < 1/ 2, butstill slower than the above
mentioned Harrislaw.

This paper is devoted to a question of the TP dynamics in presence of two interspersed types of disorder,
which act concurrently and compete with each other. We consider the TP random motion sutpjesi¢cbed
random convectionows, which prompt a super-diffusive behaviour of the TP dypreamicag¢nvironment
which is damping its random motion. More specally, we study here by extensive numerical simulations the
dynamics of a TP which evolves on a square random Manhattan lattice offitezeat varying in timg
convection ows in presence of a lattice ¢laS) of mobile hard-core particles. The latter are either insensitive to
convection ows, performing standard random walks among the nearest-neighbouring sites of a lattice with the
probability ¥ 4 to go in any directioModel A), or follow the convectionows(similarly to the TRby choosing
randomly between the two directions prescribed by a local directionality of bonds of the random Manhattan
lattice(Model B). Inthe latter case the backward jumps of any LG particle are completely suppressed. The
backward jumps of the TP are forbidden in both models. For both models, the TP and the LG particles obey a
simple exclusion constraint, which effectively correlates the TP random motion and the evolution of LG
particles. We focus on such characteristics of the TP dynamics as its DA MSD, and generally, the moments of
arbitrary order, the distribution of its position at time moméatweraged over disorder, as well as the time
evolution of the kurtosis of this distribution. We also address a question of the sample-to-sactyégions
and analyse the MSD of the TP and the probability distribution of its position for sexethlealisations of
disorder.

The paper is outlined as follows: in sectiwe de ne the model under study and introduce basic notations.

In section3we discuss dynamics of a single TP in absence of the LG particles, appropriately revisiting the
arguments presented[i&7, 28]. We also present here results of numerical simulations for the DA MSD and for
higher moments of the TP displacement, as well for the disorder-averaged probability distribution of the TP
position along the-axis, for which our analysis predicts a previously unknown form. This sets an instructive
framework for the analysis of the TP dynamics in presence of LG particle. We clossSssidi@ssing the issue

of sample-to-sampleuctuations and also examine the spectral properties of the TP trajectories, which reveal
several interesting features. In sectiore consider the TP dynamics in presence of LG particles for both Model
A and Model B. Finally, in sectiéwe conclude with a brief recapitulation of our results.

2. Model

Consider atwo-dimensional random Manhattan lat{sze gurel),i.e. anin nite in both directions square
lattice with unit spacing, decorated with arrows in such a way that directionality of each of tixehédong
each stredEastWes) and an avenu@orth—South for their entire length, but whose orientation varies
randomly from a stre¢fin avenugto a streefan avenug

3
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Letanintegen,n %o , ¥ numeratethe column&venuesofthe lattice, and anintegan,
m % , Y—the rowqstreet} respectively. Then, the pattern of arrows in a given frozen realisation of
convection ows is specied by assigning to each lattice 8iteh integer coordinatgs,m)) a pair of quenched
random, mutually uncorrelateédias variables ,and .. We use a conventionthgt = + 1ifanarrow points
tothe North,and , = 1, otherwise; and,, = + lifanarrow pointstothe East,ang = 1, otherwise. We
focus solely onthe case when there iglobabias; that being,,and ,,,assume the valuesl with equal

probabilities, whichimpliesthat, § 1 ,~ @& Furfhermore, we stipulate that there are no correlations
between the directions of arrowsatndn , and aimandm , i.e.

rJ nNA n,nE §
ol mal mmaE 8§ D

where Episthe Kronecker-delta, such that, = 1fora = b, and equals zero otherwise.

2.1. Asingle tracer particle
Attime moment = O(tis adiscrete time variabtes 0, 1,2K ), we introduce the TP atthe origin of the lattice
and letitmove, at each tick of the clock, according to the following rules:

—ateach discrete time instéantve toss a two-sidédoin’ which can assumé@yith equal probabilities 1/
2),thevalues 1 and G

—being at positiolrR, (X, Y), (whereX;andY, are the projections d& on thex- andy-axe3, the TP is
moved, after choosing the value gto a new position

G G G
G R1 R E (2
where the vectorial incremeriis de ned as
G (1 1 G G
E % [Y[ e % |Xt g, (3)

. G G_ . . . N .
with g ande, being the unit vectors in the andy-directions, respectively. The expresgi9)ican also be
conveniently rewritten in form of two coupled, nonlinear recursion relations for the integer-valued components
XcandYy:

v v &0, 0
Therefore, oncéwith probability ¥ 2) = 1,the TP is moved onto the neighbouring site alongthgis in the
direction prescribed b, and does not change its position alongyeis. Conversely, if = 1,the TPis
moved on a unit distance along tpxis in the direction prescribed hy, , and does not change its position
along thex-axis. We recall that the ensuing motion of the TP asé@d by the recursion relatiof) is super-
diffusive, with the dynamical exponent 4/ 3[27,29.
We note parenthetically that it may apparently be possibled@n equivalent two-dimensional model in

the continuum space and time limit, write down coupled Langevin equations for the time evolution of the
components and, eventually, de the associated Fokk&tanck equation obeyed by the probabilitgX, Y) of

nding the TP at positio(X, Y) at time moment for a given realisation of disorder. We will address this
question in our following work. Second, it was claimef?in 28] that at a coarse-grained level the TP dynamics
onarandom Manhattan lattice becomes equivalent to a Brownian motion in continuum, in a divergenceless
random velocity eld with power-law decay of the velocity correlation function. We however remark that going
to acontinuum limit necessitates a generalisation of the model studied here; in our settings, the jJumps against an
arrow are not permitted which tacitly presumes that the force acting on the particle along a given bond is
in nitely large. Therefore, one has to allow for the jumps against an arrow and let them occur with glsutaller

nite) probability, than the probability of the jumps along an arrow. This is tantamount to consideriieg
forces. We, however, do not expect any substantial change in the dynamicsitelf@ce case, as compared
to our model.

The algorithm of our numerical simulations of the TP dynamics on arandom Manhattan lattice follows the

relationg4). We generate trajectories alongsthabdy-axes of a given lengtffor a given set of thermal
variable$ {} and a givenrealisation tfias variables,and . The obtained individual trajectories are stored
and the characteristic properties of interetthie moments of the TP displacement and the distribution function
ofthe TP positior—are evaluated by averaging over different realisations of trajectories. Averagtng is
performed over 1ftrajectories generated for aed realisation of arandom Manhattan lattice, and then the
procedure is repeated for2 10° realisations of disorder. Simulations are performed for lattices containing
L x Lsiteswitl = 2 x 1(P. Care is taken that neither of the TP trajectories reaches the boundaries of the
lattice within the observation time, such that thréte-size effects do not matter. For the lattice size used in our
numerical modelling, this permits us to safely explore the TP dynamics for times ap16f. Lastly, we also

X1 X
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analyse the sample-to-samplectuations and, in particular, address a question of the TP dynamics in presence
of asingle xed realisation of disorder. In this case, for a given random realisation of disorder we rii@/2
trajectories.

2.2. The TP dynamics on a crowded random Manhattan lattice
The TP dynamics on a random Manhattan lattice populatedMith 1 lattice gas particles is analysed
numerically. Due to a signcant number of the particles involved, we are only able to consider square lattices
with the maximal linear extet= 2 x 10°. This means that the maximal tieuntil which the nite-size
effects can be discarded, is of order &f 40°. Moreover, due to computational limitations, we record only 50
TP trajectories for each given realisation of disorder, and average tneslis@tions of disorder. Such a
statistical sample appears to be signtly large to probe the behaviour of the DA MSD of the TP, but does not
permit us to make absolutely conclusive statements about the shape of the distribution function. Nonetheless,
our numerical data rather convincingly demonstrate that the overall behaviour of the latter is very similar to the
one observed for the TP dynamics in absence of the LG particles, in which case a more ample statistical analysis
has been performed.

The simulations are performed as follows: st place the TP at the origin of a lattice and then distribute
N 1hard-core particles among the remaining sites by placing aLG particle at each lattice site, at random, with
probability = N/ L2 The latter parameter daes the mean density of particles in the system; in our
simulations, we study the TP dynamics for nine values of 0.1,0.2,0.%,0.9.

After the particles are introduced into the system, they are let to move randomly subject to a single-
occupancy constraint. We distinguish between two possible scenarios:

2.2.1.Model A.

In model Awe suppose that all the LG particles arsansitiveo the frozen pattern of convectioows and

perform symmetric random walks, subject to the constraint that there may be at most a single(partdieer

the TP ora LG partic)at each lattice site. On contrary, for the TP the choice of the jump direction is dictated by
the arrows present at the site it occupies at time moméstdescribed above, the TP chooses at random
between the two arrows outgoing from the site it occupies. In this case, (hitR exhibits a super-diffusive
motion in absence ofthe LG particjésnot identical to the LG particles and moves in a quiesceitt’ of hard-

core particles which exerts some frictional force on it. Note that here the backward jumps are forbidden for the
TP only.

More specically, at each step we select at random a particle, which can be eithera TP or a LG patrticle, and let
itchoose the jump direction: if the selected particleis a TP, it chooses at random between the two arrows.
Conversely, a LG particle chooses at random one among four neighbouring sites with prebHbdlifhe
jumpofa TP oralLG particle is fuled, once the target site is empty at this time instant; otherwise, the particle
remains atits position. The tintés increased by unity after repeating such a procedtires, such that all
particles presentinthe system, on average, have a chance to change their positions.

We have already mentioned that in this model the dynamics of LG patrticles is rather non-trivial due to an
enhanced probability of backward jumps; it means that a particle which jumps onto an empty target site will
most likely return on the nexttime step to the site it just left vacant, then will keep on going away from it. Evenin
absence ofthe TP and random convectiows acting on it, this circumstance results in a non-trivial
dependence of the self-diffusion cagéntD,, of any tagged particle on the overall density of the LG particles.
This dependence is known only in an approximate f(seae, e.g13 and[58-64]). The available exact results
concerntheleading, inthe denselimit 1, behaviour of the self-diffusion coefentDy, ; (1 ) (4
( 1))[69 and of the mobility , ; (1 )V (4( 1)) [66 of atagged particle subject to a vanishingly
small external force, withbeing the reciprocal temperature. The appearance of the Archinreatésnal
number' ’seems astonishing and points on a non-trivial behaviour.

2.2.2.Model B.

Inthis model, we suppose that all the particles in the system are identical. It means that both the TP and the LG
particles move on the lattice subject to a single-occupancy constraint and obey the rules of the random
Manhattan lattice, by following the jump directions prescribed by the arrows.

Note that in this model the backward jump probability is equal to zero for all the particles, both forthe LG
particles and the TP. As a consequence, we expect that here the environmentin which the TP moves is a kind of ¢
‘turbulent uid, in which all the particles exhibit a super-diffusive motion. Hence, we may expect that the
environment becomes perfectly stirred at signtly large times, such that the titrggets simply rescaled by the
frequency1l g ofsuccessful jump evengahich is notthe case for Mode) AVe are going to verify if this is
the case in what follows.
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3. Dynamics of a single tracer particle

3.1. Disorder-averaged mean-squared displacement
In order to calculate the DA MSD of a single TP moving on arandom Manhattan lattice in absence of the LG
particles, we suitably revisit the arguments presenfed,g]. The latter were based on an estimate of typical
uctuations of sums of quenched random variabled ,,,, and a plausible closure relation. Here, we pursue a
bit different line of thought.
First, wesolvéthe recursions in equatiorfé) to get, fot 1

t 1 1 Y t 1 1 Y
X, % LY ooe % . &5
U o uUo

with the initial conditionXy = Yo = 0. Expression®) de ne the TP positionx; andY; for anyt, for xed
realisations of thermal noisgand‘biase’s ,and ..
We concentrate on thecomponent and write down formally its squared value:
t 1 (1 Y 2 t2t1 (1 ) (1 Y
L) [$U @ ) Q

uo 4 Wa 1U 2U 2

Ayl Lol ©

X2

Letthe bar denote averaging oves, which amounts to averaging over thermal histories, and the angle
brackets—averaging over random variablggnd ,, i.e. averaging over quenched disorder. Consider the
averagedrst sum in the right-hand-sidghs) of equation(6). Noticing that [\qu w1, i.e.isnot uctuating, we
realise that the averagemst sum is simply

<UOT [YU> %OT > e O

Hence, the contribution of the averagedt sum to the DA MSD of the TP along tkexis is that of a standard,
discrete-time random walkvith the diffusion coefcientD = 1/ 4) on a two-dimensional undecorated square
lattice.

Focus onthe summand in the second term in the rhs of equéand write down formally its averaged

value:
2< (1 > ) (1 YUA Y[ %a>. . YU (8)

2

Note that we are allowed to perform averaging oYgtirectly, due to the fact that botf,andY are statistically
independent of arandom variabl, Indeed,YdependsonY, ;, Y, K, o WhileY ,with U , depehds
on 1y YUa 21 K y O

Note that only the product, [ \, i$ dependent onrandom convectioows. Averaging this product over
quenched disorder, wand that, in virtue of the denition in equation(1), expressiof(B) takes the form

vEv va. & ©)

i.e.itis an averaged over thermal noises product of the indicator functions of two @efts; = Y and(b)
Y Y1 Y .Asaconsequgnce,the expresSisthe joint probability
P(Y t ;Yya U 1;Y t ) oftheeventsthatthe TP trdjectofywith Yi=o = 0,(a) paused atits
(unspecied positionat = and(b) returned attime momertt=  tothe position it occupied at=

The probabilityP(Y t ;a U 1;Yt ) dedduplesintothe preductdfthe probability thatthe
trajectoryY; appeared at an unspeed positiony attime moment = , which equals unity since averaging
over (withka (0, 1) implies averaging over all possi¥lethe probability tha¥, paused at= , which
equals 12; and the probability that; returned toY = Y ,;within a U 1stepd. Making a plausible
assumption that the dynamics, atleast in the asymptotictimit d, does not depend of the starting point, we
thus ndthatthe expressiq®) reducesto

%P w (Y% 0, (10

whereP 5y 1(Yu 0)isthe probability that thg-component of the TP trajectory returnsYo= 0,(not
necessarily forthesttime),onthe( a U 1)-thstep. HereR(Y) (R(X))is amarginal distribution
obtained from the full probability distribution functid®(X, Y) of nding the TP at sitéX, Y) attime moment
by summing the latter over &l(Y), thatis

d

d
R(Y) XY, RX o ®RXX (13 oe
Y

X d d
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Summing up the presented above reasonings, we arrive at the following representation of the DAMSD:

o t t2t1
X2 82 e Rt 0 (19
Wa 1U U
Further on, the probability? o, 1(Yu 0)isevidently adecreasing function ofthe difference U 1. Very
general argumentsee also the numerical results presentedure3, panela)), suggesttha® 5y 1(Yu 0)
decays as a power-law:

A
P Y, O _ 1
w0 0y (13
inthelimit( aU 1) U ,whereAisthe amplitude andisthe dynamical exponent, bothto be ded.
Supposingthat < 2( = 2 corresponds to ballistic motiprwe expect that both the inner sypver U) and
the outer ondover )in equation(12) will be dominated by the upper summation limit. As a consequence, in

the largetlimit

1" " R (% 0) A, (14
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and hence, in the largdimit the expressiofil 2) attains the form
a3 L At2 H2 (13
Y27 AT /2(2 H/ Y H

Inline with the arguments presented itv, 28, we recall that the dynamical exponewle nes the
characteristic extent of the trajectfythat being, Y2 § mp t!, wherem,is as yet unknown proportionality
factor. By symmetry, one expects thus that the DA MSD alongdRés, i.e.")(_t2 §obeys exactly the same law,
which entails the following closure relation:

t Atz H2
m, t H — . (1@
Z A1 /32 H/2 H
Inspecting the behaviour of the latter expressioninthe limit d, we infer that the contribution of therst
terminthe rhs of equatio(iL6) becomes negligible inthe lintit | d, so thatthe dominant contributionis
provided by the second term. Comparing the power-law on the left-handHisgief equation(16) with the
second term on the rhs of this equation, wel that the exponent obeys

2 H/2, H (13

whichyields = 4/ 3—the value which has been previously conjectured andagnumerically if27, 29].

Therefore, our reasonings correctly reproduce the value of the dynamical expdthenever, inferring a
numerical value of the prefacton, from equation(16), (which predictsn,  9A/ 8), should lead to a somewhat
higherm,than the actual one, because the rhs in equdfidrevidently overestimates the value of the double
suminthe lhs of this equation. The pointis that the algebraic form in equéiti)is only valid for such
realisations of the TP trajectories, for which the sum of the number of jumps and of the number of the pausing
eventsis even. Otherwise,y 1(Yy 0)isexactly equalto zero. As a consequence, eqatiooverestimates
mo.

Lastly, we note that a similar type of arguments was invoked to characterise a decay of the number of tree-like
clusters with a growing pattern heightin a process of ballistic deposition of sticky particles §oi4. IBath
the decay and the ensuing thinning of the forest of such clusters appear to be controlled by a random wandering
ofthe inter-cluster boundaries with the super-diffusive exponent4/ 3.

In gure2, panela), we present numerical resultgpen circlesdescribing the time evolution of the DA
MSD of asingle TP. The dashed line indicates the super-diffusive power-law behaviour of the form
”X_tz § m, t4/3 withm, = 0.556. This estimate of is based on thetting of the full probability distribution,
which s discussed below in sectibf We observe that the super-diffusive behaviour sets in from rather early
times and the transient diffusive law, as predicted bystderm in the rhs of equatiofi6), is not observed.

Next, theinsetin the panéd) illustrates the convergence of the dynamical expongi¢ ned by

(n(XF) Ingx#) = 8 18
1 2)In(t)

to its asymptotic value' 8. Such arepresentation g{as compared to the standardly used one,

H In( X¢ )/1n (t)) is @articularly well-suited for a numerical analysis of the dynamical exponentin an
expected power-law dependence on time with an unknown numerical prefactor, since the latter cancels out
automatically. In equatiofi8) the parametezis a trial exponent, & z < 1, whichrescalestime inthe second
term; in principle zcan be chosen rather arbitrarily; we mse 0.9. We also observe thatonverges toits

H
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Figure 2 Disorder-averaged mean-squared displacement of the TP and higher momdrasefay. isorder-averaged mean-
squared displacemefX? ®fthe TP in absence of the dynamical environnge@particlel The open circles depict our numerical
results, while the dashéed) line indicates the predictio®X? § m, t43withm, = 0.556see equatior@0) and(21)). A super-
diffusive behaviour sets in from rather short times and the diffusive trarfsemthe rst term in the rhs of equatiofi 2)) is not
observed. Theinset displays the rate of a convergence of the time-dependent dynamical expqoetior(19), to its asymptotic
value 4 3. Pane{b). Reduced moment8X; 9 §t2¥3as functions of time. The dashed lifigem top to bottom) correspond to

m, = 1.038m; = 0.687m; = 0.590 anan, = 0.556see equatio(®1)).

asymptotic value very rapidly, in line with the behaviour of the DAMSD. In §anefi gure2we plotthe

reduced moments XT  /t2/3forq= 1,2, 3and4 as functions of time. We observe that the reduced

moments saturate as some constant vahyes time progresses, indicating that the moments themselves obey
xXd mq t29/3(see equatio20)). Here, the dashed lines indicate our estimates for the values of the

numerical prefactons\, (see equatio(21)).

3.2. Probability distribution and moments of arbitrary order

In gure3we depict different facets of the numerically evaluated full probability distribg{i&ny) and of the
marginal distributiorP,(X), (see equatiofi 1)). Pane(a) presents the time evolution Bf X = X';‘) forsix xed
values ok® X2 = 0, 60, 1000, 1400, 1800 and 30adves from top to bottom, with lighter colours
corresponding to smaller values$j. Our numerical results show that, unequivocafQ) obeys a power-law
ofthe formPy(0) ; A/ t? 3 whichis fully in line with our above analysis. The decay amplitude isedevith a
goodaccuracy by  0.568. Moreover, comparing our numerical results with the fle(®) ; A/t73 we
conclude that the latter provides a very accurate estima@g®pstarting from rather shorttimesthe dashed
line representing/ tZ ®and the numerical dagight blue curviare almostindistinguishable. In turn,

P(X = X¥forXx® = 60,1000, 1400, 1800 and 3000 converges ultima®@lg A/ t? 2 whichis, of course,
not an unexpected behaviour. The papresents the time evolution Bf{0,0—the probability of being at
the origin attime momertt We observe thatthe power-law foR{0, ) A #@t%/3(with A a X555
describes the numerical data fairly well. Note also that this form implies that a random walk on arandom
Manhattan lattice is not certain to return to the origin.

Furtheron, in gure3, panelgc) and(d), we plot? *P,(X) andt” 3P,(X, Y)with Y = 0as functions of the
scaled variable= X/ t? 3. The data collapse evidenced by our numerical results for both the central part of the
distribution and for its tails, suggests, again rather unequivocally, that the marginal distit(Xjari the TP
position along th&-axis aisuf ciently larggtimet has the following form:

1 Aexp( awd) foru 1

R(X) t2/3 Bexp( bu¥3d foru 1

(19
whereB  1.249a 1.049andd 1.730.We observe, as well, that the full distribuBgK, Y) (with Y = Q)
exhibits essentially the same functional behaviour as a functip(set gure3, paneld)), as the marginal
distributionP,(X) and only the values of the parameters are slightly different. We therefore conclfdetieat
central part of both distributions is a Gaussian, with the variance which grows super-diffusivelsueith)
the tails of both distributions deviate from a Gaussian and have afexp(  u#/9),i.e. aréheavierthana
Gaussian. The presence of such tails also manifests itselfin the anomalously high asympto8&uatiiaéned
by the kurtosis of the marginal distributi®(X) (see the dashed curve igure7, paneld)). Recall that the
kurtosis of a Gaussian distribution is equal to 3.

We note that the large+ail of P,(X) andP(X, Y = 0) has avery different form, as compared to the
prediction made ii27, 28. Assuming the validity of the usual relation between the shape exparahthe
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X/ t2/3 X/ t2/3

Figure 3 Probability distribution of the TP positieane(a). Temporal evolution of the marginal distributi®(X = Xé‘),
equation(11), for six xed values 0f” = 0, 60, 1000, 1400, 1800 and 3(&lid curves from top to bottom with lighter curves
corresponding to smaller valueg®j. The dashed line denotes the power-4aw? *with A 0.568. Note tha®,(0) ; A/ %3
provides a very accurate estimateF¢0) starting from rather shorttime&(X = X°)for X* > 0converges ultimately #(0). Panel
(b). The probability?,(0, 0 of being at the origin at time momeniThick blue curve presents the numerical data. Adashedlineis a
power-lawA / t¥3withA  0.555. It provides a fairly good estimate for the numerical data starting frof?. Pane(c). The
marginal distributiorP,(X), multiplied byt? 3, is plotted as a function of the scaled variabte X/ t? 3. Pane(d). The full distribution
P(X,Y)with Y = 0, multiplied byt 3, is plotted as a function of the scaled variabte X/ t% 2. In panelgc) and(d) the histograms
show the results of numerical simulations: light brown, green and blue colours correspond to the numerical dafetfod x 10*
andt = 10, respectively; thin solid curves are the Gaussian funétiexp( au?), and the dashed curvesa stretched-exponential
function of the formBexp( b u?/3). Vertical dotted line in panét) is a guide to an eye which indicates the crossovervatug
between the two asymptotic regimes. Purple circles in the @depict our data for a shorter timet = 10°. A deviation fromthe
stretched-exponential form sigrs that the anomalous tailsRfX) appear only for suftiently large values tf

dynamical exponent, = 1/(1 ), itwas conjectured that the shape exponent shouldbhe3. Our data

shows that this is not the case and, surprisingly enough, the distribution in the second line in gd3pitias

exactly the same shape exponent 4/ 3 as the one appearing in the MdM model with random layered

convection ows(sed27-30]). To the best of our knowledge, the form in equati#) is a novel result.
Capitalising on the expression in equaltfi#), we estimate the behaviour of the momentg,(X) of

arbitrary ordeig. Multiplying both sides of equatiqii9) by X 9, changing the integration variable for

u = X/tZ3 andintegrating the expressioninthstline ovewua (1, 1) and in the second line-over

u % , Yand(l, d),weget

X T mg 283 (20
with

3 1
M a(qu)/Zx @b (@ 13 ZbK?qu/zl (q4 )’b’ ( (29

where (&, b)isthe incomplete Gamma-function. Note that here we discard the transient region between two
asymptotic regimes, supposing that the second regime is valid starting fronl. Thisis, of course, nottrue
and hencemgin equation(21) overestimatédse actual value of the numerical prefactgfin equation(20). We
however believe that such an estimate is quite plausible and would notincur angasigeiror. The plot of the
numerical results for therst four moments together with the estimatesrfgpresented ingure2, panel(b),
shows thatitisindeed the case.

We close this section with two following remar(&sthe value o, deduced from equatiofi 6), i.e.
m, 9A/8 0.639,slightly overestimates the valuegfbtained from equatio(?1), i.e.m, = 0.556. Thisis
completely in line with our argument that the second term in the rhs in equétigmrovides an upper bound
onthe actual value o,. (b) For the kurtosis of the marginal distributio®(X), i.e.

L X'/ 22 8§ (22
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