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Abstract
We study, by extensive numerical simulations, the dynamics of a hard-core tracer particle (TP) in
presence of two competing types of disorder—frozen convectionflows on a square randomManhattan
lattice and a crowded dynamical environment formed by a lattice gas ofmobile hard-core particles.
The latter perform lattice randomwalks, constrained by a single-occupancy condition of each lattice
site, and are either insensitive to random flows (model A) or choose the jumpdirections as dictated by
the local directionality of bonds of the randomManhattan lattice (model B).We focus on the TP
disorder-averagedmean-squared displacement, (which shows a super-diffusive behaviour∼t4/3, t
being time, in all the cases studied here), on highermoments of the TP displacement, and on the
probability distribution of the TPpositionX along the x-axis, for whichwe unveil a previously
unknown behaviour. Indeed, our analysis evidences that in absence of the lattice gas particles the latter
probability distribution has aGaussian central part ( )~ -uexp 2 , where u=X/t2/3, and exhibits
slower-than-Gaussian tails ( ∣ ∣ )~ - uexp 4 3 for sufficiently large t and u. Numerical data convincingly
demonstrate that in presence of a crowded environment the central Gaussian part and non-Gaussian
tails of the distribution persist for bothmodels.

1. Introduction

Inmany realistic systems encountered across several disciplines—e.g. physics, chemistry,molecular and cellular
biology,—randommotion of tracer particles takes place in presence of disorder, either temporal or spatial,
whichmay originate from a variety of different factors [1–13]. Understanding the impact of disorder on
dynamics is thus a challenging issue, which has important conceptual and practical implications.

Quenched (frozen) spatial disorder which entails a temporal trapping of a tracer particle (TP) at some
positions, often produces an anomalous sub-diffusive behaviour, especially in low-dimensional systems.Here,
the TP trajectories are spatiallymore confined than the trajectories of a standard Brownianmotion. As a
consequence, the disorder-averagedmean-squared displacement (DAMSD) behaves as ( )á ñ ~ gX t t2 , with t
being time and γ—the dynamical exponentwhich is less than unity.Here and henceforth, the bar denotes
averaging over thermal histories while the angle brackets stand for averaging over disorder. Striking examples of
such a dynamical behaviour are provided by, e.g. the so-called Sinai diffusion in one-dimensional systems [14]
(see also [3–6]) inwhich theDAMSDgrows as ( )á ñ ~X t tln2 4 (i.e. formally, γ=0), Sinai diffusion in presence
of a constant external bias [15, 16] ormigration of excited states along a one-dimensional array of randomly
placed donor centres [1, 6]. In this latter example the dynamical exponent γ is non-universal and equals the
mean density of donor centres times the characteristic length-scale of the distance-dependent (exponential)
transfer rate. If this product is less than unity, a sub-diffusivemotion takes place. Two other examples concern
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diffusion in the ‘impurity band’ [17] and the so-called RandomTrapmodel [18–20]. Here, as well, γ is non-
universal and is less than unity in some region of the parameter space. In higher-dimensional systems, diffusion
in presence of such a disorder typically becomes normal (see, however, [17, 21, 22]) and the disorder affects only
the value of the diffusion coefficient. Diffusion is also normal in the asymptotic large-t limit in one-dimensional
systemswith a periodic disorder. Here, however, the value of the diffusion coefficientmay exhibit strong
sample-to-sample fluctuations and thus have non-trivial statistical properties, such that the averaged diffusion
coefficientwill not be representative of the actual behaviour (see, e.g. [23]). The large-t relaxation of the diffusion
coefficient to its asymptotic valuemay shed some light on the kind of disorder one is dealingwith [24].

Random frozen convection (velocity)flowsmost often produce a super-diffusionwith γ>1. To name just
two such situations, wemention amodel inwhich a TP is passively advected by quenched, layered, randomly-
oriented flows (say, along the x-axis) and undergoes a normal diffusion in the direction perpendicular to them (
i.e. along the y-axis), as well as its generalisation—a randomManhattan lattice (seefigure 1), inwhich the
orientation of convection flows randomly fluctuates both along the streets and avenues (i.e. along both x- and y-
axes). The formermodel was introduced originally for the analysis of conductivity of inhomogeneousmedia in a
strongmagnetic field [25] and of the dynamics of solute in a stratified porousmediumwith flowparallel to the
bedding [26]. In such a setting, usually referred to as theMatheron—deMarsily (MdM)model according to the
names of authors of [26], the TP dynamics in the flowdirection (along the x-axis) is characterised by a super-
diffusive law of the form ( )á ñ ~X t t2 3 2, i.e. γ=3/2.Many interesting generalisations andmore details on the
available analytical and numerical results can be found in [27–36]. Diffusion of a single TP on a square random
Manhattan lattice has been analysed in [27, 28]. It was shown, by using simple analytical arguments and a
numerical analysis, that in this case theDAMSDalso exhibits a super-diffusive behaviour, butwith a somewhat
smaller dynamical exponent γ=4/3, i.e. theDAMSDof the x-component of the TP position obeys

( )á ñ ~X t t2 4 3. Thismodel has been alsowidely studied in different contexts inmathematical literature (see, e.g.
[37]). A generalisation of a randomManhattan latticewas invoked as an example of a plausible geometric
disorder in a recent analysis of the localisation length exponent for plateau transition in quantumHall effect
[38]. This latter setting, however, is clearlymore complicated than theMdMmodel with the layered flows and
the theoretical progress here is rather limited; the behaviour beyond the temporal evolution of aDAMSD is still
largely unknown.

Dynamical disorder emerges naturally when theTP’s transition rates fluctuate randomly in time, as it
happens, for instance, in physical processes underlying the so-called diffusing-diffusivitymodels [39–45] or the
dynamic percolation [46–48]. Another pertinent case concerns the situationswhen the TP evolves in a
dynamical environment ofmobile steric obstacles—interacting crowders which impede its dynamics (see, e.g.
[10–12]). A paradigmatic example of such a situation is provided by a TP diffusion in lattice gases of hard-core
particles, which undergo the so-called simple exclusion process (see [13] for a recent review), i.e. perform lattice
randomwalks subject to the constraint that each lattice site can be atmost singly occupied. It is well-known that
in such an environment the particles’ dynamics is strongly correlated. These correlations are especially
important and cause an essential departure from standard diffusivemotion in two cases: (a) in one-dimensional

Figure 1.RandomManhattan lattice and the TP trajectories. Panel (a). A realisation of a randomManhattan lattice—a square lattice
decorated in a random fashionwith arrows, indicating the possible jumpdirections. Jumps against an arrow are not permitted in our
model. The directionality of each arrow isfixed along each street (East–West) and an avenue (North–South) along their entire, infinite
in both directions length, andfluctuates randomly from a street (an avenue) to a street (an avenue). The pattern of arrows is frozen and
does not varywith time. A square (blue) indicates the TP instantaneous position, while the circles (red) denote the instantaneous
positions of the LGparticles. Panel (b). Five individual TP trajectories on a randomManhattan lattice in absence of the LGparticles.
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geometry—the so-called single-files, inwhich the particles cannot bypass each other and the initial order of
particles is preserved at all times; and (b) on ramified comb-like structures consisting of an infinitely long single-
file backbonewith infinitely long single-file side branches, which permit for some re-ordering of particles. In
single-files, the TPmean-squared displacement exhibits an anomalous sub-diffusive behaviour ( ) ~X t t2 1 2.
This striking result was first obtained analytically byHarris [49] (see [50, 51] for a review), and holds also for all
the cumulants ofX(t) [52, 53] and in case ofmultiple TPs [54–56]. On crowded comb-like structures, the TP
mean-squared displacement exhibits a variety of sub-diffusive transients and, in some cases, an ultimate sub-
diffusive behaviour [57]. On higher-dimensional lattices, the TP dynamics becomes diffusive in the large-t limit
with the effective diffusion coefficient being a non-trivial function of the density of crowders and other pertinent
parameters [58–64]. This non-trivial behaviour of the diffusion coefficient is associatedwith the enhanced
probability of backward jumps—in a crowded environment, for any particle it ismore probable to return back
to the site it just left vacant, than to keep on going farther away [58–64].

Meanwhile, a considerable knowledge is accumulated through case-by-case theoretical and numerical
analyses of the TP dynamics in a variety ofmodel systemswith either quenched or dynamical disorder (see, e.g.
[1–13] and references therein). On contrary, still little is known about the TP diffusion in situations inwhich
several types of disorder are acting simultaneously. To the best of our knowledge, the only work addressing
specifically this question is recent [51], which focused on theTP randommotion in single-files of hard-core
particles having a broad scale-free distribution of waiting times, e.g. due to a temporal trapping of particles. Using
some subordination arguments and numerical analysis, it was shown that here a combined effect of the disorder
in transition rates and of the dynamical environment leads to a severe slowing-down of the TP randommotion.
Namely, theDAMSDof the TP follows ( ) ( )á ñ ~X t tln2 1 2 , i.e. exhibits an essentially slower growthwith time
than the one taking place in systems inwhich either type of disorder is present alone. In case when a
characteristicmeanwaiting time exists, i.e. the distribution is not scale-free, but the secondmoment diverges,
theDAMSDgrows faster than logarithmically, ( )á ñ ~ gX t t2 with γ<1/2, but still slower than the above
mentionedHarris’ law.

This paper is devoted to a question of the TP dynamics in presence of two interspersed types of disorder,
which act concurrently and compete with each other.We consider the TP randommotion subject to quenched
random convection flows, which prompt a super-diffusive behaviour of the TP, in a dynamical environment
which is damping its randommotion.More specifically, we study here by extensive numerical simulations the
dynamics of a TPwhich evolves on a square randomManhattan lattice of frozen (i.e. not varying in time)
convection flows in presence of a lattice gas (LG) ofmobile hard-core particles. The latter are either insensitive to
convection flows, performing standard randomwalks among the nearest-neighbouring sites of a lattice with the
probability 1/4 to go in any direction (Model A), or follow the convection flows (similarly to the TP) by choosing
randomly between the two directions prescribed by a local directionality of bonds of the randomManhattan
lattice (Model B). In the latter case the backward jumps of any LGparticle are completely suppressed. The
backward jumps of the TP are forbidden in bothmodels. For bothmodels, the TP and the LGparticles obey a
simple exclusion constraint, which effectively correlates the TP randommotion and the evolution of LG
particles.We focus on such characteristics of the TP dynamics as its DAMSD, and generally, themoments of
arbitrary order, the distribution of its position at timemoment t averaged over disorder, as well as the time
evolution of the kurtosis of this distribution.We also address a question of the sample-to-sample fluctuations
and analyse theMSDof the TP and the probability distribution of its position for several fixed realisations of
disorder.

The paper is outlined as follows: in section 2we define themodel under study and introduce basic notations.
In section 3we discuss dynamics of a single TP in absence of the LGparticles, appropriately revisiting the
arguments presented in [27, 28].We also present here results of numerical simulations for theDAMSD and for
highermoments of the TP displacement, as well for the disorder-averaged probability distribution of the TP
position along the x-axis, for which our analysis predicts a previously unknown form. This sets an instructive
framework for the analysis of the TP dynamics in presence of LGparticle.We close section 3 addressing the issue
of sample-to-sample fluctuations and also examine the spectral properties of the TP trajectories, which reveal
several interesting features. In section 4we consider the TP dynamics in presence of LGparticles for bothModel
A andModel B. Finally, in section 5we concludewith a brief recapitulation of our results.

2.Model

Consider a two-dimensional randomManhattan lattice (see figure 1), i.e. an infinite in both directions square
lattice with unit spacing, decoratedwith arrows in such away that directionality of each of them isfixed along
each street (East–West) and an avenue (North–South) for their entire length, butwhose orientation varies
randomly from a street (an avenue) to a street (an avenue).
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Let an integer n, ( )Î -¥ ¥n , , numerate the columns (avenues) of the lattice, and an integerm,
( )Î -¥ ¥m , ,—the rows (streets), respectively. Then, the pattern of arrows in a given frozen realisation of

convection flows is specified by assigning to each lattice site (with integer coordinates (n,m)) a pair of quenched
random,mutually uncorrelated ‘bias’ variables ηn and ζm.We use a convention that ηn=+1 if an arrowpoints
to theNorth, and ηn=−1, otherwise; and ζm=+1 if an arrowpoints to the East, and ζm=−1, otherwise.We
focus solely on the case when there is no global bias; that being, ηn and ζm assume the values±1with equal
probabilities, which implies that h zá ñ = á ñ = 0n m . Furthermore, we stipulate that there are no correlations
between the directions of arrows at n and n′, and atm andm′, i.e.

( )
h h d
z z d
á ñ =
á ñ=

¢ ¢

¢ ¢

,

, 1
n n n n

m m m m

,

,

where da b, is the Kronecker-delta, such that δa, b=1 for a=b, and equals zero otherwise.

2.1. A single tracer particle
At timemoment t=0 (t is a discrete time variable, t=0, 1, 2,K), we introduce the TP at the origin of the lattice
and let itmove, at each tick of the clock, according to the following rules:

– at each discrete time instant t, we toss a two-sided ‘coin’ ξtwhich can assume, (with equal probabilities=1/
2), the values+1 and−1.

– being at position ( )


=R X Y,t t t , (whereXt andYt are the projections of

Rt on the x- and y-axes), the TP is

moved, after choosing the value of ξt, to a new position

( )
  

d= ++R R , 2t t t1

where the vectorial increment

dt is defined as

( ) ( )
( )

  d
x

z
x

h=
+

+
-

e e
1

2

1

2
, 3t

t
Y x

t
X yt t

with

ex and


ex being the unit vectors in the x- and y-directions, respectively. The expression (2) can also be

conveniently rewritten in formof two coupled, nonlinear recursion relations for the integer-valued components
Xt andYt:

( ) ( )
( )

x
z

x
h= +

+
= +

-
+ +X X Y Y

1

2
,

1

2
. 4t t

t
Y t t

t
X1 1t t

Therefore, once (with probability 1/2) ξt=1, the TP ismoved onto the neighbouring site along the x-axis in the
direction prescribed by zYt

, and does not change its position along the y-axis. Conversely, if ξt=−1, the TP is
moved on a unit distance along the y-axis in the direction prescribed by hXt

, and does not change its position
along the x-axis.We recall that the ensuingmotion of the TP as defined by the recursion relations (4) is super-
diffusive, with the dynamical exponent γ=4/3 [27, 28].

We note parenthetically that itmay apparently be possible tofind an equivalent two-dimensionalmodel in
the continuum space and time limit, write down coupled Langevin equations for the time evolution of the
components and, eventually, define the associated Fokker–Planck equation obeyed by the probabilityΠt(X,Y) of
finding the TP at position (X,Y) at timemoment t for a given realisation of disorder.Wewill address this
question in our followingwork. Second, it was claimed in [27, 28] that at a coarse-grained level the TP dynamics
on a randomManhattan lattice becomes equivalent to a Brownianmotion in continuum, in a divergenceless
randomvelocity fieldwith power-law decay of the velocity correlation function.We however remark that going
to a continuum limit necessitates a generalisation of themodel studied here; in our settings, the jumps against an
arrow are not permittedwhich tacitly presumes that the force acting on the particle along a given bond is
infinitely large. Therefore, one has to allow for the jumps against an arrow and let themoccurwith a smaller (but
finite) probability, than the probability of the jumps along an arrow. This is tantamount to considering finite
forces.We, however, do not expect any substantial change in the dynamics in the finite force case, as compared
to ourmodel.

The algorithmof our numerical simulations of the TP dynamics on a randomManhattan lattice follows the
relations (4).We generate trajectories along the x- abd y-axes of a given length t, for a given set of thermal
variables {ξt} and a given realisation of ‘bias’ variables ηn and ζm. The obtained individual trajectories are stored
and the characteristic properties of interest—themoments of the TP displacement and the distribution function
of the TP position—are evaluated by averaging over different realisations of trajectories. Averaging isfirst
performed over 104 trajectories generated for afixed realisation of a randomManhattan lattice, and then the
procedure is repeated for 2×105 realisations of disorder. Simulations are performed for lattices containing
L×L sites with L=2×106. Care is taken that neither of the TP trajectories reaches the boundaries of the
lattice within the observation time, such that thefinite-size effects do notmatter. For the lattice size used in our
numericalmodelling, this permits us to safely explore the TP dynamics for times up to t=106. Lastly, we also
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analyse the sample-to-sample fluctuations and, in particular, address a question of the TP dynamics in presence
of a singlefixed realisation of disorder. In this case, for a given random realisation of disorder we run 2×107

trajectories.

2.2. TheTPdynamics on a crowded randomManhattan lattice
TheTPdynamics on a randomManhattan lattice populatedwithN−1 lattice gas particles is analysed
numerically. Due to a significant number of the particles involved, we are only able to consider square lattices
with themaximal linear extent L=2×103. Thismeans that themaximal time t, until which thefinite-size
effects can be discarded, is of order of 4×103.Moreover, due to computational limitations, we record only 50
TP trajectories for each given realisation of disorder, and average over 103 realisations of disorder. Such a
statistical sample appears to be sufficiently large to probe the behaviour of theDAMSDof the TP, but does not
permit us tomake absolutely conclusive statements about the shape of the distribution function.Nonetheless,
our numerical data rather convincingly demonstrate that the overall behaviour of the latter is very similar to the
one observed for the TP dynamics in absence of the LGparticles, inwhich case amore ample statistical analysis
has been performed.

The simulations are performed as follows: we first place the TP at the origin of a lattice and then distribute
N−1 hard-core particles among the remaining sites by placing a LGparticle at each lattice site, at random,with
probability ρ=N/L2. The latter parameter defines themean density of particles in the system; in our
simulations, we study the TP dynamics for nine values of ρ, ρ=0.1, 0.2, 0.3,K, 0.9.

After the particles are introduced into the system, they are let tomove randomly subject to a single-
occupancy constraint.We distinguish between two possible scenarios:

2.2.1.Model A.
Inmodel Awe suppose that all the LG particles are not sensitive to the frozen pattern of convection flows and
perform symmetric randomwalks, subject to the constraint that theremay be atmost a single particle (i.e. either
the TP or a LGparticle) at each lattice site. On contrary, for the TP the choice of the jump direction is dictated by
the arrows present at the site it occupies at timemoment t. As described above, the TP chooses at random
between the two arrows outgoing from the site it occupies. In this case, the TP (which exhibits a super-diffusive
motion in absence of the LGparticles) is not identical to the LGparticles andmoves in a quiescent ‘fluid’ of hard-
core particles which exerts some frictional force on it. Note that here the backward jumps are forbidden for the
TP only.

More specifically, at each stepwe select at random aparticle, which can be either a TP or a LGparticle, and let
it choose the jump direction: if the selected particle is a TP, it chooses at randombetween the two arrows.
Conversely, a LGparticle chooses at randomone among four neighbouring sites with probability=1/4. The
jumpof a TP or a LGparticle is fulfilled, once the target site is empty at this time instant; otherwise, the particle
remains at its position. The time t is increased by unity after repeating such a procedureN times, such that allN
particles present in the system, on average, have a chance to change their positions.

We have alreadymentioned that in thismodel the dynamics of LGparticles is rather non-trivial due to an
enhanced probability of backward jumps; itmeans that a particle which jumps onto an empty target site will
most likely return on the next time step to the site it just left vacant, thenwill keep on going away from it. Even in
absence of the TP and randomconvection flows acting on it, this circumstance results in a non-trivial
dependence of the self-diffusion coefficientDtp of any tagged particle on the overall density of the LGparticles.
This dependence is known only in an approximate form (see, e.g. [13] and [58–64]). The available exact results
concern the leading, in the dense limit ρ;1, behaviour of the self-diffusion coefficientDtp;(1−ρ)/(4
(π−1)) [65] and of themobilityμtp;β (1−ρ)/(4 (π−1)) [66] of a tagged particle subject to a vanishingly
small external force, withβ being the reciprocal temperature. The appearance of the Archimedes’ irrational
number ‘π’ seems astonishing and points on a non-trivial behaviour.

2.2.2.Model B.
In thismodel, we suppose that all the particles in the system are identical. Itmeans that both the TP and the LG
particlesmove on the lattice subject to a single-occupancy constraint and obey the rules of the random
Manhattan lattice, by following the jumpdirections prescribed by the arrows.

Note that in thismodel the backward jump probability is equal to zero for all the particles, both for the LG
particles and the TP. As a consequence, we expect that here the environment inwhich the TPmoves is a kind of a
‘turbulent’fluid, inwhich all the particles exhibit a super-diffusivemotion.Hence, wemay expect that the
environment becomes perfectly stirred at sufficiently large times, such that the time t gets simply rescaled by the
frequency ( )r-1 of successful jump events, (which is not the case forModel A).We are going to verify if this is
the case inwhat follows.

5
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3.Dynamics of a single tracer particle

3.1.Disorder-averagedmean-squared displacement
In order to calculate theDAMSDof a single TPmoving on a randomManhattan lattice in absence of the LG
particles, we suitably revisit the arguments presented in [27, 28]. The latter were based on an estimate of typical
fluctuations of sums of quenched randomvariables ηn and ζm, and a plausible closure relation.Here, we pursue a
bit different line of thought.

First, we ‘solve’ the recursions in equations (4) to get, for t�1

( ) ( )
( )å å

x
z

x
h=

+
=

-

t

t

t

t

=

-

=

-

t t
X Y

1

2
,

1

2
, 5t

t

Y t

t

X
0

1

0

1

with the initial conditionX0=Y0=0. Expressions (5) define the TP positionsXt andYt for any t, forfixed
realisations of thermal noises ξt and ‘biases’ ηn and ζm.

We concentrate on the x-component andwrite down formally its squared value:

( ) ( ) ( )
( )å å å

x
z

x x
z z=

+
+

+ +

t

t

t t t

t t

=

-

=

-

¢= +

-
¢

t t t¢
X

1

4
2

1

2

1

2
. 6t

t

Y

t t

Y Y
2

0

1 2
2

0

2

1

1

Let the bar denote averaging over ξτ-s, which amounts to averaging over thermal histories, and the angle
brackets—averaging over random variables ηn and ζm, i.e. averaging over quenched disorder. Consider the
averagedfirst sum in the right-hand-side (rhs) of equation (6). Noticing that z º

t
1Y

2 , i.e. is notfluctuating, we
realise that the averagedfirst sum is simply
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Hence, the contribution of the averaged first sum to theDAMSDof the TP along the x-axis is that of a standard,
discrete-time randomwalk (with the diffusion coefficientD=1/4) on a two-dimensional undecorated square
lattice.

Focus on the summand in the second term in the rhs of equation (6) andwrite down formally its averaged
value:

( ) ( )
( )

x x
z z

+ +t t ¢
t t¢

2
1

2

1

2
. 8Y Y

Note thatwe are allowed to perform averaging over xt¢ directly, due to the fact that both t¢Y andYτ are statistically
independent of a randomvariable xt¢. Indeed, t¢Y depends on xt¢-1, xt¢-2,K, ξ0, whileYτ, with t t< ¢, depends
on ξτ−1, xt¢-2,K, ξ0.

Note that only the product z z
t t¢Y Y is dependent on randomconvection flows. Averaging this product over

quenched disorder, wefind that, in virtue of the definition in equation (1), expression (8) takes the form

( )d dxt t t¢ , 9Y Y,1 ,

i.e. it is an averaged over thermal noises product of the indicator functions of two events: (a)Yτ+1=Yτ and (b)
= =t t t+ ¢Y Y Y1 . As a consequence, the expression 9 is the joint probability

( ∣ ∣ ∣ )t t t= ¢ = + =t t tP Y t Y t Y t; 1; of the events that the TP trajectoryYt, withYt=0=0, (a) paused at its
(unspecified) position at t=τ and (b) returned at timemoment t=τ′ to the position it occupied at t=τ.

The probability ( ∣ ∣ ∣ )t t t= ¢ = + =t t tP Y t Y t Y t; 1; decouples into the product of the probability that the
trajectoryYt appeared at an unspecified positionYτ at timemoment t=τ, which equals unity since averaging
over ξkwith kä (0, τ−1) implies averaging over all possibleYτ; the probability thatYt paused at t=τ, which
equals 1/2; and the probability thatYt returned toYτ=Yτ+1 within t t¢ - - 1 steps.Making a plausible
assumption that the dynamics, at least in the asymptotic limit  ¥t , does not depend of the starting point, we
thusfind that the expression (9) reduces to

( ) ( )=t t¢- -P Y
1

2
0 , 101

where ( )=t t¢- -P Y 01 is the probability that the y-component of the TP trajectory returns toY=0, (not
necessarily for the first time), on the ( )t t¢ - - 1 -th step. Here, ( )P Yt ( ( )P Xt ) is amarginal distribution
obtained from the full probability distribution function Pt(X,Y) offinding the TP at site (X,Y) at timemoment t
by summing the latter over allX (Y), that is

( ) ( ) ( ) ( ) ( )å å= =
=-¥

¥

=-¥

¥

P Y P X Y P X P X Y, , , . 11t
X

t t
Y

t
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Summing up the presented above reasonings, we arrive at the following representation of theDAMSD:

( ) ( )å åá ñ ~ + =
t t t

t t
=

-

¢= +

-

¢- -X
t

P Y
2

1

2
0 . 12t

t t
2

0

2

1

1

1

Further on, the probability ( )=t t¢- -P Y 01 is evidently a decreasing function of the difference t t¢ - - 1. Very
general arguments (see also the numerical results presented infigure 3, panel (a)), suggest that ( )=t t¢- -P Y 01

decays as a power-law:

( )
( )

( )
t t

= ~
¢ - -

t t g¢- -P Y
A

0
1

131 2

in the limit ( )t t¢ - -  ¥1 , whereA is the amplitude and γ is the dynamical exponent, both to be defined.
Supposing that γ<2 (γ=2 corresponds to ballisticmotion), we expect that both the inner sum (over t¢) and
the outer one (over τ) in equation (12)will be dominated by the upper summation limit. As a consequence, in
the large-t limit

( )
( )( )

( )å å g g
= ~

- -t t t
t t

g

=

-

¢= +

-

¢- -

-
P Y

At1

2
0

2 1 2 2 2
, 14

t t

0

2

1

1

1

2 2

and hence, in the large-t limit the expression (12) attains the form

( )( )
( )

g g
á ñ ~ +

- -

g-
X

t At

2 2 1 2 2 2
. 15t

2
2 2

In linewith the arguments presented in [27, 28], we recall that the dynamical exponent γ defines the
characteristic extent of the trajectoryYt; that being, á ñ = gY m tt

2
2 , wherem2 is as yet unknownproportionality

factor. By symmetry, one expects thus that theDAMSDalong the x-axis, i.e. á ñXt
2 , obeys exactly the same law,

which entails the following closure relation:

( )( )
( )

g g
~ +

- -
g

g-
m t

t At

2 2 1 2 2 2
. 162

2 2

Inspecting the behaviour of the latter expression in the limit  ¥t , we infer that the contribution of the first
term in the rhs of equation (16) becomes negligible in the limit  ¥t , so that the dominant contribution is
provided by the second term.Comparing the power-law on the left-hand-side (lhs) of equation (16)with the
second termon the rhs of this equation, we find that the exponent γ obeys

( )g g= -2 2, 17

which yields γ=4/3—the valuewhich has been previously conjectured and verified numerically in [27, 28].
Therefore, our reasonings correctly reproduce the value of the dynamical exponent γ. However, inferring a

numerical value of the prefactorm2 from equation (16), (which predictsm2∼9A/8), should lead to a somewhat
higherm2 than the actual one, because the rhs in equation (14) evidently overestimates the value of the double
sum in the lhs of this equation. The point is that the algebraic form in equation (13) is only valid for such
realisations of the TP trajectories, for which the sumof the number of jumps and of the number of the pausing
events is even.Otherwise, ( )=t t¢- -P Y 01 is exactly equal to zero. As a consequence, equation (16) overestimates
m2.

Lastly, we note that a similar type of arguments was invoked to characterise a decay of the number of tree-like
clusters with a growing pattern height in a process of ballistic deposition of sticky particles on a line [67]. Both
the decay and the ensuing thinning of the forest of such clusters appear to be controlled by a randomwandering
of the inter-cluster boundaries with the super-diffusive exponent γ=4/3.

Infigure 2, panel (a), we present numerical results (open circles) describing the time evolution of theDA
MSDof a single TP. The dashed line indicates the super-diffusive power-law behaviour of the form
á ñ ~X m tt

2
2

4 3, withm2=0.556. This estimate ofm2 is based on thefitting of the full probability distribution,
which is discussed below in section 3.2.We observe that the super-diffusive behaviour sets in from rather early
times and the transient diffusive law, as predicted by the first term in the rhs of equation (16), is not observed.
Next, the inset in the panel (a) illustrates the convergence of the dynamical exponent γt, defined by

( ( ) ( ))
( ) ( )

( )g =
á ñ - á ñ

-
X X

z t

ln ln

1 ln
, 18t

t t
2 2

z

to its asymptotic value 4/3. Such a representation of γt (as compared to the standardly used one,
( ) ( )g = á ñX tln lnt t

2 ) is particularly well-suited for a numerical analysis of the dynamical exponent in an
expected power-law dependence on timewith an unknownnumerical prefactor, since the latter cancels out
automatically. In equation (18) the parameter z is a trial exponent, 0<z<1, which rescales time in the second
term; in principle, z can be chosen rather arbitrarily; we use z=0.9.We also observe that γt converges to its
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asymptotic value very rapidly, in line with the behaviour of theDAMSD. In panel (b) offigure 2we plot the
reducedmoments ∣ ∣< >X tt

q q2 3 for q=1, 2, 3 and 4 as functions of time.We observe that the reduced
moments saturate as some constant valuesmq as time progresses, indicating that themoments themselves obey

∣ ∣< > =X m tt
q

q
q2 3 (see equation (20)). Here, the dashed lines indicate our estimates for the values of the

numerical prefactorsmq (see equation (21)).

3.2. Probability distribution andmoments of arbitrary order
Infigure 3we depict different facets of the numerically evaluated full probability distribution Pt(X,Y) and of the
marginal distribution Pt(X), (see equation (11)). Panel (a)presents the time evolution ofPt(X=Xå) for sixfixed
values ofXå:Xå=0, 60, 1000, 1400, 1800 and 3000 (curves from top to bottom,with lighter colours
corresponding to smaller values ofXå). Our numerical results show that, unequivocally, Pt(0) obeys a power-law
of the formPt(0);A/t2/3, which is fully in line with our above analysis. The decay amplitude is definedwith a
good accuracy byA≈0.568.Moreover, comparing our numerical results with the form Pt(0);A/t2/3, we
conclude that the latter provides a very accurate estimate forPt(0) starting from rather short times—the dashed
line representingA/t2/3 and the numerical data (light blue curve) are almost indistinguishable. In turn,
Pt(X=Xå) forXå=60, 1000, 1400, 1800 and 3000 converges ultimately toPt(0);A/t2/3, which is, of course,
not an unexpected behaviour. The panel (b) presents the time evolution ofPt(0,0)—the probability of being at
the origin at timemoment t.We observe that the power-law form ( )  ¢P A t0, 0t

4 3 (with ¢ »A 0.555)
describes the numerical data fairly well. Note also that this form implies that a randomwalk on a random
Manhattan lattice is not certain to return to the origin.

Further on, infigure 3, panels (c) and (d), we plot t2/3Pt(X) and t
4/3Pt(X,Y)withY=0 as functions of the

scaled variable u=X/t2/3. The data collapse evidenced by our numerical results for both the central part of the
distribution and for its tails, suggests, again rather unequivocally, that themarginal distribution Pt(X) of the TP
position along the x-axis at (sufficiently large) time thas the following form:

⎧⎨⎩( )
( ) ∣ ∣
( ∣ ∣ ) ∣ ∣

( )=
- <
- >

P X
t

A au u

B b u u

1 exp for 1

exp for 1
, 19t 2 3

2

4 3

whereB≈1.249, a≈1.049 and b≈1.730.We observe, as well, that the full distribution Pt(X,Y) (withY= 0)
exhibits essentially the same functional behaviour as a function of u, (see figure 3, panel (d)), as themarginal
distribution Pt(X) and only the values of the parameters are slightly different.We therefore conclude that (a) the
central part of both distributions is aGaussian, with the variance which grows super-diffusively with t, and (b)
the tails of both distributions deviate from aGaussian and have a form ( ∣ ∣ )~ - uexp 4 3 , i.e. are ‘heavier’ than a
Gaussian. The presence of such tails alsomanifests itself in the anomalously high asymptotic value≈3.5 attained
by the kurtosis of themarginal distribution Pt(X) (see the dashed curve infigure 7, panel (d)). Recall that the
kurtosis of a Gaussian distribution is equal to 3.

We note that the large-u tail ofPt(X) andPt(X,Y=0) has a very different form, as compared to the
predictionmade in [27, 28]. Assuming the validity of the usual relation between the shape exponent δ and the

Figure 2.Disorder-averagedmean-squared displacement of the TP and highermoments of X (t). Panel (a). Disorder-averagedmean-

squared displacement á ñXt
2 of the TP in absence of the dynamical environment (LGparticles). The open circles depict our numerical

results, while the dashed (red) line indicates the prediction á ñ =X m tt
2

2
4 3 withm2=0.556 (see equations (20) and (21)). A super-

diffusive behaviour sets in from rather short times and the diffusive transient (see thefirst term in the rhs of equation (12)) is not
observed. The inset displays the rate of a convergence of the time-dependent dynamical exponent γt, equation (18), to its asymptotic
value 4/3. Panel (b). Reducedmoments ∣ ∣á ñX tt

q q2 3 as functions of time. The dashed lines (from top to bottom) correspond to
m4=1.038,m3=0.687,m1=0.590 andm2=0.556 (see equation (21)).
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dynamical exponent γ, δ=1/(1−γ), it was conjectured that the shape exponent should be δ=3.Our data
shows that this is not the case and, surprisingly enough, the distribution in the second line in equation (19) has
exactly the same shape exponent δ=4/3 as the one appearing in theMdMmodel with random layered
convection flows (see [27–30]). To the best of our knowledge, the form in equation (19) is a novel result.

Capitalising on the expression in equation (19), we estimate the behaviour of themoments ofPt(X) of
arbitrary order q.Multiplying both sides of equation (19) by ∣ ∣X q, changing the integration variable for
u=X/t2/3, and integrating the expression in the first line over uä (−1, 1) and in the second line—over

( )Î -¥ -u , 1 and ( )¥1, , we get

∣ ∣ ( )á ñ =X m t , 20t
q

q
q2 3

with

⎜ ⎟⎛
⎝

⎞
⎠( ( ) ( ) ( ) ( )( ) ( )» G + - G + + G

+
+ +

m
A

a
q q a

B

b

q
b1 1,

3

2

3 1

4
, , 21q q q1 2 3 1 4

whereΓ(a, b) is the incomplete Gamma-function. Note that herewe discard the transient region between two
asymptotic regimes, supposing that the second regime is valid starting from ∣ ∣ =u 1. This is, of course, not true
and hence,mq in equation (21) overestimates the actual value of the numerical prefactormq in equation (20).We
however believe that such an estimate is quite plausible andwould not incur any significant error. The plot of the
numerical results for thefirst fourmoments together with the estimates formq presented infigure 2, panel (b),
shows that it is indeed the case.

We close this sectionwith two following remarks: (a) the value ofm2 deduced from equation (16), i.e.
m2≈9A/8≈0.639, slightly overestimates the value ofm2 obtained from equation (21), i.e.m2=0.556. This is
completely in linewith our argument that the second term in the rhs in equation (16) provides an upper bound
on the actual value ofm2. (b) For the kurtosisκ of themarginal distribution Pt(X), i.e.

( )/k = á ñ á ñX X , 22t t
4 2 2

Figure 3.Probability distribution of the TP position. Panel (a). Temporal evolution of themarginal distribution Pt(X=Xå),
equation (11), for six fixed values ofXå=0, 60, 1000, 1400, 1800 and 3000 (solid curves from top to bottomwith lighter curves
corresponding to smaller values ofXå). The dashed line denotes the power-lawA/t2/3 withA≈0.568.Note thatPt(0);A/t2/3

provides a very accurate estimate for Pt(0) starting from rather short times;Pt(X=Xå) forXå>0 converges ultimately to Pt(0). Panel
(b). The probabilityPt(0, 0) of being at the origin at timemoment t. Thick blue curve presents the numerical data. A dashed line is a
power-lawA′/t4/3 withA′≈0.555. It provides a fairly good estimate for the numerical data starting from t�102. Panel (c). The
marginal distribution Pt(X), multiplied by t2/3, is plotted as a function of the scaled variable u=X/t2/3. Panel (d). The full distribution
Pt(X,Y)withY=0,multiplied by t4/3, is plotted as a function of the scaled variable u=X/t2/3. In panels (c) and (d) the histograms
show the results of numerical simulations: light brown, green and blue colours correspond to the numerical data for t=104, 4×104

and t=105, respectively; thin solid curves are theGaussian function ( )-A auexp 2 , and the dashed curves—a stretched-exponential
function of the form ( ∣ ∣ )-B b uexp 4 3 . Vertical dotted line in panel (c) is a guide to an eyewhich indicates the crossover value u=1
between the two asymptotic regimes. Purple circles in the panel (c) depict our data for a shorter time—t=103. A deviation from the
stretched-exponential form signifies that the anomalous tails ofPt(X) appear only for sufficiently large values of t.
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wefind from equations (20) and (21) thatκ=m4/(m2)
2≈3.360, which value favourably agrees withκ≈3.5

deduced fromour numerical simulations (see figure 7, panel (d)).

3.3. Sample-to-sample fluctuations
Up to the presentmoment we discussed only the averaged behaviour—both over thermal histories and over
realisations of random convection flows.However, a legitimate question is how the pertinent parameters
themselves vary from a realisation to a realisation of the latter pattern. This question has been first addressed in
[27, 28] for theMdMmodel with random layered flows and significant sample-to-sample fluctuations have been
predicted.However, for the dynamics on a randomManhattan lattice this issue has not been analysed andwe
concentrate on it below, focusing on themean-squared (averaged over thermal histories only) displacement Xt

2

of the TP on a given pattern of arrows as well as on the corresponding probability distribution functionΠt(X) of
its positionX along the x-axis. Recall that ( ) ( )= áP ñP X Xt t .

Infigure 4, panel (a), we depict the correspondingMSD Xt
2 (averaging over thermal histories is performed

over 2×107 realisations of trajectories, for a given realisation of convection flows) for 50 realisations of disorder
as functions of time.We do indeed observe some scatter in the values of the prefactorm2, which here is a random
variable dependent on a particular realisation of disorder. On the other hand, the amplitude offluctuations does
not seem to be very significant and all the curves concentrate essentially around theDAMSD á ñ =X t0.556t

2 4 3

(see figure 2).Moreover, we realise that theMSDaveraged over 50 realisations of disorder only, appears to be
fairly close to theDAMSDevaluated using an ample statistical sample; recall that in section 3.2we used 2×105

realisations of disorder in order to perform averaging over random convection flows.On contrary, the sample-
to-samplefluctuations do affect in a significant way the shape of the distribution functionΠt(X), both in the
central part and especially in the region of anomalous tails, for which the numerical data looks quite nebulous.
However, it is quite surprising to realise that being averaged over just 50 realisations of disorder,Πt(X) gets
rather close toPt(X) depicted infigure 3 (see thin solid and dashed curves in figure 4), which againwas evaluated
using amuch bigger statistical sample. Here, an agreement between the blue zigzag curve and the thin black solid
line looks nearly perfect within the central, Gaussian part of the distribution, while also for the tails it shows a
rather convincing agreement. Therefore, wemay conclude that sample-to-sample fluctuations are essentially
less important for a randommotion on a randomManhattan lattice than in theMdMmodel with layered
randomflows [27, 28].

3.4. Spectral analysis of the TP trajectories
Complementary information about anomalous diffusion of the TP can be inferred from the so-called single-
trajectory power spectral density S(T, f ), whereT is the observation time and f is the frequency (see, e.g. [68] for
more details). This property is a random, realisation-dependent variable, parametrised by f andT. Note that in
themodel at hand, it depends on both a given pattern of arrows in a randomManhattan lattice and on a given
realisation of a thermal history. For an integer-valuedXt, S(T, f ) is defined as

Figure 4. Sample-to-sample fluctuations of the TP trajectories. Panel (a).MSD Xt
2 for fifty (chosen at random) realisations of random

convection flows plotted as a function of time. The dashed line represents theDAMSD á ñ =X t0.556t
2 4 3 (seefigure 2), while the

green line indicates theMSD averaged over 50 realisations of disorder. Panel (b). Realisation-dependent probability distribution
functionΠt(X) of the TP position along the x-axis,multiplied by t2/3, is plotted versus a scaled variableX/t2/3.We present 50 (thin
grey) curves corresponding to 50 fixed realisations of frozen convection flows. Thin solid and dashed curves depict theGaussian
function ( )-A auexp 2 and a stretched-exponential function of the form ( ∣ ∣ )-B b uexp 4 3 , respectively, with the parametersA, a,B
and b as defined in figure 3. Blue zigzag curve representsΠt(X) averaged over 50 realisations of random convection flows.
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and hence, is a periodic function of f Twith the prime period 2πT.
In a standard text-book analysis, one considers the ensemble-averaged (and also disorder-averaged for our

case) value of the randomvariable in equation (23), i.e. itsfirstmoment:

( ) ( ) ( ( )) ( )åm = á ñ = - á ñ
=

T f S T f
T

f t t X X, ,
1

cos , 24
t t

T

t t
, 0

1 2

1 2

1 2

which probes the frequency-dependence of the Fourier-transformed covariance function ofXt.Moreover, one
also takes formally the limit of an infinitely long observation time, i.e. sets = ¥T .Wewill demonstrate below
that, although one has indeed to consider very large values ofT in order to extract ameaningful information
about the f-dependence of the power spectral density in equation (24)), taking the formal limit = ¥T in our
case renders such a standard definitionmeaningless.

Infigure 5we present the results of a numerical analysis of the functional formofμ(T, f ), which reveals two
rather surprising features. First, it appears thatμ(T, f ) is ageing, i.e. its amplitude is dependent on the observation
timeT,μ(T, f )∼T1/3, which is demonstrated in the inset to thisfigure. As a consequence, setting = ¥T is
meaningless. Second, we observe that f 2μ(T, f ) , (for threefixed values ofT), approaches constant f-independent
values for sufficiently large f. This signifies thatμ(T, f )∼1/f 2, i.e. it exhibits exactly the same f-dependence as
the power spectral density of a standard Brownianmotion (see, e.g. [68] and references therein), although the
process under study is clearly not a Brownianmotion. Therefore, fixingT and focussing only on the f-
dependence ofμ(T, f ) garnered fromnumerical simulations, one can be led to an erroneous conclusion that the
observed process is a Brownianmotion. As an actual fact, this is precisely theT-dependence ofμ(T, f )which
helps to realise that this is not the case (see also [72]).

We note that such a ‘deceptive’ f-dependence has been previously reported for the runningmaximumof
Brownianmotion [69], diffusion in a periodic Sinai disorder [70], diffusionwith stochastic reset [71] and also for
a variety of diffusing diffusivitymodels [44]. Further on, the lawμ(T, f )∼T1/3/f 2 was observed for other super-
diffusive processes, such as a fractional Brownianmotionwith theHurst indexH=2/3 (i.e. γ=4/3) [72] or a
super-diffusive scaled BrownianmotionZt described by the Langevin equation  z=Z tt t

1 6 [73], with ζt being a
Gaussianwhite-noise with zeromean. This latter process also produces a super-diffusivemotionwith γ=4/3,
suggesting that the lawμ(T, f )∼T1/3/f 2might be a generic feature of processes with γ=4/3.Wenote
parenthetically that this questions the robustness of the textbook approach, based solely on the evaluation ofμ
(T, f ), which cannot distinguish between these three distinctly different randomprocesses.

The difference between these processes becomes apparent, however, when one considers higher-order
moments of S(T, f ), e.g. its variance. In particular, onemay focus on the coefficient of variationCv, which is
defined by

Figure 5. Spectral properties of the TP trajectories. Panel (a). Ensemble- and disorder-averaged power spectral densityμ(T, f ),
equation (24), multiplied by f 2, as a function of the frequency f for three values of the observation timeT (from top to bottom
T=4800, 2400 and 1200). The inset displays the ageing behaviour ofμ(T, f=f å) as a function of the observation timeT for afixed
frequency f å=5×102, and evidences the dependenceμ(T, f=f å)∼T1/3. Panel (b). The coefficientCv of variation, equation (25),
of the distribution of a randomvariable S(T, f ), equation (23), as a function of the frequency f for three values of the observation timeT
(the same as in panel (a)). The dashed line indicates =C 2v —a value specific to a super-diffusive fractional Brownianmotion (with
arbitraryHurst index in the interval 1/2<H<1 and hence, with γ in the interval 1<γ<2).
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( ) ( ) ( ( ) ( ) ) ( ) ( )/ /s m m= = á ñ - á ñC T f T f S T f S T f T f, , , , , , 25v
2 2

whereσ(T, f ) is the standard deviation of a randomvariable S(T, f ). This characteristic parameter shows a
completely different behaviour as a function of f for a super-diffusive fractional Brownianmotion and a super-
diffusive scaled Brownianmotion. For the formerCv approaches for sufficiently largeT and f a universal (i.e.
regardless of the actual value ofH>1/2), timeT-independent constant value 2 [72], while for the latter—a
universal timeT-independent constant value 5 2 [73], the samewhich is observed for a standard Brownian
motion [68].

To this end, we have studied via numerical simulations the frequency and the observation time dependence
ofCv for the TP randommotion on a randomManhattan lattice. This dependence is presented infigure 5, panel
(b), inwhichwe plot the coefficientCv of variation of a single-trajectory power spectral density as a function of f
for three values ofT.We observe thatCv tends to a higher than 2 value as frequency increases.Moreover,Cv is
clearly ageing, i.e. its limiting behaviour is dependent on the observation time. In conclusion, we observe a
behaviour ofCvwhich ismarkedly different from the two abovementioned examples of super-diffusionwith
γ=4/3.

4. Tracer particle dynamics on a populated randomManhattan lattice

In this last sectionwe discuss the results of the numerical analysis of the TP dynamics on a crowdedManhattan
lattice. Infigure 6we present theDAMSDof the TP forModel A andModel B, prefactorm2(ρ) in the super-
diffusive law ( )rá ñ =X m tt

2
2

4 3 as a function of the density ρ of the LGparticles, and also the kurtosis of the
distribution Pt(X) forModel A andModel B. First of all, we realise that for bothmodels theDAMSDobeys the
same super-diffusive law á ñ ~X tt

2 4 3, for any density of the LG particles. Prefactorm2(ρ) depends, of course, on
the density of the LG particles and their dynamics; indeed,m2(ρ) shows apparently different dependences on ρ

Figure 6.DAMSDof the TP, prefactorm2(ρ) and the kurtosis forModel A andModel B. Panel (a). TheDAMSD for theModel A as a
function of time for different densities of the LGparticles. Curves from top to bottom correspond to ρ=0.1, 0.2,K, 0.9. Black

dashed line depicts theDAMSD á ñ =X t0.556t
2 4 3 of a single TP (in absence of the LGparticles, i.e. for ρ=0). Panel (b). TheDA

MSDas a function of time forModel B. Curves from top to bottom correspond to ρ=0.1, 0.2,K, 0.9 and the black dashed line

corresponds to ρ=0. Panel (c). Numerical prefactorm2(ρ) in the law ( )rá ñ =X m tt
2

2
4 3 forModel A andModel B. Symbols present

the results of numerical simulations: filled circles (Model A) andfilled squares (Model B). Thin solid and dashed lines are fits to the
numerical data: solid line ism2(ρ)=0.556 (1−ρ)2 (Model A) and the dashed line ism2(ρ)=0.556 (1−ρ)4/3 (Model B). Panel (d).
The kurtosisκ of the distribution Pt(X), (defined in equation (22)), as a function of a rescaled time tρ. Dashed line depicts the kurtosis
of Pt(X) of a single TP, here, tρ=t; noisy green curves present the time evolution of the kurtosis forModel A for ρ=0.1, 0.2, 0.3 and
0.4, here tρ=(1−ρ)3/2 t; and eventually the grey curves, which collapse on a singlemaster curve (dashed line), depict the kurtosis of
the corresponding distribution Pt(X) forModel Bwith ρ=0.1, 0.2,K, 0.9, here, tρ=(1−ρ) t.

12

New J. Phys. 22 (2020) 033024 CMejía-Monasterio et al



forModel A andModel B. ForModel A, inwhich the TP follows random convection flowswhile the LG particle
perform constrained randomwalks, this dependence ismost strong and is rather close to a parabolic law
m2(ρ)=0.556 (1−ρ)2 (thin solid curve in panel (c)). This parabolic law very accurately describes the actual
dependence ofm2(ρ) on ρ for ρ<1/2. For higher densities, however, some deviations are clearly seen, although
such a discrepancy can be also attributed to the lack of a large enough statistical sample. ForModel B, inwhich all
particles are identical and all perform a super-diffusivemotion, the ρ-dependence of the prefactorm2(ρ) is given
bym2(ρ)=0.556 (1−ρ)4/3 (thin dashed curve in panel (c)). This law agrees fairly well with the numerical data
for any value of the LG particles density. In turn, as we havementioned above, such a dependence implies that
the system is perfectly stirred and the time variable t getsmerely rescaled by the fraction of successful jump
events of the TP, i.e. by (1−ρ), as one can expect from simplemean-field-type arguments. Arguably, this
expression form2(ρ) is exact.

Next, infigure 6, panel (d), we depict the time evolution of the kurtosis of the distribution Pt(X) in case of a
single TP, as well as forModel A andModel B. Thick dashed line corresponds to the kurtosis ofPt(X) in case of a
single TP.We observe thatκ saturates as t evolves at a constant value which is close to 3.5, i.e. it exceeds the value
3 specific to aGaussian distribution and thus implies thatPt(X) is notGaussian. This happens, of course, due to
the presence of anomalous slower-than-Gaussian tails, whichwe discussed in section 3.2.Next, noisy green
curves depict our results forκ inModel A, with the LGparticles densities ρ=0.1, 0.2, 0.3 and ρ=0.4, plotted
versus a rescaled time variable tρ=(1−ρ)3/2 t. Although there is a significant scatter of these curves at short
times, we notice that for sufficiently large tρ all these curve collapse on the dashed line representing a single TP
case. ForModel Bwe analyse the TP dynamics for a broader range of the LGparticles densities; we considered
nine values of ρ, ρ=0.1, 0.2,K, 0.9. Here, the curves defining the evolution ofκ for different values of ρ, merge
altogether even for short timeswhen plotted versus a rescaled time tρ=(1−ρ) t, and eventually approach the
value of the kurtosis for a single TP case. Such a behaviour signifies that for sufficiently large timesPt(X)
possesses some universal scaling properties for bothModel A andModel B.

Lastly, infigure 7we present the numerical data for the distribution function Pt(X) forModel A andModel B.
We observe that for bothmodels the central Gaussian part of the distribution is describedwith a very good
accuracy by aGaussian function:

⎛
⎝
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⎞
⎠
⎟⎟( ) ( )= -

r r
P X

A

t
a

X

t
exp , 26t 2 3

2

4 3

where the choice of tρ depends on themodel under study. For a single TP case, tρ=t. The lack of a big statistical
sample does not permit tomake completely conclusive statements about the tails of the distribution.Wenotice,
however, that such tails are definitely present and a departure of the distribution from a purelyGaussian form is
apparent infigure 7.We also observe that upon an increase of t the curves get closer to

Figure 7.Probability distribution of the TP position along the x-axis on a populated randomManhattan lattice. Panel (a).Pt(X)multiplied
by (1−ρ) t2/3 is plotted as a function of a scaled variable u1=X/((1−ρ)3/2 t)2/3. Green zigzag curves correspond to ρ=0.2, while
the blue ones—to ρ=0.8. Dotted–dashed, dashed and thick solid zigzag curves depict the numerical data for t=102, 2×103 and
3×103, respectively. Thin solid curve is a Gaussian function ( )-A auexp 1

2 , while the thin dashed curve is an anomalous tail of the
form ( ∣ ∣ )-B b uexp 1

4 3 . Panel (b).Pt(X)multiplied by ((1−ρ) t)2/3 is plotted as a function of a scaled variable u2=X/((1−ρ) t)2/3.
Brown zigzag curves correspond to ρ=0.1, green—to ρ=0.5 and blue—to ρ=0.9. Dotted–dashed, dashed and thick solid zigzag
curves correspond to the same values of t as in panel (a). Thin solid curve depicts a Gaussian function ( )-A auexp 2

2 , while the thin
dashed curve depicts an anomalous tail of the form ( ∣ ∣ )-B b uexp 2

4 3 . ParametersA, a,B and b in both panels have the same values as
in figure 3.
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for bothModel A andModel B.We thus find it absolutely plausible that such a formof distribution is also valid
for the dynamics of a TP on a populated randomManhattan lattice.

5. Conclusions

To recapitulate, we studied the tracer particle (TP) dynamics in presence of two interspersed and competing
types of disorder—quenched random convection flows on a randomManhattan lattice, which prompt the TP to
move super-diffusively, and a crowded dynamical environment formed by a lattice gas (LG) of hard-core
particles, which hinder the TPmotion. The randomManhattan lattice is a square lattice decoratedwith arrows
in such away that directionality of each arrow isfixed along each raw (a street) or a column (an avenue) along
their entire length, butwhose orientation randomly fluctuates from a street to a street and from an avenue to an
avenue.

The hard-core LGparticles perform a randommotion, constrained by the single-occupancy condition; that
being, each lattice site can be occupied by atmost a single particle—a LG particle or a TP, or be vacant.We have
considered twopossible scenarios of the LG particles randommotion. InModel A, we supposed that the LG
particles are insensitive to the random convection flows and perform symmetric randomwalks—a simple
exclusion process—among the sites of a two-dimensional square lattice. In this case, the TPmoves subject to
random convection flows and interacts with afluid-like quiescent environment, which imposes some frictional
force on it. InModel B, we supposed that all the particles—the TP and the LGparticles—are identical and follow
a local directionality of bonds in a randomManhattan lattice. In this case, the systemunder study is a kind of a
‘turbulent’fluid inwhich all the particles perform a super-diffusivemotion.

We focused on such characteristics of the TP dynamics as its disorder-averagedmean-squared displacement
(DAMSD), (and generally, themoments of arbitrary order for a single TP), the distribution of its position at time
moment t averaged over disorder, and the time evolution of the kurtosis of this distribution.We have shown that
for bothModel A andModel B theDAMSDobeys a super-diffusive law ( )rá ñ ~X m tt

2
2

4 3, where the
functional dependence of the prefactorm2(ρ) on themean density ρ of the LGparticles depends on themodel
under study. For the case of a single TP (i.e. in absence of the LG particles, ρ=0), we provided some analytical
arguments explaining such a super-diffusive behaviour.

We showed that the distribution of the TP position has aGaussian central part and exhibits slower-than-
Gaussian tails of the form ( (∣ ∣ ) )- X texp 2 3 4 3 for sufficiently largeX and t. Such a formwas evidenced in case of
a single TP through an analysis of a very big statistical sample, and also shown to hold, although not in a
completely conclusive way, for the dynamics on a populated randomManhattan lattice. As a consequence of
presence of anomalous tails, the kurtosis of the distribution in all the situations under study, was shown to attain
a bigger value (3.5) than the value (3) specific to aGaussian distribution.

Finally, we addressed the question of sample-to-sample fluctuations in the systemunder study and
performed an analysis of spectral properties of the TP trajectories, which revealed some interesting features.
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