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A B S T R A C T

Observations in sedimentary basins affected by deformation show that the fault-induced depositional accom-
modation, at various spatial and temporal scales, is closely linked to basin kinematics. The tectonically-driven
sediment infill displays the history of deepening and shoaling facies that are controlled by the activation of faults
and changes in their offset rates. Simply stated, this results in shifting sedimentary facies towards the source area
or towards the basin centre in response to increasing or decreasing depositional space. We propose a first-
principle conceptual model for tectonic successions, controlled by the balance between the rates of creation of
depositional space and sediment supply. These sediment bodies are bounded by succession boundaries and
comprise sourceward or basinward shifting facies tracts that are separated at a point of reversal. Due to the relatively
steep slopes associated with the evolution of faults, changes in sediment supply rates and mass-wasting are
common in these systems and may complicate the normal rhythm of the shifting facies tracts. Once tectonic
quiescence is achieved, and if the basin is connected to the open ocean, eurybatic or eustatic base level changes
may take over and play a greater role in sedimentary rhythm and cyclicity. We illustrate the efficacy of the new
concept with a review of examples from extensional, contractional and strike-slip basins. We show that the basic
tectonic succession model is applicable at all temporal and spatial scales and whether the tectonics cause sub-
sidence or uplift, and in all types of tectonic settings that determine the evolution of sedimentary basins.

1. Introduction

Large to small scale Earth movements, together with erosion, con-
trol most aspects of global surficial morphology (e.g., Oncken et al.,
2006; Cloetingh et al., 2007; von Hagke et al., 2014, among others).
Among prominent surficial features are sedimentary basins, formed in
the Earth’s upper crust, often initiated by deep- or shallow-seated tec-
tonics that create new depositional (accommodation) space for sedi-
ments (Fig. 1, e.g., Cloetingh et al., 2015; Noda, 2016; Sato et al., 2017;
Ballato et al., 2019). When connected to the open ocean, accom-
modation is also modulated by sea-level fluctuations, especially in the
post-diastrophic phases of the basinal evolution (e.g., Vail et al., 1977a;
van Wagoner et al., 1990; Haq, 2014). New space for deposition can
also be generated through thermal cooling and subsidence of the li-
thosphere (e.g., Turcotte and Ahern, 1977; Faccenna et al., 2013; Burov
and Gerya, 2014), as well as an expression of the long wavelength
thermo-elastic flexure that has been broadly labelled as dynamic to-
pography (e.g., Gurnis, 1993; Bertelloni and Gurnis, 1997; Flament
et al., 2013). Surface topography, which results from the lithospheric
memory retained at several temporal and spatial scales, plays an

important role in the assembly and the resultant profile of the strati-
graphic architecture (e.g., Cloetingh and Haq, 2015 and references
therein).

With this cognizance, it seemed appropriate to us to first re-examine
how tectonics (vertical and horizontal displacements) generate de-
positional accommodation on more local or regional scales and identify
the common elements of tectonic successions that occupy sedimentary
basins. The efficacy of the conceptual model of tectonic successions
thus developed can then be tested with a careful review of depositional
patterns in various types of basins with examples from various tectonic
settings (Fig. 1). Our objective here has been to present a working
model that is based on first principles of the interaction between ac-
commodation (depositional space) and sediment supply (availability of
sediments to fill the basin by advective, diffusive, biogenic and mass-
wasting processes) in tectonic settings. Such basic-tenets practice has
already been advocated for passive margin shallow-water sequences,
such as that by Neal et al. (2016) and their “accommodation succession
(δA/δS)” approach, which has considerable appeal in simplifying the
sequence-stratigraphic idiom. This is particularly true for tectonic de-
posits, where we use the term “successions” to differentiate them from
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the terminology of sequence stratigraphy.
The infill history of a sedimentary basin primarily records the in-

teraction between rate of creation (or elimination) of depositional (ac-
commodation) space (δAS) and the rate of sediment supply (δSS) (e.g.,
Jervey, 1988; Schlager, 1993). The latter is primarily controlled by
climate, erosional processes, distance to the source area, size of the
drainage basin and the presence of intermediate basins that might trap
sediment flux (e.g., Matenco et al., 2016). On relatively stable passive
margins, where the source of sediment supply is largely unidirectional,
this interplay results in distinct facies and stratal architecture (e.g.,
Mitchum et al., 1977; Posamentier and Allen, 1999). These stratal as-
sociations can be characterized as building out (progradational, i.e.,
δAS/δSS =<1), building up (aggradational, i.e., δAS/δSS = 1) or
back-stepping (retrogradational, i.e., δAS/δSS = >1) successions (e.g.,
van Wagoner et al., 1990) that are often interpreted as the movement of
shoreline in response to eurybatic (relative sea-level) changes, which
remains the basis of sequence-stratigraphic analysis (e.g., Vail et al.,
1977b; Haq et al., 1987; Hardenbol et al., 1999; Posamentier and Allen,
1999; Catuneanu et al., 2009; Pomar and Haq, 2016). This relatively
simple relationship breaks down if the source of sediment supply is
multidirectional (e.g., in interior basins or lakes), especially if sedi-
ments from different source areas have a tendency to interfinger on the
basin floor (e.g., Haughton, 2001; Leever et al., 2006; Fongngern et al.,
2016; Balázs et al., 2018).

Descriptions of tectonics-related basin fills are often couched in
eustatic (or eurybatic) terms, and while the background influence of
climate or sea-level change is undeniable, once a basin connects to the
ocean it is quite unnecessary to use the terminology of sequence stra-
tigraphy or ocean’s transgressive-regressive cyclicity (e.g., Hardenbol
et al., 1999; Embry, 2002; Catuneanu, 2019 and references therein) to
characterize tectonic successions at various scales. Such successions are
largely affected by the dynamics of Earth movements and often start off
in non-marine settings (e.g., Dickinson, 1974; Einsele, 2000). This is the
case in most basins generated by fault tectonics, where the use of
geometric retrogradation - progradation terminology (implying shore-
line movements associated with transgression - regression) is untenable,
because the use of such terms does not describe fault-related vertical
movements, but rather imply the variability of sediment influx. Fur-
thermore, the sequence-stratigraphic terminology was developed on
stable continental margins and was tied to the concepts of onlap and
offlap and resulting stratal patterns. Tectonic successions, on the other
hand, can develop in any setting, which may include intra-montane and
interior basins, far from the marine domain, as well as in marine basins
far from the influence of coastal areas. Thus, the use the sequence-
stratigraphic terminology to describe tectonic successions can be mis-
leading. These shortcomings have prevented the development of a
generic terminology that can be employed in fault-related successions
at all scales and types. Another important difference in conceptualizing
tectonic successions is the fact the while climate/sea-level driven stratal
architectures reflect the interaction between accommodation and se-
diment supply, tectonic successions have to analysed also in terms of
changes in topography (elevation) and bathymetry (depth) associated
with vertical movements.

2. Tectonic successions and their facies tracts

On a local or regional scale Earth movements are most commonly
expressed as faults in the upper crust, caused by rock failures, that si-
multaneously create room for sediment deposition on their subsiding
sides (the local sink) and erosion that generates sediment supply on
their uplifted sides (the local source) (e.g., Matenco and Andriessen,
2013; Morley, 2014; Hawie et al., 2017; Horton, 2018). The fault-cre-
ated depocenters tend to be triangular in cross-sectional profile (Fig. 1),
often with steep slopes that accumulate wedge-shaped sediment fills
sourced from one or more areas of sediment supply. Mass wasting of
existing sediments, such as slides, slumps and debris flows are the mostFi
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common features that rest on or at the foot of such steep slopes (e.g.,
Galloway, 1986; Scholz et al., 1993; Dondurur et al., 2013), often with
turbiditic extensions onto the basin floors.

Most sedimentary basins have an early tectonic component, even if
later they evolve into stable “passive” basins or margins (e.g., Heller
et al., 1988; Ziegler and Cloetingh, 2004). Tectonically-generated, fault-
bounded basins come in many guises, but they can be classed into three
main categories, i.e., extensional (such as rift or intramontane) basins,
contractional (foredeep or wedge-top) basins, and strike-slip basins
(Fig. 1). The sediment-fill successions in all of these basin types have
some elements in common: 1) basal unconformity associated with the
onset of faulting; 2) common occurrence of mass-wasting deposits,
especially in the early phases; 3) early stages can also show a transition
from continental (non-marine) to marine facies; 4) as the basin fills,
facies associations vary in response to changes in δAS/δSS ratio, ex-
pressed as sourceward and basinward migrating facies tracts.

Tectonics create new depositional space by fault movement and
subsidence, including sediment compaction, independently of sea-level
variations. Therefore, for tectonic successions we prefer a terminology
that describes the observable stratal/facies patterns rather than un-
derlying controlling factors (often prone to multiple causes and inter-
pretations). Our preferred terminology is explicitly based on the dy-
namic interaction of changes in the rate of creation of depositional
accommodation with sediment supply that would be applicable to all
fault-bounded basin types. Thus, to avoid the ambiguity of using stratal-
stacking terminology of seismic and sequence stratigraphy that implies
regressive/transgressive sea-level control (i.e., expressed as prograda-
tion and retrogradation), we advocate the use of terms that simply
imply the distribution of facies associations in response to each phase of
tectonic movement.

We conceptualize lower as well as higher order tectonic successions
(TS) by the balance between the rate of creation of depositional (ac-
commodation) space (δAS) and the rate of sediment supply (δSS)
(Fig. 2). These tectonic successions (TSi and TSi+1, respectively) are
separated by succession boundaries (SBi and SBi+1). The succession
boundary at base of the lower order tectonic succession is represented
by a diachronous fault-bounded unconformity, whereas the one at the
top may be an erosional boundary. The top is also time transgressive
and marks the transition from a tectonically active period to post-tec-
tonic relative quiescence, which is the equivalent of, for example, the
so-called “breakup unconformity” in extensional systems. The building
blocks of the lower-order TSi are higher-order sediment-fill events (i.e.
higher order TSi+1 tectonic successions), such as individual pulses of
fault movement.

“Facies tract” is a term that has been previously used to describe the
relatively contemporaneous facies associations (e.g., nearshore or off-
shore facies), and when a sea-level control is implied, either char-
acterized as “transgressive” and “regressive” facies tracts (e.g., Brown
and Fisher, 1977; Shanley and McCabe, 1991; Sinclair, 1993; Burns
et al., 1997), or physiographically, as “slope” and “basinal” facies tracts
(Slatt et al., 2000). We adopt the term “facies tracts” by defining two
distinct types of shift patterns in facies associations in tectonic succes-
sions (Fig. 2), without reference to transgressive or regressive shoreline
movements. We term the first sourceward-shifting facies tracts (SFT)
when shallower water facies shift toward the source of sediment supply
due to higher rate of creation of depositional space compared to the rate
of sediment supply (i.e., δAS/δSS = >1). Similarly, the second basin-
ward-shifting facies tracts (BFT) is defined when shallower-water facies
in each successively younger facies association migrate basinward in
response to a lower rate of creation of depositional space compared to
the rate of sediment supply (i.e., δAS/δSS = <1). The sourceward-
shifting facies tract is separated from the overlying basinward-shifting
facies tract by a point of reversal (POR), which is the position when the
rate of sediment supply exceeds the rate of creation of depositional
space. Although we term the position of change in the shift patterns as a
“point “of reversal, in practice this is a boundary that can be gleaned as

a diachronous surface along its total extent. In young tectonic basins
such alternations of SFTs and BFTs may occur in multiple directions
moving away from the depositional centre on the basin floor toward
basin margins (depending of the number of sources of sediment supply).

Our conceptual model of tectonic facies tracts can be applied at both
lower and higher orders of tectonic movements and basin development.
Although the facies tracts are shown to be similar in dimensions in our
conceptual model (Fig. 2), in reality they can vary appreciably in
thickness and extent. In addition, the introduction of slope-failure re-
lated mass-wasting deposits (that are very common features in tectonic
successions and can be found in all facies tracts) may also complicate
the overall stratal architecture.

3. A review of tectonic basins and their sedimentary successions

In this section we review the sedimentary depositional patterns in
most common types of tectonic basins in the light of our new tectonic
successions concept that illustrates the application of this simple, first-
principles’ model and shows how it is independent of the type of de-
formation and can be applied in different tectonically-driven deposi-
tional settings.

3.1. Extensional basins

Extensional (rift) basins result from lithospheric stretching by di-
vergent tectonic movements, often reactivating older suture zones, and
generally start to develop in either intra-cratonic areas, such as the East
African Rift, or in back-arc regions, such as the Mediterranean and the
Southeast Asian basin systems, where extension is driven by the roll-
back of slabs during oceanic or continental subduction (e.g., Chorowicz,
2005; Faccenna et al., 2014; Pubellier and Morley, 2014; Heron et al.,
2016 and references therein). In such systems, the organisation of
normal faults may result in the formation of quasi-symmetrical half-
grabens with changing kinematics along their strike, where the locali-
sation of deformation is often controlled by the inherited rheology of
continental plates (e.g., van Wijk et al., 2008; Corti, 2009). Extension
may also be associated with tens of kilometres of exhumation in the
footwall of asymmetric detachments or low-angle normal faults, where
kilometres-size (half-) grabens become gradually tilted by the con-
tinuation of deformation (e.g., Angelier and Colletta, 1983; Buck, 1991;
Tirel et al., 2008; Buck, 2015). Depositional space in such basins is
created by the subsidence of hanging-walls during successive events of
normal faulting or may be cancelled by the relative uplift of footwalls
associated with flexural effects or active rifting mechanics (e.g., Ziegler
and Cloetingh, 2004). Space is also commonly created by the overlying
(or laterally displaced) sagging, brought on by thermal cooling of
stretched lithosphere, sometimes assisted by dynamic asthenospheric
effects, conditioned by the presence of inherited rheological weakness
zones, or by extreme lithospheric thinning effects driven by the ex-
humation of continental mantle lithosphere (e.g., McKenzie, 1978;
Wernicke, 1985; Manatschal et al., 2015; Balázs et al., 2017a; Naliboff
et al., 2017).

Detailed documentation and models of sedimentation associated
with the moments of slip along normal faults, which are coeval with the
hanging-wall subsidence creating depositional space and footwall uplift
enhancing source areas and mass-wasting processes, is widely available
from outcrop studies carried out in small to medium size extensional
basins in either clastic, carbonate or mixed depositional settings (e.g.,
Bosence, 2005; Leppard and Gawthorpe, 2006; Hinsken et al., 2007;
Cross and Bosence, 2008; Strachan et al., 2013; Henstra et al., 2016;
Alves and Cupkovic, 2018; Andrić et al., 2018, among many others). In
contrast to such detailed documentation, only few genetic sedimenta-
tion models are available for the entire or parts of extensional basins
(Fig. 3) based on empirical observations and interpretation of reflection
seismic profiles, well-logs and outcrops. Based on lithofacies distribu-
tion, these models demonstrate that the system works toward achieving
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Fig. 3. Conceptual models of sedimentation in extensional basins. a) Model of a continental rifting structure buried beneath the sediments of a passive continental
margin (redrawn from Partington et al., 1993). In the lower part, sediments respond to moments of the normal fault activations by producing retrograding-
prograding patterns detected by lateral facies changes. Mass-wasting deposits may be shed in the deeper parts of the basin by flows triggered by steepening of the
half-graben flanks. In the upper part of the figure, a normal depositional sequence is illustrated that formed in response to sea level variations at a passive continental
margin setting. This sequence is composed of a low-stand system tract (LST, made up by the basin floor fan, basin slope fan and LST delta) overlying a type 1 sequence
boundary, followed by transgressive and highstand system tracts (TST and HST) separated by a maximum flooding surface (MFS). Figures b-f: various expressions of
tectonic successions, illustrated in worldwide examples of rift basins. b) Schematic log of an idealized succession in a rift basin where accommodation and sediment
supply are in balance (after Ravnas and Steel, 1998), creating early, climax, late and post-rift stages of sedimentation; c) Schematic log in a rift basin that marks the
transition from continental to marine sedimentation (after Prosser, 1993). In this concept, the gradual deepening creates rift-initiation, rift-climax (early, middle and
late) and post-rift (immediate and late) tectonic system tracts. These system tracts are in fact the expression of one rift-scale tectonic succession; d) Schematic log
showing a coarsening-upward vertical stacking pattern that has been observed in some rift successions. The coarsening upward parasequences are separated by
flooding surfaces, i.e. assuming instantaneous or rapid tectonics (after Frostick and Steel, 1993); e) Schematic log showing coarsening to fining upwards intervals in
an alluvial – lacustrine syn-rift basin (after Martins-Neto and Catuneanu, 2010); f) Schematic log showing dominantly fining-upwards successions in offshore rift
basins, associated with individual pulses of tectonic movement (after Nottvedt et al., 1995).
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a balance between the rate of creation of depositional space and the
rate of sediment supply in a wide variety of environments, such as al-
luvial, lacustrine, and shallow and deep marine settings. Mass wasting
becomes an important component in the deep-water environments due
to steep slopes associated with normal faults, while the source of se-
diment supply is multi-directional, such as across the footwall, from the
hanging-wall and along the strike of active normal faults (e.g.,
Alexander and Leeder, 1987; Leeder, 1991; Leeder et al., 1991;
Gawthorpe et al., 1994; Gawthorpe and Leeder, 2000; Nixon et al.,
2016). In all observed situations, movement along the fault controls the
distribution of facies, and whether the basin will be underfilled, over-
filled or balanced.

Conceptual stratal stacking models have been developed using
seismic interpretations on passive continental (Atlantic type) margins,
where syn-rift deposits were subsequently buried beneath post-rift se-
diments, the latter being commonly described using standard sequence-
stratigraphic nomenclature (Fig. 3a). Various stratal stacking models
have been developed for the active stages of rifting assuming a general
change in sedimentary environments from alluvial to lacustrine and to
then to marine during the extension. Several phases of rifting are often
distinguished: rift initiation, rift-climax and post-rift (alternatively
subdivided as early, climax, late and post-rift stages) (Fig. 3b,c, Prosser,
1993; Ravnas and Steel, 1998; Răbăgia and Matenco, 1999; Pereira and
Alves, 2012). In these schemes, the rift initiation phase is generally
considered to be dominantly alluvial and sourced from the axis of the
rift, wherein stacking patterns are dependent on facies associations
(Fig. 3b,c). Increasing the rate of creation of depositional space by
offsets against bounding normal faults that generate rapid subsidence
leads to deeper marine facies intercalated with chaotic sediments from
mass-wasting episodes sourced from the slopes created by normal faults
and antithetic rotations of hanging walls. A gradual decrease in normal
fault offsets results in a dominance of sediment supply over the creation
of depositional space, while the basin may fill rapidly partially or
completely. This scenario is likely during a transition from rifting to
drifting and eventual conversion of the depocenter to a passive margin,
or the abandonment of divergent motions (aborted rifts). The difference
between various models is basically the capacity of the system to bal-
ance the rate of creation of depositional space during the induced
change in sediment supply, resulting in a strong variability of the ratios
between sedimentation during deepening and shoaling of the sedi-
mentary system (Figs. 3d-f).

Such tectonically driven facies shifts can be envisioned at the scale
of the entire rift sequence that are dependent on the interaction be-
tween depositional space and sediment supply, up to the point of onset
of marine transgression in the basin. This scenario corresponds with our
lower order tectonic succession bounded by succession boundaries (TSi

and SBi in Fig. 2). In fact, the rift initiation facies tracts (i.e., in the early
stage) can be either a SFT onset, or cyclic, higher-resolution successions
formed by interaction between changes in rates of sediment supply and
depositional space during the early continental depositional phase
(lower TSi+1 successions during SFTi in Fig. 2). Thus, activation of
successive slip movements along individual normal faults (or activation
of successive normal faults in the same structure) can introduce higher-
order cyclicity in the sediment fill of the rift systems. Such successive
fault offsets have been long recognized to drive sedimentary cycles in
the evolution of active or buried rifted systems, either at the scale of the
entire basin or in individual sub-basins separated by uplifted areas, such
as the East African Rift, the Canadian and Norwegian Atlantic passive
continental margins, or the Pannonian back-arc extensional basin of
Central Europe (e.g., Horváth and Royden, 1981; Enachescu, 1992;
Mosar et al., 2002; Corti, 2008, 2009; Matenco and Radivojević, 2012
and references therein).

Models of individual fault offsets assume either long-lived move-
ment of fault evolution dominated by fining-upwards sequences
(Fig. 3f, e.g., Nottvedt et al., 1995), or conversely, instantaneous acti-
vation of normal faults (i.e., rapid creation of depositional space)

resulting in flooding surfaces separating coarsening-upwards stacked
sediments (Fig. 3d, Martins-Neto and Catuneanu, 2010). These are
obviously extreme end member scenarios where either the rate of
creation of depositional space or the rate of sediment supply are ex-
treme, preventing the detection of deepening-upwards or shoaling-up-
wards components of the cycle. In practice, development of these
components is characterised in sequence-stratigraphic terms in exten-
sional basins (Fig. 3e, Frostick and Steel, 1993). These overall dee-
pening- and shoaling-upward couplets are indeed compatible with our
higher-frequency tectonic successions composed of higher-order sour-
ceward- and basinward-shifting facies tracts (TSi+1, SFTi+1 and BFTi+1

in Fig. 2).
Numerous illustrative examples of tectonic depositional successions

are available in extensional basins worldwide, where these can be
identified on exploration seismic profiles, often combined with detailed
facies analysis in outcrops and on well logs. Several such examples
come from the Mediterranean, where the rapid roll-back of subducted
slabs towards the orogenic foreland (as in the case of the Carpathians,
the Hellenides or the Betics-Rif) has created extensional back-arc sys-
tems where individual basins were activated by the gradual migration
in space and with time with similar trajectories, such as in the
Pannonian, the Aegean or the Alboran areas (e.g., Horváth et al., 2006;
Vergés and Fernàndez, 2012; Jolivet et al., 2013). The rapid extensional
evolution of such back-arc systems was generally associated with de-
position at rates that were high enough for the moments of fault offsets
to be captured at the resolution of seismic lines (e.g., Matenco and
Radivojević, 2012; Do Couto et al., 2016).

In the Pannonian Basin, the extension had started at ∼20 Ma during
the rotations associated with the eastward migration of the Carpathians
arc that resulted in the formation of successive extensional half-gra-
bens, which mostly become younger in the same direction (Horváth
et al., 2015; Balázs et al., 2016). The overall evolution of these half-
grabens was associated with the deposition within a lower-order tec-
tonic rifting cycle at the scale of the entire structure that recorded the
transition from continental alluvial and lacustrine to marine and back
to lacustrine facies during the gradual opening and closure of the
Central Paratethys basins (Fig. 4a, Rögl, 1999; ter Borgh, 2013; Balázs
et al., 2016; Sant et al., 2017). Migration of normal faulting during
rifting induced lateral displacements in the early-rift phase deposition,
as compared with the later rift phases (Fig. 4a). These three components
of the sub-basin fill together constitute a lower-order tectonic succes-
sion that was deposited within 1.5–2 Myr (TSi, Figs. 2 and 4a). In this
lower-order tectonic succession, the SFT comprises the rift-initiation
and rift-climax deposition, while the BFT is made up by post-rift sedi-
ments that continued until the middle Miocene unconformity that was
caused by basin inversion during the peak of Carpathians collision
(Fig. 4a). Superposed on this lower-order tectonic succession, a higher-
order tectonic periodicity, comprising sourceward- and basinward-
shifting facies tract cycles is observed, which is expressed as migration
of lobes, clinoforms and divergent seismic facies units (Fig. 4a) that
correlate with a lateral deepening of sedimentary facies in well logs
(Balázs et al., 2016). These higher-order tectonic cycles were controlled
by individual movements of offset along the basin boundary fault and
are fitting examples of higher-order tectonic successions composed of
thinner SFTs and BFTs (TSi+1 in Fig. 2). These higher higher-order
tectonic successions were deposited within 300–400 Kyr. Such dura-
tions are rather common for rapidly developing extensional back-arc or
intramontane basins, such as for instance observed in the Sarajevo-
Zenica Basin of the Dinarides orogen (Andrić et al., 2017).

In other situations, higher-order tectonic successions may form in
response to successive activations of multiple normal faults in the same
half-graben structure, as in the case of the Malaga Basin in the western
Mediterranean. This basin is part of the larger Alboran domain that
formed during the Miocene back-arc extension associated with the
westward roll-back of the Gibraltar slab and the formation of the Betics-
Rif orogenic system, which recorded significant inversion after ∼8 Ma
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(Vergés and Fernàndez, 2012; Vissers, 2012; Platt et al., 2013; van
Hinsbergen et al., 2014). Recent studies have shown that the Malaga
Basin is a large half-graben system where its eastern flank is made up of
a succession of W to NW-dipping normal faults that are most likely

rooted at depth in a larger detachment structure, while the basin re-
corded less to no inversion after 8 Ma along its NW and N areas (Fig. 4b,
Comas et al., 1992; Watts et al., 2007; Suades and Crespo-Blanc, 2013;
Suades Sala, 2015; Do Couto et al., 2016). The activation of each

Fig. 4. a) Line-drawing interpretation reflection
seismic line from the Kiskunhalas Trough of the
Pannonian Basin (after Balázs et al., 2016). Black
arrows indicate the Miocene kinematics of faults,
white arrows show the late Middle–early Late
Miocene inversion kinematics. The interpretation
illustrates the interplay between a lower-order
tectonic succession separated by basal and top
(red line) succession boundaries (unconformities)
and higher order tectonic successions created by
individual movements along the basin boundary
fault; b) Interpreted seismic reflection line from
the Malaga Basin (internal Betics-Rif system, after
Suades and Crespo-Blanc, 2013; Suades Sala,
2015). U are unconformities, RST and TST are
regressive and transgressive system tracts, re-
spectively; red arrows illustrate movements along
individual normal faults. The interpretation il-
lustrates the interplay between a lower-order
tectonic succession separated by basal (U1) and
top (U6) succession boundaries unconformities
and higher order tectonic successions (TST-RST
cycles) created by the activation of individual
normal faults composing the deformation system
near the High 976. C) Seismic line in the North
Malay Basin located in the Gulf of Thailand (after
Morley and Westaway, 2006). The fault-bounded
part of the seismic line illustrates a good example
where high-order tectonic successions and suc-
cession boundaries (TSi+1 and SBi+1) may be
discriminated from the low-order tectonic suc-
cessions and succession boundaries (TSi and SBi)
based on lateral variations of seismic facies that
mirrors changes in lithofacies (For interpretation
of the references to colour in this figure legend,
the reader is referred to the web version of this
article).
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flanking normal fault creates an overall sourceward- to basinward-
shifting facies tracts pattern that can be detected by the migration of
lobes, sigmoidal and tabular facies units that are equivalent to the
formation of individual TSi+1 tectonic successions (Fig. 4b). Within the
larger Malaga Basin structure, these units comprise a gradual transition
from rift-initiation to climax to post-rift that is bounded by a basal
transgressive unconformity and an upper unconformity (U1 and U6 in
Fig. 4b) that constitutes a lower-order TSi tectonic succession. While the
overall lower-order tectonic succession was deposited within 14–15
Myr, the high-order tectonic succession associated with the activation
of individual faults (TS2-5 in Fig. 4b) were individually deposited
within variable time intervals that span from 1.5 to 4 Ma. The U6 un-
conformity marks the onset of the Messinian Salinity Crisis (MSC) in the
Malaga Basin and, therefore, separates a tectonic succession in its lower
part from an upper eurybatic sequence driven by the large late Messi-
nian sea-level drawdown.

In other situations, in a wholly continental environment, all or most
of a lower-order tectonic succession of an extensional basin and the
high-order movements of individual normal faults can be associated
with deposition in an alluvial to lacustrine transition. Such is the case of
many faults-bounded Oligocene to mid Miocene basins in or bordering
the South China Sea (e.g., Morley and Westaway, 2006; Mansor et al.,
2014; Morley, 2014; Pubellier and Morley, 2014). Here, the transition
from continental to deep marine environment did not occur, though
such a transition is often the case in typical tectonic successions where
facies vary from shallower to deeper settings. Good examples have been
described from the Gulf of Thailand, such as the Pattani Basin or the
lower infill of the Malay Basin (Fig. 4c, Morley and Westaway, 2006).

These shallower to deeper transitions are seen in the Oligocene to mid
Miocene successions comprising alluvial fan, fluvio-deltaic and lacus-
trine facies at the scale of individual sub-basins. The (late – Eocene?) -
Oligocene syn-kinematic infill of the north Malay Basin (∼6–7 Myr)
forms a lower order tectonic succession (TSi) was covered by post-rift
late Oligocene – early Miocene lacustrine shales (Fig. 4c). Individual
movements of normal faults activation that lasted 1–1.5 Myr, are dis-
cernible as higher order tectonic successions (TSi+1) on seismic ima-
gery, where they are represented by changes of slope lobes that inter-
finger with more distal pelagic facies, separated by strong reflective
unconformities that make up the higher-order succession boundaries
(SBi+1, Fig. 4c).

Process-oriented numerical modelling of sedimentation is also well
suited to illustrate our conceptual model of tectonic successions in ex-
tensional basins. Such studies are available either at the scale of whole
extensional systems, where they exemplify lower-order tectonic suc-
cessions (e.g., Embry, 1990; Kooi et al., 1992; Kusznir et al., 1996;
Burov and Cloetingh, 1997; Meredith and Egan, 2002; Cloetingh et al.,
2013), or at the higher-order scale of individual sub-basins or in-
dividual normal fault structures (e.g., Csato and Kendall, 2002; Balázs
et al., 2017b; Barrett et al., 2018). Numerical modelling of sediment
infill in asymmetric extensional half grabens can discern the develop-
ment of high-order tectonic successions (associated with sourceward
and basinward facies shifts) that can be discriminated from other ex-
ternal forcing factors such as low-amplitude eurybatic sea-level varia-
tions (or climatic effects) that show more regular shallowing-deepening
patterns in the stratal architecture (Fig. 5). It is also clear that the
signature of eustatic influence within this record is discernible only at a

Fig. 5. Numerical modelling of extensional half-graben sedimentation during periods of fault activation and their interplay with sea-level changes in continental to
lacustrine environments (after Balázs et al., 2017b). The numerical modelling assumes a 9 Ma syn-rift period, followed by 4 Ma of post-rift subsidence. a) Conceptual
model based on the results of numerical modelling, illustrating the lateral variation of facies and the organization in tectonic successions in a half graben sourced
dominantly along the strike of the normal fault; b) Numerical modelling results illustrating the paleobathymetry of sediments in the half-graben. Left panel - lateral
paleobathymetric variations that compose a vertical cyclic deposition, which comprises high-order tectonic successions. Right panel – the same paleobathymetric
variations in the half-graben with an additional component of cyclic sea-level variations (equal rise and drop of 70 m, cycle period 700 Kyr). By comparing the panels,
we note the clear distinction between high-order tectonic successions and lower order variations induced by sea-level change.
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scale that is at a different order of magnitude than the one of tectonic
forcing (Fig. 5, Balázs et al., 2017a, b).

3.2. Contractional basins

Most contractional basins are related to orogenic areas where de-
positional space is created by tectonic loading during thrust and nappe
emplacement associated with the growth of mountain ranges. It has
been long recognized that such loading results in creation of significant
depositional space due to the flexure of oceanic and continental litho-
sphere undergoing subduction, forming accretionary wedges and fore-
arc or back-arc foreland or foredeep basins, influenced by a large
number of forcing factors (Beaumont, 1981; Royden and Karner, 1984;
Allen et al., 1986; Stockmal et al., 1986; DeCelles et al., 1991; Watts,
1992; Wagreich, 1995; Ziegler et al., 1995; Fuller et al., 2006; Naylor
and Sinclair, 2008; DeCelles et al., 2009, 2014; Noda, 2016). One dif-
ference of contractional basins from other types of basins is that con-
tinued convergence at the leading edge scrapes off the sediments de-
posited earlier in the flexural accommodation and incorporates them
into the orogenic system as highly deformed accretionary prisms,

external fold and thrust belts or deformed foredeeps, where deposi-
tional records may be sharply eroded. In the Mediterranean such is the
case of accretionary wedges in the Herodotus and Ionian Basins, where
the MSC evaporites and sediments (originally deposited horizontally)
are scraped, in places highly thickened, and deformed (e.g., Güneş
et al., 2018).

The understanding of movements of thrust loading in highly de-
formed systems requires careful reconstruction of the deformed strata
to restore original depositional conditions as closely as possible (e.g.,
Morley, 1996; Vilasi et al., 2009; Tărăpoancă et al., 2010). Since the
distribution pattern of sedimentary facies is a direct response to
thrusting, it can be used to gain an understanding of the movements of
thrust loading during subduction (e.g., Jordan et al., 1988; Ballato
et al., 2008; Santra et al., 2013; Ballato et al., 2019, among many
others). The recurrent arrangement of thrusts maintains a relative
constancy in the orogenic geometry and as such these basins may have
extensive continuity of hundreds to thousands of kilometres along the
orogenic strike (e.g., Dahlstrom, 1970; Roure, 2008). Since the flexu-
rally-created depositional space is asymmetric in response to the thrust
load distribution, the geometry of such basins is notably wedge shaped,

Fig. 6. Conceptual illustrations of tectonic successions in foredeep basins. a) Model for the development of the Monserrat fan delta in the Ebro Basin of Spain (after
Burns et al., 1997). Moments of thrust activation are associated with a migration of the fan delta system towards the active thrust front resulting in a source-ward
facies tract, while periods of reduced thrust activity and/or slight uplift are characterized by the migration of the same system towards the basin centre, resulting in a
basin-ward facies tract; b) Regional geologic cross section through the Alps thrust front and foreland basin system (after Covault et al., 2009). The cross-section
illustrated the interplay between lower and higher order tectonic successions of sourceward and basinward facies migration and higher resolution sea-level variations
recorded by the basin.

L.C. Matenco and B.U. Haq Earth-Science Reviews 200 (2020) 102991

9



changing over time due to shortening and sediment loading. It is pri-
marily controlled by the flexural rigidity of the lithosphere that is un-
dergoing subduction (Watts, 1989; Burov and Diament, 1992; Garcia-
Castellanos and Cloetingh, 2011). The most prominent grouping of
tectonic successions in contractional basins is observed in collisional
foredeeps formed during the final phases of orogenic convergences.
Here the sediment cover over the continental lower plate is overlain
transgressively above a diachronous unconformity in response to suc-
cessive thrust loadings, followed by a shallowing-upwards phase of
basin fill varying from lacustrine to alluvial sedimentation (the classical
old term “molasse”). Such successions of complete basin fill have been
described from many collisional orogens, such as those from the Alps,
the Carpathians, the Caucasus and the Apennines (e.g., Homewood
et al., 1986; Waschbusch and Royden, 1992; Ershov et al., 1999; Roure,
2008; Covault et al., 2009).

Several genetic sedimentation models (based mostly on seismic in-
terpretations, combined with observations on well logs and outcrops)
are available for foredeep basins (e.g., Fig. 6). Detailed sedimentolo-
gical facies distribution studies demonstrate the importance of thrust
loading in controlling the balance between the rate of accommodation
creation and sediment supply (Bruhn and Steel, 2003; Catuneanu, 2004;
Ford, 2004; Roca and Nadon, 2007). Such models are highly variable
depending on the paleoenvironment (whether continental, shallow or
deep marine) of the contractional basin (Einsele, 2000 and references
therein). Some of these studies also demonstrate the increasing im-
portance (during deformation) of the source of the basin fill from the
foreland lower plate and along the strike direction that produces the
mixed-source sedimentary successions observed in the infills
(Oszczypko, 2006; Ridd, 2013). The study of foredeep dynamics is also
key to detecting the history of orogenic movements further afield in the
hinterland areas (Roure, 2008; Grool et al., 2018).

All of these models have one key observation in common; the facies
deepen in the foredeep basin depocenters during thrust loading, while a
shallowing-upwards phase of basin fill is recorded during the period of
reduced or non-thrust activity that create the sourceward- and basin-
ward-shifting facies tracts of our model (SFTi+1 and BFTi+1 in Fig. 2).
This is exemplified by observations in the Ebro Foredeep of the Pyr-
enean Foreland Basin (e.g., Desegaulx and Moretti, 1988; Gómez-
Paccard et al., 2012), where the movements of thrust activation are
associated with the migration of a fan delta system (proximal gravels,
alluvial plain and marine sediments) towards the active thrust front,
while periods of reduced thrust activity and/or slight uplift are char-
acterized by the migration of the same system towards the basin centre
(Fig. 6a, Burns et al., 1997). The first period of source migration makes

up the high-resolution SFT of our model, while the periods of de-
creasing and/or low subsidence or minor uplift, are equivalent to our
BFT (Fig. 6a). This cyclicity observed in the Ebro Basin has also been
validated by numerical modelling of sedimentation dynamics (Garcia-
Castellanos, 2002, 2006).

An illustrative example of tectonic successions and their interplay
with sea-level changes at the scale of entire foreland basin comes from
the northern Alpine foredeep (or the German-Austrian molasse/fore-
land basin) (Fig. 6b, Zweigel et al., 1998; Covault et al., 2009). Previous
studies have shown that the basin fill was controlled by a major thrust
loading and flexural subsidence event that took place during Late Eo-
cene–Early Miocene times, which included the middle Oligocene tran-
sition from the classical “flysch” to “molasse” stages, possibly in re-
sponse to the European slab break-off (e.g., Sinclair, 1997). This was
followed by a phase of reduced subsidence that resulted in an overall
shoaling-upwards sedimentation that filled the basin. Thrusting re-
sulted in both the creation of depositional space in the footwall and the
formation of a connected wedge-top (or piggy-back) basin overlying the
hanging-wall, which provided the source of sediments including the
mass-wasting deposits. The interplay between the tectonic subsidence
and sediment supply controlled the large-scale deepening- and
shoaling-upwards megacycles within 6–7 Myr, while higher-order un-
conformities were related both to sea-level variations (sequence
boundaries) and thrust loading events (successions boundaries) that
took place most likely within 1–2 Myr time intervals (Fig. 6b, Zweigel
et al., 1998; Covault et al., 2009; Knierzinger et al., 2018). Such models
of thrust-loaded sourceward and basinward migration of sedimentary
facies (TSi+1 successions) have been also validated by numerical
modelling of the foredeep evolution (e.g., Clevis et al., 2004).

3.3. Strike-slip basins

Strike-slip basins develop along key transcurrent boundaries, where
major displacements occur in the horizontal plane due to either right-
or left- lateral movements. In these tectonic settings, depositional space
is created by secondary normal offsets that take place along the major
fault bends (i.e., releasing bends, e.g. Fig. 7a) when horizontal offsets
are transferred between two or more strike-slip faults (pull-apart ba-
sins), or through a combination of these two mechanisms (e.g., Mann
et al., 1983; Christie-Blick and Biddle, 1985; van Wijk et al., 2017).
Many such basins are known to be associated with major strike-slip
offsets that display tens to hundreds of km of horizontal displacement.
Well-known examples are along the San Andreas Fault system in wes-
tern United States, the North Anatolian Fault in northern Turkey, the

Fig. 7. Model and cross-section illustrating the development of tectonic successions in strike-slip deformation, applied to the transtensional Pliocene-Pleistocene San
Gabriel Basin located in the San Andreas transcurrent system (after Yeats, 2004). a) Conceptual model illustrating the mechanism of transtensional opening of the San
Gabriel Basin at a strike-slip releasing bend; b) Simplified and conceptual cross-section through the San Gabriel Basin illustrating the lateral and vertical lithofacies
distribution in the basin. Note that the lateral migration of facies towards the basin centre and its margins make up higher-order tectonic successions (TSi+1), while
the fining and coarsening upwards patterns at the scale of the entire basin makes up a lower-order tectonic succession (TSi).
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Alpine Fault of New Zealand, and the Cerna-Timok Fault system of the
Carpathians (Okay et al., 2000; Barnes et al., 2005; McLaughlin and
Nilsen, 2006; Schmid et al., 2008; Krézsek et al., 2013). Limited to

bends or transfer zones along major strike-slips these sedimentary ba-
sins are spatially restricted, with limited lateral continuity and large
variability in the sedimentary infill. Because a small amount of

Fig. 8. An example of tectonic successions in a sag basin characterized by a gradual change in bathymetry and where an equivalence between the tectonic successions
and sequence-stratigraphic nomenclature can attempted. The example comes from a tectono-stratigraphic summary of the middle–late Miocene evolution of the
Transylvanian Basin in the vicinity of the East, SE and South Carpathians of Europe. The moments of progradation near the basin margins created by regional uplift
define a basinward shifting facies tract, while regional subsidence creates subsequent retrogression that define a sourceward migration of facies. Together, they
define higher-order tectonic successions in the Transylvanian Basin. The comparison shows that HST and LST are equivalent to BFT, while TST is equivalent to SFT. a)
Cross-section over the Transylvanian Basin, East Carpathians and their foreland (after Matenco et al., 2010). The basin marginal areas are uplifted due to thrusting
and growth in the orogenic core; b) Tectono-stratigraphic summary of the Miocene sequence of the Transylvanian Basin (after Matenco et al., 2010); c) lithos-
tratigraphic summary of the Miocene sequence of the Transylvanian Basin (after Krézsek et al., 2010).
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transcurrent offset generates a large vertical displacement component,
strike-slip basins can fill rapidly with thick sedimentary successions that
are sourced from the vicinity of the main left- or right-lateral fault from
multiple directions. The strike-slip bounding faults are generally steep
and get rapidly degraded by erosion, filling the basin with coarse fault
breccias in the vicinity, while transtension can generate normal faults
that may be associated with deepening and fining upwards to shoaling
and coarsening upwards prisms of sediments.

The San Andreas transcurrent system of western North America
provides one well-documented example where spatially limited trans-
tensional basins are located along the sinuous trace of the strike slip
fault. Located in the middle of the California’s Transverse Ranges and
comprised of a system of transpressional mountains and transtensional
basins, the San Gabriel Basin is a Pliocene-Pleistocene basin formed
through dextral transtension along the San Gabriel Fault that is a part of
the larger San Andreas Fault system (Fig. 7a, May and Walker, 1989;
Nourse, 2002; Yeats, 2004). A thick breccia was deposited in the vici-
nity of the San Gabriel Fault and a lesser one on the opposite flank of
the basin, while the general composition of the basin displays dee-
pening-upwards and shoaling-upwards facies shifts that were generated
by the activity of the strike-slip system. This variation in facies and
sediment influx farther into the basin is an example of the alternation
between higher-order SFTs and BFTs comprising tectonic successions,
lasting anywhere between 500Kyr and 1 Myr, driven by the transten-
sional activity of marginal controlling faults (TSi+1). Following the
Miocene precursor deposition, the entire Pliocene-Pleistocene basin
makes up an overall TSi lower-order tectonic succession (Fig. 7b, see
also Yeats, 2004). It is noteworthy that the gradual opening of such a
basin along the strike of a major transcurrent fault generates a basin fill
where depocenters of tectonic successions are laterally displaced in the
same direction. One typical example is provided by the Oligocene–Early
Miocene basin formation stage of the Cerna-Timok dextral fault system
in the South Carpathians, where the younger transtensive basins formed
eastwards in the releasing bend direction of the main controlling faults
(Ratschbacher et al., 1993; Răbăgia and Matenco, 1999; Krézsek et al.,
2013).

3.4. Tectonic-induced uplift

Similar to the tectonically created depositional space discussed
above, diastrophic processes may also reduce or wipe out such space by
uplifting part or the entire infilled basin. This is a typical evolution in
plate tectonics, where rifts are created and buried beneath passive
continental margins that are subsequently uplifted and incorporated in
orogens during subduction and/or collision (e.g., Ziegler et al., 2002).
Inversion commonly occurs in extensional basins due to transient pro-
cesses or a switch from divergent to convergent movements (e.g.,
Williams et al., 1989). Extensional back-arc basins formed during slab-
retreat are commonly uplifted and/or inverted during the final phases
of collision and slab-detachment (Uyeda and Kanamori, 1979; Matenco
et al., 2016). Large parts of foreland basins are scraped-off and in-
corporated into fold and thrust belts by on-going subduction or con-
vergence, where the depositional space gradually diminishes followed
by subaerial exposure and erosion in fore-arc or wedge top (piggy-back)
basins (e.g., DeCelles and Giles, 1996; Ford, 2004; Noda, 2016).

The analysis of sedimentary facies shows that deposition associated
with tectonic uplift is controlled by a relative base-level drop that
creates forced-regressive type sedimentary patterns that are localized at
the active margin of the basin. In our tectonic succession model, this
means that at the onset and during the subsequent major tectonic
movements BFTs will dominate, while during the gradual decrease in
fault offset or quiescence SFTs will be the common norm. A good ex-
ample of such a case is provided by the Miocene evolution of the
Transylvanian Basin, a sag basin located in the hinterland of the
Romanian Carpathians (Fig. 8). The retreat of the Carpathians slab re-
sulted in the onset of the successive phases of subsidence recorded in

the basin centre during middle Miocene times (Krézsek and Bally, 2006;
Tiliţă et al., 2013, 2015). The margins of the basin recorded successive
uplift events due to gradual orogenic exhumation during the final col-
lisional phases of South and East Carpathians (Matenco et al., 2016).
Application of sequence-stratigraphic concepts to these margins re-
vealed that each phase of uplift was associated with forced-regressive
type patterns with local unconformities at the basin margins, overlain
by transgressive facies associated with the regional subsidence of the
entire basin (Fig. 8, Krézsek et al., 2010; Matenco et al., 2010). Sedi-
mentation was interrupted subsequently by complete exhumation of the
basin during late Miocene times. In the framework of our new model,
the Miocene sediment fill can be reinterpreted: the period of regressive
facies associated with tectonic uplift in the East and South Carpathians
margins are higher-order BFTs (BFTi+1), while the periods of trans-
gressive trends during regional subsidence can be categorised as higher-
order SFTs (SFTi+1). These high-order tectonic successions have a
variable duration, within 500 Kyr – 1.5 Myr (TSi+1, Fig. 8). Together,
these higher-order facies tracts constitute a lower-order tectonic suc-
cession that lasted for around 6–7 Myr (TSi). Similar examples are also
available in observational or numerical modelling studies of wedge-top
(or piggy-back) basins, which show that movements of hanging-wall
uplift during thrusting induce migration of sedimentary facies towards
the centre of the basin, while regional orogenic subsidence results in a
migration of facies towards the basin margins (e.g., Nijman, 1998;
Clevis et al., 2004; Răbăgia et al., 2011) comprising BFT-SFT couplets.

3.5. Source area and mass-wasting deposits

The position of various sediments in a sourceward- or basinward-
shifting facies tract is controlled by their location in the paleo-physio-
graphy of the basin and not by their grainsize. In tectonically active
areas an increased sediment yield is recorded from tectonically active
(often small) watersheds, as pointed out by Milliman and Farnsworth
(2011). Their work has demonstrated that high yields are a function of
gradient and impact of episodic events in which both sediment supply
and sediment transport can play and important role, and which can be
especially exaggerated in the case of volcanic eruption events. The fact
that there is no direct correspondence between physiography and
grainsize is best illustrated by the deep-water mass wasting deposits,
where coarse deposition is often triggered by fault activation that cre-
ates not only accommodation space, but also enhances the exhumation
of the source area and modifies the topography that is subject to ero-
sion. One example is the Miocene evolution of the Sorbas Basin of
southern Spain that is a well-studied area for the interaction between
tectonics, sea-level changes and orbitally-forced stratigraphy. Many
recent mass-wasting models are based on outcrop observations in this
basin (Krijgsman et al., 2001; Hodgson and Haughton, 2004; Do Couto
et al., 2014; Andrić et al., 2018; Postma and Kleverlaan, 2018). Part of
the larger extensional Alboran Domain that evolved in the hinterland of
the Betics-Rif system, the lower infill of the Sorbas Basin displays high-
resolution tectonic successions (TSi+1) associated with individual
movements along normal faults, where the depositional space and se-
diments sourcing is created either by fault offset, or by antithetically
tilting hanging-wall blocks (e.g., Andrić et al., 2018). In deeper-water
environments, such movements are marked by transition between slope
to basin floor turbiditic fans, while coarser material temporary stored
on shallow shelves is recycled in a hanging-wall direction toward the
deeper-water environments by various types of mass-wasting events
during movements of fault-offset associated with antithetic tilting
(Fig. 9). Such high-order tectonic sedimentary successions may also be
sourced across footwalls or along the strike of normal faults and are
most often associated with severe erosional degradation of faults foot-
walls (e.g., Henstra et al., 2016; Alves and Cupkovic, 2018). The result
is that coarser deposits are sourced in deeper water environments
during moments of fault activation, enhanced by an increased output
from the source area and availability of such material in temporary
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shelf storages (Fig. 9). In contrast, periods of fault quiescence are
characterized by finer sedimentation in shallower environments, fa-
voured by temporary storage on the shelf and a decreased input from
sources area (Fig. 9).

4. Discussion

4.1. Scales of tectonic successions

The examples presented in this study exemplify the large spatial and
temporal variability of tectonic successions observed from system of
faults to individual movements along a single fault. These examples
show that tectonic successions have spatial scales ranging from tens of
metres to kilometres and temporal scales ranging from hundreds of
thousands to million years. Furthermore, centimetres to metres syn-
kinematic deposition responding to similar size faulting has been
documented in many basins worldwide by outcrop studies (e.g., Andrić
et al., 2018). However, movements along an individual fault or shear
zone also include exhumation, which result in offsets much larger than
the created depositional space. Such high offsets can reach tens of
kilometres and have been observed along detachments associated with
the formation of core-complexes or basalt decollements of thin-skinned
thrust belts, where the accommodation space created in break-away,

supra-detachment, foredeep or wedge-top basins is in the order of
hundreds of metres to kilometres (e.g., Beaumont, 1981; Wernicke,
1985; Brun et al., 1994; Roure, 2008). The resulting change in bathy-
metry and topography created by exhumation are of similar order or
magnitudes, locally controlled by climate and erodibility of rock types
in the source area (e.g., Hooke and Rohrer, 1977; Willett et al., 2006;
Flowers and Ehlers, 2018).

The conceptual model of tectonic successions presented here serves
the practical need for quantifying the time and amplitude of tectonic
movements in sedimentary basins. Plate tectonics megacycles open
continental rifts that are buried beneath passive continental margins,
which eventually become involved in oceanic subduction and sub-
sequent continental collisions, leading to the formation of mountain
chains. On this larger scale, the transition from continental sedi-
mentation during the early stages of rifting to deep-water pelagic se-
dimentation later can be considered a large-scale sourceward-shifting
facies tract, while the subsequent shallowing of sedimentary facies
during subduction and collision is a large-scale basinward-shifting fa-
cies tract. Together, these facies tracts define a mega-tectonic (or first
order) succession at the spatial and temporal scale of a plate tectonic
cycle. Such mega-tectonic cycles can have very variable durations,
spanning from 10 to 200 Myr, creating changes in topography/bathy-
metry in the order of 3–11 km (e.g., Dewey, 1988; Krapez, 1997; Audet

Fig. 9. Outcrop-scale images and interpretation in the Sorbas Basin of SE Spain, illustrating the difference between the paleo-physiography controlling the dis-
tribution of basinward and sourceward shifting facies tracts and the grain size distribution of sediments in the basin (after Andrić et al., 2018). The deposition is
controlled by slope steepening and shallowing in response to normal faulting at high- and low-displacement rates, as well as during tectonic quiescence. Moments of
fault activity creates mass-wasting in deeper water environment, which make the facies deposited near the point of reversal to be the coarsest. a) Coarsening-upward
succession reflecting the overall progradational and aggradational depositional trend at the toe of the slope, formed during slope steepening to >10°. b) detailed
sedimentary log of the coarsening-upward succession seen in Fig. 9a); c) retrogradational depositional trend following slope shallowing and exhaustion of source area
formed during the transition from the low displacement rate to tectonic quiescence periods; d) detailed sedimentary log showing fining upward succession deposited
during gradual termination of fault activity and subsequent slope shallowing; e) inset of a showing scour fill with up dip sigmoidal backset stratification formed due
to hydraulic jump; f) interpretative sketches showing sedimentary response to hanging-wall antithetic rotation during three main stage of fault activity, 1 - high
displacement rates; 2 - low displacement rates, and 3 - fault quiescence.
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and Bürgmann, 2011).
The evolution of a sedimentary basin system as related to one of the

various components of the Wilson cycle (such as continental rifts,
subduction or continental collision) is commonly associated with the
onset of sedimentation over a major unconformity, gradual deepening
to the maximum paleodepth, which comprises a sourceward-shifting
facies tract, followed by a gradual shoaling until the basin is completely
filled, which defines a basinward-shifting facies tract. Examples of such
basinal systems are provided by major extensional, contractional or
strike-slip systems that exist within cratons or mountain chains, such as
the East African Rift, the Pannonian Basin, South China Sea, or colli-
sional systems where foreland basins contain a record of complete basin
fill, such as the Northern Alpine or Carpathians forelands. These basin
systems also show high variability in spatial and temporal scales. For
instance, the evolution of a continental rift from onset to drifting (or
abandonment) may last anywhere between 5–200 Myr, and create
changes in topography/bathymetry in the order of 100 m to 10 km
(Mosar et al., 2002; Ziegler and Cloetingh, 2004).

Sedimentary basin systems are composed of individual sub-basins,
often formed diachronously, that may become connected (or seques-
tered) at a later stage due to migration of deformation centres or due to
other mechanisms, such as thermal subsidence or tectonic inversion.

The associated sedimentation in these sub-basins involves an earlier
facies deepening, comprising a sourceward-shifting facies tract, fol-
lowed by a gradual shoaling when the rate of sediment supply surpasses
the rate of creation of depositional space expressed as a basinward-
shifting facies tract (such as TSi in Figs. 4, 6 and 7). Thus, the infill of an
individual sub-basin may be described as a higher-order tectonic suc-
cession when compared with the whole sedimentary basin. The tectonic
evolution of such sub-basins is time independent and may take any-
where between 0.5–60 Myr, creating changes in topography/bathy-
metry of 50 m to 8 km.

Within the sub-basins, the activation of individual faults is re-
sponsible for the creation of depositional space at the local level and the
formation of higher-order tectonic successions (e.g., the TSi+1 cycles
illustrated in Fig. 4b). Typical examples can be observed along growth
faults observed in the North Sea and the Norwegian continental margin
(Mosar et al., 2002) or syn-kinematic foredeep wedges observed in the
Carpathians (Răbăgia et al., 2011). Their time scale may vary sig-
nificantly, from 10 Kyr to 20 Myr, creating changes in topography/
bathymetry of 10 m to 5 km.

The total offset of a single fault surface is comprised of individual
movements (or offsets) that take place during periods of faulting ac-
tivity. Each individual offset may generate individual tectonic

Fig. 10. Conceptual definition of the interaction between tectonics, sediment supply from the source area and sea-level change, illustrating their impact in the
evolution of tectonic successions composed of sourceward- and basinward- shifting facies tracts. a) definition of tectonics, sediment supply, sea-level (eustasy)
components, which cumulatively result in a creation of either a SFT or a BFT. Note that the tectonic effect is displayed as subsidence increasing downwards and uplift
increasing upwards. Because the sediment supply and sea-level variations work against tectonic effects, it should be noted that erosion and sea-level rise are displayed
increasing downwards, while sedimentation and sea-level fall are displayed increasing upwards, which is contrary to usual convention. b) to e) schematic re-
presentation of SFT-BFT tectonic successions in parts of the basin where tectonics has a dominant control. b) extensional half-graben; c) thrusting, with tectonic
sequences displayed for the hanging-wall and footwall; d) transtensional strike-slip; e) sag basin; f) example of a basin (illustrated as a half-graben) where the
sediment supply is very large and provides the dominant control by combination with a sea-level fall. The result is a continuous shoaling of the basin fill; g) example
of a basin (illustrated as a half-graben) where tectonic subsidence is low and the sea-level variation has the dominant control in combination of the sediment supply.
The result is continuous deepening of the basin. For a similar approach see also ter Borgh et al. (2015).
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successions made up of SFT-BFT cycles (such as the higher-order cycles
in Fig. 4a). These are higher-order cycles (when compared to the total
offset along a fault), but their time scales again may vary significantly
between about 30 yr to 1 Myr, creating depositional space of
1 m–1000 m. The tectonic signal can sometimes be interpreted in high-
resolution depositional cycles, such as in high frequency peritidal car-
bonate sedimentation (Bosence et al., 2009).

Even higher-orders of cyclicity than those defined by movements
during fault activations occur (comprising individual SFT-BFT cycles)
that can extend to as short time scales as the single seismogenic cycle,
where mega-thrust earthquakes create surface offsets (and depositional
space), reaching up to a few tens of meters that are subsequently filled
with sediments at few years to thousands years’ time scales. Examples
are also available in the stratigraphic record, such as in the carbonate
systems that are very sensitive to variations at the tidal scale (e.g.,
Cisne, 1986).

One may be tempted to classify such variable timescales of tectonic
activity as “orders” of cyclicity, from first order major tectonic cycles to
fifth or sixth order seismogenic cycles. However, such a strict classifi-
cation is not necessary or practical, given the extreme temporal and
spatial variability of tectonic movements. Therefore, we recommend
that the order of periodicity is defined as a function of the relative scale
being studied (i.e., at the level of the tectonic sedimentary cycle,
system, basin, sub-basin or individual fault). By employing the most
common observational techniques (seismic, well-log, and outcrop ob-
servations), only two levels of cyclicity of tectonic successions may
therefore be commonly necessary in practice (a lower order “i” and a
higher order “i+1”). For quantitatively defining the timing and am-
plitude of tectonic movements, the exact i number is not relevant and
may be left undefined.

4.2. Factors controlling the geometry of tectonic successions

In addition to tectonics, the evolution of sedimentary basins is

influenced by other external forcing factors, such as the sediment
supply, climate and sea-level variations that determine the resultant
stratal architecture (Fig. 10a). In their initial formative stages, all basins
are primarily controlled by tectonics. Whenever the rate of tectonic
subsidence or uplift is greater than the cumulative rates of sediment
supply and sea-level change, an alternation between SFTs and BFTs is
observed, irrespective of whether tectonic activity is extensional, con-
tractional, strike-slip or sagging due to sub-lithospheric processes
(Fig. 10b-e). Extreme situations of very high sediment supply may work
together with sea-level changes and tectonics, which may result in a
situation where deepening of the facies is not observed at the onset of
tectonics and the entire tectonic succession may contain only BFTs
(Fig. 10f). The same result can be generated when a large sea-level fall,
working together with the sediment supply, outpaces the creation of
tectonic depositional space.

On the other extreme, the rate of tectonic subsidence may be very
low, such as in the long-lived rift systems as in the Norwegian or North
Sea margins, and surpassed by the combined effect of the sediment
supply and sea-level variations resulting in tectonic successions entirely
characterized by SFTs (Fig. 10g, e.g., Nottvedt et al., 1995). The same
pattern of tectonic successions entirely characterized by SFTs during
deformation times may be obtained when the sediment influx from the
source area is trapped in intervening sub-basins, while structures si-
tuated at farther distances are characterized by condensed or starved
sedimentation (e.g., Bartol et al., 2012; Munteanu et al., 2012; Matenco
et al., 2016). This is also the case in post-tectonic times, when the basin
is gradually filled and tectonic activity slows down considerably or
ceases all together.

Sedimentary basins may acquire more “stable” depositional patterns
later in their evolutionary history. This stability means unidirectional
sediment flux largely controlled by the quasi-cyclic local/regional
(eurybatic) and/or global (eustatic) sea-level variations, where se-
quence-stratigraphic approach and terminology can be applied more
effectively for stratigraphic analyses. A good case in point is the North

Fig. 11. Temporal and spatial variability of the mechanisms that drive observed sea-level variations and create or wipe out depositional space (note the logarithmic
scale of both axes). Mechanisms that have a direct tectonic component are depicted in green, ranging from plate tectonic cycles to basins, sub-basins, individual
faults, fault activation moments and seismogenic cycles. All other mechanisms have a primary impact in sea-level variations (adopted from Cloetingh and Haq, 2015):
larger scale mechanisms related to mantle-lithosphere interactions, dynamic topography and production of oceanic crust are shown in blue; changes due to mag-
matism in large igneous provinces (LIPS) are shown in red; mechanisms related to glaciations and sedimentation are shown in yellow (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article).
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American Atlantic coast where earlier extensional stages of the breakup
are buried under a later more typical passive-margin type sedimenta-
tion (e.g., Enachescu, 1992; Arantegui et al., 2019).

In summary, it can be stated that nearly all basins start off as being
driven by tectonics and can later morph into stable platforms or passive
margins when tectonic activity subsides or ceases. Thus, for a complete
appreciation of the evolution of a large basin, both the tectonic-succes-
sions approach in the earlier history (recommended here) and the se-
quence-stratigraphic approach in the later stages may be required to
unravel the complete sedimentological evolution of the basin.

4.3. Variability of mechanisms controlling depositional space

The temporal and spatial scales of mechanisms that drive sea-level
variations and create or wipe out depositional space are extreme, ran-
ging from years to hundreds of million years and from centimetres to
tens of kilometres (Fig. 11). Therefore, understanding the impact of
these mechanisms is essentially a multi-scale problem. The intrinsic
lithospheric rheology, the rate of creation of depositional space and the
dynamics of surface processes conditioned by climate and eustasy
strongly influence the infill and physiography of sedimentary basins
(Cloetingh and Haq, 2015). This infill is affected not only by mod-
ulating the rates of deformation, erosion and sediment supply, but also
by the system’s response to lithospheric flexure, rheology, thermal
evolution, glacial isostatic adjustment, mantle-lithosphere interaction,
rate of formation of oceanic lithosphere and dynamic topography
(Fig. 11).

For instance, the extension rate, rheology and thermal convective or
advective effects have direct impact in the width and structure of
continental rifts, creating wide and shallow or narrow and deep struc-
tures (Burov and Cloetingh, 1997; Brun, 1999; van Wijk and Cloetingh,
2002; Huismans and Beaumont, 2003; Gueydan and Precigout, 2014;
Naliboff et al., 2017). In such extensional zones thermal subsidence and
the rate of sediment supply together modulate the timing and position
of the point of reversal (POR, Fig. 2) between basinward- and source-
ward- shifting facies tracts. During extension, the presence of inherited
rheological weakness zones controls the evolution of asymmetric basins
that migrate in space and with time (e.g., Manatschal et al., 2015;
Balázs et al., 2017a). Crustal loads and rheology are modified by sur-
face processes and sedimentation during extension, which influences
the architecture and evolution of continental rifts (e.g., Burov and
Cloetingh, 1997; Andrés-Martínez et al., 2019). The overall extension
may be followed by the development of passive continental margins
whose width is controlled by the initial rifting rates, rheology and
structure (e.g., Mosar et al., 2002; Burov, 2007; Brune et al., 2014).
Changes in climate significantly affect the balance between accre-
tionary and erosional fluxes during convergence in orogens, resulting in
changing the geometry and kinematics of associated basins (e.g., Willett
and Brandon, 2002; Willett et al., 2006; Thiede and Ehlers, 2013;
Armijo et al., 2015). Such external and internal controlling factors have
been widely documented to impact the evolution of tectonic successions
in various types of sedimentary basins (e.g., Buiter et al., 2009; Fillon
et al., 2013; Erdos et al., 2014; Beniest et al., 2017, among others).

Mantle - lithosphere interaction is an important component that
creates or destroys regional depositional space (Fig. 11), such as
thermal subsidence in rift zones, which is particularly important for the
evolution of passive continental margins (Steckler and Watts, 1978;
Stephenson, 1989; Xie and Heller, 2009; Yamasaki and Stephenson,
2009; Cloetingh and Haq, 2015; Stein et al., 2018). Steps should also be
taken to separate out the long-wavelength depositional space created or
diminished by dynamic topography (i.e., by sub-lithospheric induced
subsidence or uplift) that has regional effects on sedimentary basins
(Fig. 11, Bertelloni and Gurnis, 1997; Flament et al., 2013) and also
creates sourceward or basinward facies migration patterns that can be
similar to those caused by sea-level changes.

In summary, the depositional space created or wiped out by

tectonics may be higher than any other external or internal forcing
factor and cannot be ignored at any spatial and temporal scale (Fig. 11).
Therefore, the necessity of a tectonic successions’ nomenclature serving
the practical need for quantifying the time and amplitude of tectonic
movements and deposition in sedimentary basins is very high.

5. Conclusions

Based on observations in tectonically-dominated environments, we
have proposed a modified approach to understanding the forcing in-
duced by fault movements in sedimentary systems. Tectonic activity,
when reduced to its simplest expression, is the development of a single
fault or subsidence episode, i.e., its activation, reactivation and dura-
tion that comprise its total history. Faults (or multiples thereof) produce
basins that are filled with sediments. Thus, any starting point toward
understanding the influence of tectonics in sedimentary successions has
to be the history of the fault’s kinematics (activation, increase or de-
crease in offset rate) and the response of sedimentary facies to these
changes. Here we have endeavoured to produce a basic conceptual
model of the facies response that can be applied at any scale of tectonic
expression, from the movements along a single fault to the infilling at
the basin-wide scale.

Our starting point is the conceptual definition of a tectonic succession
(TS), bracketed by succession boundaries (SBs), and comprised of a
sourceward-shifting facies tract (SFT) and a basinward-shifting facies tract
(BFT), separated by a point of reversal (POR) and characterized by the
balance between the rate of creation of depositional (accommodation)
space (δAS) and the rate of sediment supply (δSS). In practice such tec-
tonic successions are a function of the methodological resolution
(seismic stratigraphy, well logs, outcrop studies) and have extremely
variable temporal and spatial scales. This can range from the long
temporal duration of the major tectonic cycles to moments of fault
activation during megathrust earthquakes.

The conceptual tectonic successions model is applicable whether
tectonics induce subsidence or uplift during deposition. Although these
successions are more obvious in extensional systems, where many at-
tempts at classifications are already available, we argue that the ex-
pression of basinward- and sourceward-shifting facies tracts is a uni-
fying concept across all tectonic regimes and timescales and is,
therefore, applicable in all practical situations. Their expression in
terms of geometry, sedimentary facies and distribution can be ex-
tremely variable, controlled by the balance with other external or in-
ternal forcing factors, such as the variability of the sediment flux,
eurybatic and eustatic variations, the basin morphology, slope stability
and mass-wasting characteristics, or the autocyclic variations within
the depositional system. But there is one common characteristic that
makes the definition of these BFTs and SFTs possible: the paleo-phy-
siographic position in the depositional environment and its variability
with time.
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