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Mitochondrial dysfunction constitutes one of the hallmarks of aging and is characterized
by irregular mitochondrial morphology, insufficient ATP production, accumulation of
mitochondrial DNA (mtDNA) mutations, increased production of mitochondrial reactive
oxygen species (ROS) and the consequent oxidative damage to nucleic acids,
proteins and lipids. Mitophagy, a mitochondrial quality control mechanism enabling
the degradation of damaged and superfluous mitochondria, prevents such detrimental
effects and reinstates cellular homeostasis in response to stress. To date, there
is increasing evidence that mitophagy is significantly impaired in several human
pathologies including aging and age-related diseases such as neurodegenerative
disorders, cardiovascular pathologies and cancer. Therapeutic interventions aiming at
the induction of mitophagy may have the potency to ameliorate these dysfunctions. In
this review, we summarize recent findings on mechanisms controlling mitophagy and its
role in aging and the development of human pathologies.
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INTRODUCTION

Mitochondria are highly organized and dynamic organelles that undergo continuous fission
and fusion (Chen and Chan, 2009; Pham et al., 2012). They originated from endosymbiotic
proteobacteria and conferred substantial advantages for eukaryotic cells during evolution. Thus,
mitochondria play a critical role in ATP synthesis via oxidative phosphorylation (OXPHOS),
β-oxidation regulating fatty acid metabolism, the synthesis of intermediate metabolites through
the TCA cycle, as well as calcium homeostasis. On the other hand, like a double-edged sword,
mitochondria can turn into a potential threat to cellular homeostasis and survival. In the past
decades it has been well documented that mitochondria are the central organelle controlling
apoptotic cell death and that the permeabilization of the mitochondrial outer membrane, with
the resultant release of pro-apoptotic proteins such as cytochrome c, SMAC/DIABLO, ENDOG,
OMI/HTR and AIF, irrevocably leads to cellular demise (Susin et al., 1999; Du et al., 2000; van
Loo et al., 2002; Green and Kroemer, 2004; Liu et al., 2009; Wang and Youle, 2009; Li et al.,
2017). Moreover, mitochondria are the major source of reactive oxygen species (ROS). During
OXPHOS electrons originating mostly from complexes I and III of the electron transport chain,

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 March 2020 | Volume 8 | Article 200

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2020.00200
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2020.00200
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2020.00200&domain=pdf&date_stamp=2020-03-26
https://www.frontiersin.org/articles/10.3389/fcell.2020.00200/full
http://loop.frontiersin.org/people/889536/overview
http://loop.frontiersin.org/people/21898/overview
http://loop.frontiersin.org/people/32322/overview
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00200 March 24, 2020 Time: 16:1 # 2

Chen et al. Mitochondrial Breakdown-Mediated Homeostasis

can generate ROS that in turn oxidizes proteins, lipids, and
nucleic acids, inside (and outside) the mitochondria, leading
to mitochondrial malfunction and cellular damage (Paradies
et al., 2000; Hamilton et al., 2001; Short et al., 2005; Miyoshi
et al., 2006; Zorov et al., 2014; Redza-Dutordoir and Averill-
Bates, 2016). Furthermore, mitochondria serve as an origin
of damage associated molecular patterns (DAMP) and in
particular mitochondrial DNA (mtDNA), which, once released
from mitochondria into the cytosol, can trigger inflammatory
responses (Iyer et al., 2009, 2013; Tschopp, 2011; Nakahira et al.,
2015; West et al., 2015; Contis et al., 2017).

During aging a wide spectrum of alterations in mitochondrial
structure and function can occur. Thus, although cellular
antioxidants and free radical scavenging enzymes eliminate
most of the generated ROS, a small proportion that escapes
clearance can oxidize proteins, lipids and DNA, particularly
within the mitochondria. The resulting mutational damage
accumulates over lifetime, in particular affecting respiratory
chain complexes, which itself results in the overproduction
of ROS, forming a vicious cycle that ultimately leads to
mitochondrial dysfunction (Greco et al., 2003; Petersen et al.,
2003; Short et al., 2005; Lee and Wei, 2012). Morphologically,
aging in flies and mammalians manifests with the enlargement
of mitochondria, irregular cristae shape and size as well as a
decrease in mitochondrial number (Miquel et al., 1980; Terman
and Brunk, 2005; Yoon et al., 2006; Leduc-Gaudet et al., 2015).
Functionally, OXPHOS activity, and thus ATP synthesis declines
with age while ROS production increases in aged animals
(Lee and Wei, 2012). As a result, it is not surprising that
mtDNA deletions and mutations are detected in tissues from
aged animals and humans (Fayet et al., 2002; Eshaghian et al.,
2006; Trifunovic, 2006; Lee and Wei, 2012). Consistent with
these observations, mtDNA mutator mice that express a proof-
reading-deficient version of the mitochondrial DNA polymerase
G (POLG) show reduced lifespan and exhibit a premature onset
of aging-associated phenotypes including weight loss, reduced
subcutaneous fat, alopecia (hair loss), kyphosis (curvature of
the spine), osteoporosis, anemia, reduced fertility, and heart
enlargement (Trifunovic et al., 2004).

Macroautophagy, which is generally referred to as autophagy,
is a conserved intracellular degradation mechanism that
removes dangerous, unnecessary or dysfunctional cytoplasmic
constituents and invading microbes (Mizushima, 2007; Schuck
et al., 2014; Dou et al., 2015; Mochida et al., 2015; Chai et al.,
2019). Autophagic activity declines during aging, and autophagy
is required for lifespan extension by caloric restriction or caloric
restriction mimetics (CRM) such as resveratrol, spermidine, and
several chalcones (Eisenberg et al.; Rubinsztein et al., 2011;
Lopez-Otin et al., 2016; Madeo et al., 2018; Carmona-Gutierrez
et al., 2019). Although the relation between autophagy and
aging has been firmly established as an important mitochondrial
quality control mechanism, the role of mitophagy in aging
and age-related disorders has remained elusive for a long time.
However, recent studies have shown that mitophagy has a
key function in delaying aging and age-related disorders such
as neurodegenerative disorders, cardiovascular pathologies, and
cancer. Here, we provide an update on mechanisms that control

mitophagy, its role in aging and therapeutic interventions that
harness mitophagy to treat age-related disorders.

MOLECULAR MECHANISMS OF
MITOPHAGY

Mitophagy shares the core molecular machinery with general
macroautophagy and can occur in an either selective or non-
selective fashion (Levine and Kroemer, 2019). Thus, during
nutrient starvation mitochondria were found in autophagosomes
together with cytosolic proteins and organelles such as ER and
peroxisomes indicative for non-selective mitophagy (Kopitz
et al., 1990; Takeshige et al., 1992; Scott and Klionsky, 1998;
Kim et al., 2007; Figure 1). Studies in yeast revealed that
mitochondria can be selectively degraded by mitophagy, a
process that involves the outer mitochondrial membrane
protein SUN family protein Uth1 (Uth1), and type 2C
protein phosphatase Ptc6 (Ptc6, better known as Aup1), a
phosphatase localizing in the mitochondrial intermembrane
space (Petros et al., 1991; Kissova et al., 2004). Mitophagy has
been shown to occur under a series of potentially harmful
conditions, such as oxidative stress, hypoxia, mitochondrial
transmembrane potential loss, the accumulation of unfolded
proteins and iron starvation. Moreover, impaired mitophagy
and dysfunctional mitophagic mechanisms were associated
with numerous physiological and pathological processes
including development, differentiation, aging, neurodegenerative
disorders, cardiovascular pathologies and cancer.

PINK1 AND PARKIN-REGULATED
MITOPHAGY

Mutations in PTEN-induced putative kinase 1 (PINK1)
and parkin RBR E3 ubiquitin protein ligase (PRKN, better
known as Parkin) are associated with autosomal recessive
juvenile parkinsonism characterized by motor disturbances
and dopaminergic neurodegeneration. Later, genetic analysis
showed the molecular mechanism which links PINK1 and
Parkin in a common pathway regulating mitophagy, with
PINK1 sensing mitochondrial transmembrane potential loss,
followed by the recruitment of the E3 ubiquitin ligase Parkin
to damaged organelles (Clark et al., 2006; Park et al., 2006). In
healthy state, PINK1 led by an N-terminal targeting sequence
is imported into mitochondria through the translocase of the
outer mitochondrial membrane (TOM) and the translocase of
the inner mitochondrial membrane (TIM) complexes, where it is
cleaved by matrix processing peptidase (MPP) and presenilins-
associated rhomboid-like protein (PARL) (Jin et al., 2010; Deas
et al., 2011; Meissner et al., 2011; Greene et al., 2012). Cleaved
PINK1 is retro-translocated and released into the cytosol for
proteasomal degradation (Yamano and Youle, 2013). However,
the loss of mitochondrial transmembrane potential in damaged
mitochondria abolishes cleavage, and stabilizes PINK1 on the
outer mitochondrial membrane. Recently, the adenine nucleotide
translocator (ANT) complex was reported to stabilize PINK1 by
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FIGURE 1 | Non-selective mitophagy. Mitophagy shares the core molecular machinery with general macroautophagy and can occur in a non-selective fashion. Thus,
mitochondria are engulfed during the nucleation and elongation phase into the forming phagophore together with other cellular content such as protein aggregates,
endoplasmic reticulum (ER) derived structures and invasive bacteria. The fusion of the phagosome with lysosomes leads to the formation of the autophagolysosome
and the degradation of its content.

inhibiting the pre-sequence translocase TIM23 independently of
its nucleotide translocase catalytic activity (Hoshino et al., 2019).

The accumulation of full length PINK1 leads to the
phosphorylation (on serine 65) of pre-existing ubiquitin
molecules, which are already attached to the outer mitochondrial
membrane. Phosphorylated ubiquitin in turn recruits cytosolic
Parkin to the mitochondrial membrane and triggers the
activation of its ubiquitin ligase activity (Koyano et al.,
2014; Wauer et al., 2015). Furthermore, PINK1-dependent
phosphorylation of the ubiquitin-like domain of Parkin
(Kondapalli et al., 2012; Shiba-Fukushima et al., 2012; Iguchi
et al., 2013; Kane et al., 2014) leads to the release of the
catalytic RING2 domain and locks Parkin in a functionally
active state. Activated Parkin exhibits low substrate specificity
and ubiquitylates outer mitochondrial membrane proteins
including voltage-dependent anion-selective channel (VDAC)
and mitochondrial Rho GTPase (MIRO) proteins (Sarraf et al.,
2013; Ordureau et al., 2014; Gladkova et al., 2018).

Studies in cardiomyocytes demonstrated that PINK1
phosphorylates (at serine 442 and threonine 111) mitofusin
2 (MFN2), a GTPase that mediates mitochondrial fusion,
which in turn mediates the recruitment of Parkin to damaged
mitochondria for mitophagy initiation (Chen and Dorn, 2013;
Xiong et al., 2019). Furthermore, it has been suggested that
mitochondrial fission might be yet another prerequisite for
the initiation of mitophagy. Thus, it was reported that Parkin,
among other substrates, ubiquitylates mitofusin 1 (MFN1) and
MFN2, leading to their proteasomal degradation, and subsequent
mitochondrial fission preceding mitophagy, while the inhibition
of mitochondrial fission prevented Parkin-induced mitophagy
(Tanaka et al., 2010). Parkin-mediated poly-ubiquitination of
outer mitochondrial membrane proteins triggers the recruitment
of autophagy receptors such as optineurin (OPTN), calcium
binding and coiled-coil domain 2 (CALCOCO2, better known as
NDP52) and Tax1 binding protein 1 (TAX1BP1), concomitantly
with the activation of the TANK binding kinase 1 (TBK1) that
phosphorylates OPTN (at serine 177, 473, and 513) further
enhancing its ubiquitin chain binding ability (Wild et al., 2011;
Wong and Holzbaur, 2014; Heo et al., 2015; Lazarou et al., 2015).
Once recruited to the mitochondria, autophagy receptors can
employ initiator proteins from the autophagic machinery such
as unc-51 like autophagy activating kinase 1 (ULK1), zinc finger

FYVE-type containing 1 (ZFYVE1, better known as DFCP1)
and WD repeat domain, phosphoinositide interacting 1 (WIPI1,
also known as ATG18) to assemble the autophagosome (Wong
and Holzbaur, 2014; Lazarou et al., 2015; Ravenhill et al., 2019;
Turco et al., 2019; Vargas et al., 2019) and ATG8s, which could
further recruit autophagy receptors to amplify mitophagy signals
(Padman et al., 2019). The key function of the ULK1-containing
complex for selective autophagy has been recently discussed
elsewhere (Turco et al., 2020). Additionally, independently
of Parkin, PINK1 may recruit NDP52 and optineurin to
mitochondria to directly stimulate mitophagy (Lazarou et al.,
2015). It has also been suggested that Parkin mediates the broad
proteasomal degradation of outer mitochondrial membrane
proteins which leads to membrane rupture and the exposure of
the mitophagy receptor prohibitin 2 (PHB2) (Chan et al., 2011;
Wei et al., 2017). Conversely, PHB2 can promote PINK1/Parkin-
dependent mitophagy by inhibiting the function of PARL and the
resultant stabilization of PINK1 on the surface of mitochondria
(Yan et al., 2019). However, cells deficient of all Atg8 family
members could still undergo mitophagy although the overall size
of mitophagosomes is smaller (Nguyen et al., 2016).

Although mutations or deletions of Parkin or PINK1 cause
Parkinson disease in humans, mice deficient in either PINK1
or Parkin do not display any related phenotype. However,
accumulating evidence shows that Parkinson’s disease is
accompanied by immune responses that lead to an increase in
serum levels of pro-inflammatory cytokines such as interleukin-6
(IL6), tumor necrosis factor alpha (TNFα), interleukin-1β

(IL1B), and interferon gamma (IFNG) (Brodacki et al., 2008;
Koziorowski et al., 2012; Lindqvist et al., 2012; Dzamko
et al., 2015; Houser and Tansey, 2017; Caggiu et al., 2019).
Consistently, the challenge of PINK1 or Parkin deficient mice
with immunogenic stress leads to the onset of Parkinson disease-
like symptoms (Frank-Cannon et al., 2008; Sliter et al., 2018;
Matheoud et al., 2019). Thus, administration of low-dose
lipopolysaccharide (LPS) can cause subtle fine-motor deficits
and selective loss of dopaminergic neurons in substantia nigra in
Parkin deficient mice, although LPS treatment triggered similar
persistent neuroinflammation in both wild type and Parkin−/−

mice (Frank-Cannon et al., 2008). The loss of dopaminergic
neurons and motoric defects also occur in aged Parkin−/−;
mutator mice (Sliter et al., 2018), which accumulate mutations
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in mtDNA, as well as in Pink1−/− mice that were orally
infected with Gram-negative bacteria (Matheoud et al., 2019). In
macrophages, dysfunctional mitochondria are marked by Parkin-
dependent ubiquitylation and then recognized by sequestosome
1 (SQSTM1, better known as p62), which is transcriptionally
upregulated by nuclear factor kappa B (NF-κB), followed by
mitochondrial clearance via mitophagy. This NF-κB and p62-
dependent mitophagy pathway prevents excessive inflammation
by restraining NLRP3-inflammasome overactivation (Zhong
et al., 2016). Moreover, mtDNA released from damaged
mitochondria can promote stimulator of interferon response
cGAMP interactor 1 (STING1)-dependent interferon regulatory
factor 3 (IRF3)-mediated signaling triggering inflammatory
response (West et al., 2015), while Parkin-mediated mitophagy
prevents inflammation by mitophagic mtDNA clearance (Sliter
et al., 2018). Additionally, PINK1 and Parkin signaling can
suppress inflammation by repressing mitochondrial antigen
presentation delivered by mitochondrial derived vesicles
(Matheoud et al., 2016).

The roles of PINK1 and Parkin in heart function have been
extensively studied. PINK1 protein levels significantly decrease
in humans with end-stage heart failure. PINK1 deficient mice
develop left ventricular dysfunction and pathological cardiac
hypertrophy, characterized by an increase in oxidative stress and
impaired mitochondrial function (Billia et al., 2011). Different
from PINK1, Parkin deficiency sensitizes mice to myocardial
infarction resulting in reduced overall survival. Morphologically,
Parkin deficiency manifests with a disorganized mitochondrial
network and a significant decrease in mitochondrial size.
Nevertheless, Parkin-deficient mice exhibit normal cardiac
function for up to 12 months of age (Kubli et al., 2013). In
response to cardiac ischemia, Parkin-mediated mitophagy is
induced to mitigate detrimental effects of a prolonged lack
of oxygen supply in the heart of wild type mice, indicating
the important role of mitophagy for heart homeostasis (Kubli
et al., 2013). Simvastatin, an HMG CoA reductase inhibitor
used to lower low-density lipoprotein (LDL) and triglycerides
levels and thus to prevent heart attack, can stimulate Parkin-
dependent mitophagy. Simavastin has the ability to reduce
the size of the infarction caused by ischemia/reperfusion in
wild-type mice but not in Parkin-deficient animals (Andres
et al., 2014). Interestingly, mtDNA released from damaged
mitochondria triggers inflammatory responses in cardiomyocytes
that culminate in myocarditis and dilated cardiomyopathy (Oka
et al., 2012). Moreover, Parkin mediated mitophagy turns over
fetal cardiomyocyte mitochondria to facilitate the replacement
of mature adult mitochondria, an effect that likely contributes to
the perinatal maturation of cardiac metabolism (Kageyama et al.,
2014; Gong et al., 2015; Lampert et al., 2019).

FUNDC1-MEDIATED MITOPHAGY

FUN14 domain containing 1 (FUNDC1) is an outer
mitochondrial membrane protein with three transmembrane
domains, which serves as a mitophagy receptor in mitochondrial
uncoupling-, and hypoxia-mediated mitophagy as well as

paternal mitochondrial clearance in C. elegans (Liu et al.,
2012; Chen et al., 2014; Lim et al., 2019). FUNDC1 contains
a conserved microtubule associated protein 1 light chain 3
beta (MAP1LC3B better known as LC3)-interacting region
(LIR) domain facing the cytosol, which is necessary for its
interaction with LC3, a key regulator of autophagy (Liu et al.,
2012). FUNDC1-deficiency blocks hypoxia-induced mitophagy,
which can be rescued by re-expressing wild-type FUNDC1 but
not with a LIR-mutated protein, indicating a key role of LIR-
mediated LC3 interaction in FUNDC1 activity (Liu et al., 2012).
Indeed, FUNDC1 is constitutively phosphorylated (at tyrosine
18 and serine 13) by the protein kinases SRC proto-oncogene,
non-receptor tyrosine kinase (SRC) and casein kinase 2 (CK2),
respectively, which reduces its interaction with LC3 (Liu et al.,
2012; Chen et al., 2014). Upon hypoxia or loss of mitochondrial
transmembrane potential, dephosphorylation (of tyrosine 18 and
serine 13) mediated by the mitochondrial phosphatase PGAM
family member 5 (PGAM5) and concomitant phosphorylation
(of serine 17) by ULK1 enhances the interaction of FUNDC1
with LC3 to promote mitophagy (Liu et al., 2012; Chen et al.,
2014; Wu W. et al., 2014). However, the phosphatase responsible
for (tyrosine 18) dephosphorylation remains elusive.

The activity of PGAM5 is fine-tuned to regulate FUNDC1-
mediated mitophagy, thus during homeostasis PGAM5 activity
is inhibited by BCL2-like 1 (BCL2L1 better known as BCL-XL),
and the degradation of BCL-XL induced by hypoxia leads to the
dephosphorylation of FUNDC1 and the induction of mitophagy
(Wu H. et al., 2014). Under oxidative stress conditions, PGAM5
forms multimers to release BCL-XL, which in turn is followed
by an increase in BCL-XL phosphorylation and ultimately
leads to apoptosis. Once liberated from BCL-XL sequestration,
multimeric PGAM5 is able to dephosphorylate FUNDC1, to
augment mitochondrial fission and induce mitophagy. Thus,
the reciprocal interaction between PGAM5 with BCL-XL and
FUNDC1 may serve as a molecular switch between mitophagy
and apoptosis under oxidative stress conditions (Ma et al., 2019).
Recent studies suggested additional factors such as syntaxin
17 (STX17), a SNARE protein located in the mitochondria-
associated membranes (MAM) and mitochondria is also required
for PGAM5 to dephosphorylate FUNDC1 during mitophagy
(Sugo et al., 2018).

Moreover, in addition to this tight control, mitochondrial
dynamics participate in FUNDC1-mediated mitophagy.
Thus, it was reported that FUNDC1 interacts with both the
mitochondrial fission key factor dynamin 1 like (DNM1L, better
known as DRP1) and inner membrane fusion regulator OPA1
mitochondrial dynamin like GTPase (OPA1) to coordinate
mitochondrial dynamics and mitophagy. Mitophagic stress
stimulates the disassembly of the FUNDC1-OPA1 complex,
while enhancing the association of FUNDC1 with DRP1,
leading to mitochondrial fission, thus fostering mitophagy
(Chen et al., 2016). FUNDC1 was described to associate with
the ER protein calnexin (CANX) in mitochondria-associated ER
membranes (MAMs). During hypoxia, the association between
FUNDC1 and CANX is decreased, thereby liberating FUNDC1
for its interaction with DRP1, triggering mitochondrial
fission and mitophagy (Wu W. et al., 2016). Interestingly,
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membrane associated ring-CH-type finger 5 (MARCHF5)
can ubiquitylate FUNDC1 for proteasomal degradation, and
desensitize mitochondria to hypoxia-induced mitophagy thus
constituting a negative regulation mechanism at early stages of
hypoxia (Chen et al., 2017).

The physiological role of FUNDC1 has been studied
in detail and it has been shown that FUNDC1 plays an
important role in liver cancer and obesity. In a mouse
model of human hepatocellular carcinoma (HCC) induced
by the chemical carcinogen, diethylnitrosamine (DEN), liver
specific knockout of FUNDC1 facilitates the cytosolic release
of mtDNA due to a defect in mitophagy, resulting in
an accumulation of dysfunctional mitochondria, an elevated
release of proinflammatory cytokines, such as IL1B and
hyperproliferation of hepatocytes, finally culminating in the
initiation and progression of DEN-induced HCC (Li et al., 2019).
Furthermore, skeletal-muscle-specific knockout of FUNDC1
impairs mitochondrial energetics and negatively affects physical
fitness. However, FUNDC1 deficiency decreases the susceptibility
to high-fat-diet-induced obesity with improved insulin sensitivity
and glucose tolerance. In fact, FUNDC1 deficiency elicits a
retrograde response in muscle with an upregulation of fibroblast
growth factor 21 (FGF21) expression, and thereby promotes
the thermogenic remodeling of adipose tissue (Fu et al.,
2018). FUNDC1 and BCL2 interacting protein 3 like (BNIP3L,
better known as NIX) but not PINK1/Parkin-dependent
mitophagy facilitates the removal of impaired mitochondria and
thus maintains mitochondrial network reorganization during
cardiac progenitor cell (CPC) differentiation. Interestingly,
mice expressing a proofreading-defective mitochondrial DNA
polymerase G gamma (PolGD257A/D257A), experience premature
aging and develop accelerated age-related cardiomyopathy due to
the accumulation of mtDNA mutations (Lampert et al., 2019).

BNIP3 AND NIX-DEPENDENT
MITOPHAGY

BCL2 interacting protein 3 (BNIP3) and NIX, belong to the BH3
only domain proteins of the BCL2 family, which localize at the
outer mitochondrial membrane and are involved in stress sensing
and the induction of cell death when cellular stress prevails
(Zhang and Ney, 2009). More recently, the role of BNIP3 and NIX
in autophagy has been extensively studied. Both BNIP3 and NIX
are hypoxia-inducible genes (Bruick, 2000; Sowter et al., 2001;
Kubasiak et al., 2002), and play an important role in hypoxia-
induced macroautophagy and mitophagy (Zhang and Ney, 2009).
An increase in BNIP3 protein levels can lead to the liberation of
Beclin1 (BECN1) from BCL2 apoptosis regulator (BCL2) and/or
BCL-XL sequestration to initiate mitophagy, to prevent ROS
production and subsequent cell death (Zhang et al., 2008).

NIX is known for its prominent function in the mitophagy-
dependent maturation of red blood cells. Mammalian erythroid
cells undergo enucleation and the removal of organelles during
terminal differentiation, in which the maturation process of
enucleated immature reticulocytes to erythrocyte necessitates
complete mitochondrial clearance depending on NIX (Schweers

et al., 2007; Sandoval et al., 2008). During erythrocyte
differentiation NIX expression is significantly increased, and
leads to a decrease in mitochondrial transmembrane potential
and the induction of mitophagy (Aerbajinai et al., 2003). Cells
from Nix-deficient mice exhibit defects in the incorporation of
mitochondria into autophagosomes and further autophagosomal
maturation (Schweers et al., 2007; Sandoval et al., 2008).
Furthermore, the elimination of mitochondria does not require
the core autophagic gene ATG5, but depends on the autophagic
kinase ULK1, indicating a specific function of ULK1 in
mitophagy during red blood cell maturation (Kundu et al., 2008;
Honda et al., 2014).

Mechanistic analysis indicated that NIX functions as a
mitophagy receptor that interacts with LC3 via its LIR domain
and thus recruits LC3 family proteins to damaged mitochondria.
Ablation of the NIX-LC3/GABA type A receptor-associated
protein (GABARAP) interaction retards mitochondrial clearance
in maturing murine reticulocytes (Novak et al., 2010). Similarly,
the mutation of the LIR motif within the BNIP3 gene leads to
the ablation of BNIP3-LC3 interaction and impairs mitophagy
and ERphagy, although it does not affect the pro-death activity
of BNIP3 (Hanna et al., 2012). Interestingly, the interaction of
BNIP3 and NIX with LC3 are fine-tuned by the phosphorylation
state of moieties adjacent to the LIR domain. Thus, the
phosphorylation of serine 17 and serine 24 flanking the BNIP3
LIR motif promotes its binding affinity to LC3 and GABA type
A receptor associated protein like 2 (GABARAPL2) (Zhu et al.,
2013). Likewise, phosphorylation of NIX (at serine 34 and 35)
in close proximity to the LIR stabilizes the NIX-LC3 complex
and enhances autophagosomal recruitment to mitochondria
(Rogov et al., 2017). However, the kinases and phosphatases
specific for BNIP3 and NIX phosphorylation remain elusive.
Moreover, high oxidative phosphorylation activity leads to the
recruitment of the small GTPase Ras homolog, mTORC1 binding
(RHEB) to the mitochondrial outer membrane which promotes
mitophagy through physical interaction with NIX and LC3
(Melser et al., 2013).

In several human cancer types, including hematological
malignancies, lung, breast, gastric, pancreatic, and liver cancer,
the epigenetic silencing of BNIP3 expression is reported to
correlate with invasiveness and metastasis (Okami et al., 2004;
Koop et al., 2009; Chourasia et al., 2015). Conversely, some
studies indicate that BNIP3 and NIX are upregulated in human
breast ductal carcinoma in situ, which manifest with high-grade,
necrotic lesions and invasive tumors (Sowter et al., 2001, 2003).
In malignant glioma cells, ceramide induces autophagic cell
death via lethal mitophagy (Sentelle et al., 2012), through the
activation of BNIP3 (Daido et al., 2004). However, the role
of BNIP3- and NIX-mediated mitophagy in cancer has to be
carefully reevaluated, considering the fact that BNIP3 and NIX
are proapoptotic BH3-only proteins. Furthermore, the expression
of BNIP3 is upregulated in post-natal ventricular myocytes and
adult rat hearts subjected to hypoxia, and in animals that exhibit
a chronic heart failure, which is associated with myocardial
cell death. Both the pan-caspase inhibitor z-VAD-fmk and the
mitochondrial permeability transition pore (MPTP) inhibitor
bongkrekic acid prevent BNIP3-induced mitochondrial defects
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and cell death (Regula et al., 2002). In yet another ischemia
model, hypoxia upregulates mRNA and protein levels of BNIP3,
while acidosis stabilizes the protein and increases its association
with mitochondria for the induction of cell death (Kubasiak et al.,
2002). In ischemia induced injury, BNIP3 is engaged in pro-
death signaling, whereas its role in mitophagy in this setting
needs further investigation (Hamacher-Brady et al., 2007). It
has been reported that mitophagy is significantly impaired in
neurodegenerative disorders such as Alzheimer’s disease (AD)
and Ataxia telangiectasia (A-T), while mitophagy stimulation
induces beneficial effect including an increase in cognition and
an extended lifespan in a NIX- or PINK1 and Parkin-dependent
manner (Fang et al., 2016, 2019). Mitophagy restoration enhances
the phagocytic efficacy of microglia to diminish the aggregation of
insoluble amyloid-β, and thus reduces pro-inflammatory factors
such as IL6 and TNFA while increasing the anti-inflammatory
cytokine interleukin-10 (IL10) which has been shown to promote
mitophagy in macrophages (Ip et al., 2017; Fang et al., 2019).

ATG32/BCL2L13-CONTROLLED
MITOPHAGY

In yeast, mitophagy selectively occurs in post-log phase cells
under respiratory conditions. Mitophagy protein Atg32 (Atg32)
is a transmembrane protein imbedded in the outer mitochondrial
membrane with a ubiquitin-like protein Atg8 (Atg8) interacting-
motif (AIM) for the recruitment of autophagosomes (Okamoto
et al., 2009). In addition, Atg32 interacts with the adaptor
autophagy protein Atg11 (Atg11) to facilitate the incorporation
of mitochondria into the nascent autophagic vacuole (Kanki
et al., 2009). The activity of Atg32 is additionally regulated
via proteolytical cleavage by the mitochondrial i-AAA protease
Yme1 (Yme1), which is essential for the interaction between
Atg32 and Atg11 and the induction of mitophagy (Wang
et al., 2013). Atg32 activity is further fine-tuned via the
phosphorylation at Ser114 and Ser119 by casein kinase 2
(CK2) downstream of the mitogen-activated protein kinases
(MAPK) Hog1 and Pbs2 to promote its interaction with Atg11
(Aoki et al., 2011; Mao et al., 2011; Kanki et al., 2013).
Alternatively, yet another MAPK signaling pathway implicating
Slt2 can regulate both mitophagy and the selective degradation
of peroxisomes (pexophagy), although the mechanism remains
elusive (Mao et al., 2011). Mitochondrial dynamics appear to
constitute another regulatory instance for the induction of
mitophagy in yeast. Thus, Atg11 recruits the fission machinery
to mitochondria via its interaction with Dnm1 to segregate
degrading mitochondria from the network for mitophagy
(Mao et al., 2013). The mammalian homolog of Atg32 has
been identified as Bcl-2-like protein 13 (BCL2L13), which
also contains a LIR domain to interact with LC3 and can
induce mitophagy in mammalian cells and Atg32 deficient yeast
(Murakawa et al., 2015, 2019). A recent study indicated that
Atg32 might be implicated in age asymmetry between the mother
and daughter cells in yeast (Jiang et al., 2019). However, the
detailed roles of Atg32 and/or BCL2L13 in aging and age-related
diseases need further research.

OTHER MITOPHAGY RECEPTORS

During recent years with increasing interest in the exploration of
mitophagy, additional mitophagy receptors have been identified
to mediate mitophagy including autophagy and beclin 1
regulator 1 (AMBRA1), which acts in a PARKIN- and p62-
independent manner (Di Rita et al., 2018; Strappazzon et al.,
2019), FK506 binding protein 8 (FKBP8) that specifically
interacts with microtubule associated protein 1 light chain 3
alpha (MAP1LC3A better known as LC3A) and thus facilitates
mitophagy (Bhujabal et al., 2017), and NLR family member
X1 (NLRX1) which contains an LIR domain and is harnessed
by Listeria during infection to induce mitophagy for its
survival in macrophages (Zhang et al., 2019). Interestingly,
upon mitochondrial depolarization, 4-nitrophenylphosphatase
domain and non-neuronal SNAP25-like protein homolog 1
(NIPSNAP1) and NIPSNAP2 translocate from the mitochondrial
matrix to the surface of the organelle and recruit autophagy
receptors and ATG8 proteins for mitophagy. It is worthy to note
that NIPSNAP1-deficient zebrafish larvae display parkinsonian
phenotypes, including the loss of tyrosine hydroxylase (Th1)-
positive dopaminergic (DA) neurons, reduced motor activity, and
increased oxidative stress, as well as reduced mitophagy in the
brain (Princely Abudu et al., 2019).

Lipids can also function as mitophagy receptors by interacting
with LC3. Thus, ceramide has been reported to target
autophagolysosomes to mitochondrial membranes and provoke
lethal mitophagy (Sentelle et al., 2012). However, in acute myeloid
leukemia (AML) cells, ceramide synthesis is suppressed by
Fms-like tyrosine kinase 3 (FLT3)-internal tandem duplication
(ITD) signaling, which confers its resistance to cell death.
Molecular or pharmacologic inhibition of FLT3-ITD in AML
cells reactivated ceramide synthesis, mitochondrial division,
mitophagy and cell death, indicating a potential application
for the therapeutic induction of mitophagy in cancer (Dany
et al., 2016). While cardiolipin, a phospholipid mainly localized
at the inner mitochondrial membrane, can externalize to the
outer membrane and serve as a mitophagy receptor in neuronal
cells (Chu et al., 2013). Cardiolipin mediated mitophagy has
been shown to play an important role in traumatic brain injury
(TBI) by removing damaged mitochondria thus mitigating ROS
overproduction and decreasing apoptosis (Chao et al., 2019).

PIECEMEAL MITOPHAGY

Besides the wholesale mitophagy described above, a piecemeal
mitophagy mechanism exists to deliver small vesicles budded
off from mitochondria to lysosomes for degradation, which is
important for the maintenance of mitochondrial homeostasis
(Figure 2). In a screen aiming at the identification of autophagic
protein substrates, metaxin1 (MTX1) was shown to be degraded
by piecemeal mitophagy, in which MTX1-containing vesicles are
segregated from mitochondria and then degraded by lysosomes
in a microtubule associated protein 1 light chain 3 gamma
(MAP1LC3C better known as LC3C)- and p62-dependent
manner (Le Guerroue et al., 2017). When mitochondria
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FIGURE 2 | Piecemeal mitophagy. Mitophagy can occur through the formation of mitochondria-derived vesicles (MDV), which in turn are degraded by the
autophagic machinery in a piecemeal fashion.

face unfolded protein stress, PINK1 and Parkin facilitate
a DRP1-dependent segregation of mitochondrial subdomains
from the network for degradation by mitophagy to prevent
proteotoxicity spreading (Burman et al., 2017). Furthermore,
under oxidative stress, TOMM20 positive mitochondrial derived
vesicles deliver oxidized proteins to lysosomes for degradation
(Soubannier et al., 2012a,b). Strikingly, this process does not
require ATG5 or LC3, but is driven by PINK1 and Parkin
and depends on syntaxin 17 (STX17) to mediate the fusion
between vesicles and endolysosomes (Soubannier et al., 2012a;
McLelland et al., 2014, 2016).

THE ROLE OF MITOPHAGY IN AGING

Heteroplasmy of mtDNA is a hallmark of aging. The
homogeneity of mtDNA in newborn life is ensured by the
selective removal mechanism of deleterious mtDNA in the
female germline (Lieber et al., 2019) and paternal mitochondrial
removal after fertilization (Al Rawi et al., 2011; Sato and
Sato, 2011; Politi et al., 2014; Rojansky et al., 2016; Sato
et al., 2018), in both of which mitophagy is highly involved.
As mtDNA mutations and deletions accumulate with age,
which are associated with a variety of diseases, such as cancer,
neurodegenerations, and cardiovascular diseases (Liu et al.,
1996; Petros et al., 2005; Sharma et al., 2005; Wallace, 2005;
Turnbull et al., 2010), mitochondrial respiration activity and
mitochondrial function are damaged, which lead to decreased
mitochondrial potential. It has been reported that Parkin is
recruited to mitochondria with low potential and required for
the mitophagic degradation of malfunctional mitochondria
with mtDNA mutations (Gilkerson et al., 2012). And long-
term overexpression of Parkin can increase the ratio between
the mitochondria with wild type mtDNA and the ones with
deleterious COXI mutations (Suen et al., 2010). Interestingly,
in mice, even heteroplasmy of normal mtDNA leads to reduced
activity, food intake, respiratory exchange ratio; accentuated
stress response; and cognitive impairment (Sharpley et al.,
2012), which might be related to the absence of mitophagy-
dependent elimination of paternal mitochondria. Although
mitochondria are mostly of maternal origin, resulting from
the mitophagy-dependent clearance of paternal mitochondria,
exceptional cases are reported in human (Luo et al., 2018),

sheep (Zhao et al., 2001), mouse (Gyllensten et al., 1991), and
drosophila (Nunes et al., 2013; Dokianakis and Ladoukakis,
2014) in which paternal inheritance of mtDNA and thus mtDNA
heteroplasmy exist. In C. elegans, mitophagy-dependent paternal
mitochondrial elimination has been extensively studied, and
delayed clearance of paternal mitochondrial after fertilization
leads to an increase in embryonic lethality (Zhou et al., 2016).
However, the effect of normal mtDNA heteroplasmy on aging
needs further research.

The involvement of mitophagy in aging has been extensively
studied in C. elegans. Mitophagy mediated by dct-1, the ortholog
of NIX, plays an important role during C. elegans aging.
Mitochondria accumulate with age in wild type worms, and
deficiency in dct-1, as well as the autophagy key gene bec-
1, recapitulates the effect of aging on mitochondrial mass
in young adult animals. Pronounced induction of mitophagy
was observed in long-lived daf-2 mutants, and impairment
of mitophagy by knockdown of dct-1, pink-1, and pdr-1 (the
nematode Parkin homolog) significantly shortens the lifespan of
daf-2 mutants. In fact, dct-1 is transcriptionally induced under
the control of skn-1 and daf-16 [the nematode homolog of
mammalian nuclear factor, erythroid 2 like 2 (NFE2L2, better
known as NRF2) and forkhead box O3 (FOXO3), respectively]
to remove dysfunctional mitochondria via mitophagy and
coordinate mitochondrial biogenesis and mitophagy (Palikaras
et al., 2015). Mitochondrial biogenesis and mitophagy may
cooperate to antagonize the aging process (Palikaras et al.,
2015; Fang et al., 2017). Interestingly, tomatidine, a natural
compound abundant in unripe tomatoes, inhibits age-related
skeletal muscle atrophy in mice and extends health- and life-
span in C. elegans. Mechanistic analysis showed that tomatidine
stimulates mitochondrial biogenesis and PINK1- and DCT1-
related mitophagy and increases healthspan (Fang et al., 2017).
Moreover, dct-1, pink-1, and pdr-1 are engaged in lifespan
extension induced by mild mitochondrial stress achieved by
frataxin depletion-induced iron-starvation in C. elegans (Schiavi
et al., 2015). Excessive iron chelation also stimulates mitophagy
in mammalian cells, which however does not require PINK1 or
Parkin activation but depends on glycolysis (Allen et al., 2013).

Exercise has long been known to promote healthy aging
and decrease the susceptibility to age-related diseases probably,
depending on the induction of autophagy (He et al., 2012;
Escobar et al., 2019). Mitophagy may also be involved in the
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beneficial effects of exercise. A recent study has shown that
exercise activates the AMPK-ULK1 cascade to provoke the
removal of damaged mitochondria via mitophagy. Moreover,
exercise improves glucose tolerance in wild type mice but not in
ULK1 deficient mice (Laker et al., 2017).

Caloric restriction is yet another way to extend healthy
lifespan. Similar to exercise, nutrient deprivation activates the
AMPK-ULK1 cascade that is required for mitophagy to remove
damaged mitochondria and promote cellular survival (Egan et al.,
2011). Nutrient starvation causes the rapid depletion of cytosolic
acetyl-coenzyme A, and subsequently reduces the activity of the
acetyltransferase E300, which is known to acetylate ATG proteins
and to inhibit their pro-autophagic function (Lee and Finkel,
2009; Marino et al., 2014). The depletion of general control
of amino acid synthesis 5-like 1 (GCN5L1), a component of
the mitochondrial acetyltransferase machinery that counteracts
deacetylation mediated by SIRT3 (Scott et al., 2012), results in
p62 and Atg5-mediated mitochondrial autophagy (Webster et al.,
2013). Furthermore, the depletion of GCN5L activates both the
transcription factor EB (TFEB), which is a master regulator
of autophagy, and PPARγ coactivator 1α (PGC-1α), which
controls mitochondrial biogenesis, coordinating the turnover and
biogenesis of mitochondria (Scott et al., 2014).

Due to the difficulties to maintain long-term caloric
restriction, the concept of caloric restriction mimicry has been
developed (Madeo et al., 2019). The intracellular concentration of
spermidine, a natural polyamine and prototype caloric restriction
mimetic (CRM), declines during aging, and the administration
of spermidine can extend the lifespan of yeast, flies and worms,
and human immune cells (Eisenberg et al., 2009). Interestingly,
spermidine stimulates mitophagy in cardiomyocytes of both
young and aged mice, which might impinge on spermidine-
mediated cardioprotection (Eisenberg et al., 2016). However, the
role of mitophagy in spermidine induced lifespan extension needs
further investigation. Aspirin, another CRM, induces autophagy
by inhibiting EP300 and stimulates mitophagy in the heart of
mice (Pietrocola et al., 2018). Additionally, dct-1, the C. elegans
ortholog of the mammalian mitophagy receptor NIX and BNIP3,
mediates longevity and mitophagy in nematodes (Palikaras
et al., 2015), and silencing of dct-1 abolished aspirin induced
autophagy in C. elegans (Pietrocola et al., 2018). Different from
spermidine and aspirin which stimulate autophagy by inhibiting
acetylase EP300, induction of autophagy by resveratrol, a
naturally occurring polyphenol (and yet another CRM), requires
the nicotinamide adenine dinucleotide–dependent deacetylase
sirtuin 1 (SIRT1) (Morselli et al., 2011). Apparently, resveratrol
has the capacity to induce mitophagy through increasing the
expression of PINK1, Parkin, and Beclin1, and AMPK activation
by resveratrol participates in neurodegenerative diseases, cerebral
ischemia, muscular dystrophy, and inflammation (Ferretta et al.,
2014; Wu J. et al., 2016; Sebori et al., 2018; Wang et al., 2018; Cao
et al., 2019; Pineda-Ramirez et al., 2019).

Additional compounds exert their lifespan extending effect
via mitophagy. Thus, urolithin A, the end-products of both
ellagitannins and ellagic acid, extends lifespan and improves
fitness during C. elegans aging and improves muscle function and
exercise capacity in rodents. In-depth analysis demonstrates that

mitophagy is required for the beneficial effect of urolithin A (Ryu
et al., 2016). Recently, it was reported that Urolithin A reverses
memory impairment through PINK1-, PDR1-, or DCT1-
dependent mitophagy in both amyloid-β (Aβ) and tau C. elegans
models of Alzheimer’s disease (Fang et al., 2019). A clinical
investigation suggests that urolithin A improves mitochondrial
and cellular health following regular oral consumption in humans
(Andreux et al., 2019). However, one report suggests that
urolithin A stimulates autophagy but not mitophagy to inhibit ER
stress in a model of ischemic neuronal injury (Ahsan et al., 2019).

Nicotinamide adenine dinucleotide (NAD) is a critical
metabolite involved in many physiological processes, including
metabolism, post-translational protein modification, and DNA
repair and its concentration is closely associated with aging. NAD
levels decrease with age, while the upregulation or replenishment
of NAD metabolism has been shown to exhibit beneficial
effects against aging and age-associated diseases (Li et al., 2001;
Mouchiroud et al., 2013; Yaku et al., 2018). Treatments that
increase intracellular NAD+ improve mitochondrial quality via
mitophagy and thus extend health- and life-span in Ataxia
Telangiectasia models and reverse cognitive deficits in models
of Alzheimer’s disease (Fang et al., 2016, 2019). Sirtuins, whose
activity depend on NAD+, may also participate in NAD+
administration stimulated mitophagy, and it appear that their
function declines with aging (Li et al., 2001; Mouchiroud et al.,
2013; Feldman et al., 2015; Kerr et al., 2017). Interestingly,
in response to oxidative stress, SIRT3, a mitochondrial sirtuin,
deacetylates the transcription factor FOXO3 to regulate BNIP3,
NIX and LC3 expression, thereby stimulating mitophagy as well
as mitochondrial biogenesis and dynamics (Tseng et al., 2013).

Rapamycin, an allosteric inhibitor of mechanistic target of
rapamycin (mTOR), prolongs life in yeast, worms, flies, and mice.
Rapamycin also prevents age-related conditions in rodents, dogs,
nonhuman primates, and humans (Blagosklonny, 2019). mTOR
is a critical nutrient sensor and has multiple downstream effects,
including protein synthesis, and autophagy. Recent studies
indicate that eliminating damaged mitochondria via mitophagy
may be one of the mechanisms responsible for the beneficial
effects of rapamycin. Tuberous sclerosis complex 2 (TSC2) is
upstream of mTOR and its inhibition leads to constitutive mTOR
activation. Interestingly, TSC2 deficiency impairs mitophagic

FIGURE 3 | Impact of Mitophagy on age-related pathologies. Mitophagy is a
key mechanism for mitochondrial quality and quantity control. Thus,
mitophagy limits the production of reactive oxygen species (ROS), the
accumulation of mutations in and the release of mitochondrial DNA (mtDNA),
appearance of transmembrane potential loss and the decrease in ATP
production. Taken together, mitophagy controls various factors that can drive
pathologies such as aging-related disorders and neurodegeneration,
cardiovascular disease and cancer.
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flux, as indicated by reduced expression of PINK1 and PARK2
translocation to uncoupled mitochondria, a defect that can
be restored with rapamycin administration (Bartolome et al.,
2017). Moreover, axonal and global mitophagy of damaged
mitochondria is impaired in neuronal in vitro and in vivo models
of tuberous sclerosis complex, contrasting with the fact that
blocking mTORC1 or inducing mTOR-independent autophagy
restores mitochondrial homeostasis (Ebrahimi-Fakhari et al.,
2016). In another study, rapamycin significantly enhanced
mitophagy by increasing the translocation of p62 and Parkin
to the damaged mitochondria in a mouse spinal cord injury
model (Li et al., 2018). Consistent with these findings, PINK1
and Parkin-dependent mitophagy is impaired and mTOR is
hyperactivated in primary human fibroblasts derived from
individuals with Down syndrome. In this context, inhibition
of mTOR using AZD8055 restores autophagic flux, as well as
mitophagy initiated by PINK1 and Parkin (Bordi et al., 2019).

PERSPECTIVES

Mitochondria are important for cellular life and death, implying
that mitochondrial homeostasis must be tightly controlled
and fine-tuned when cells respond to stress. Mitophagy is
the primordial mechanisms for mitochondrial quality and
quantity control and multiple mechanisms control this process.
Some studies indicate an ample crosstalk between different
mitophagy pathways that may coordinate and complement to
deal with environmental challenges. Nevertheless, the detailed
mechanism that link the different pathways in the complex
network of mitophagy control need further investigation
(Chen et al., 2014; Gao et al., 2015; Zhang et al., 2016).

Dysfunction of mitochondria is one of the major characteristics
of aging and age-related disease. Increasing evidence shows that
mitophagy (by removing damaged mitochondria) is significantly
involved in counterbalancing age-related pathological conditions
(Figure 3). Thus, chronic stimulation of mitochondrial turnover
by enhancing mitophagy is a promising approach to delay age-
related diseases and to extend health- and lifespan.
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