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Abstract

Brown algae are important primary producers and ecosystem engineers in the ocean, and Ectocarpus has been established as a
laboratory model for this lineage. Like most multicellular organisms, Ectocarpus is associated with a community of microorganisms, a
partnership frequently referred to as holobiont due to the tight interconnections between the components. Although genomic
resources for the algal host are well established, its associated microbiome is poorly characterized from a genomic point of view,
limiting the possibilities of using these types of data to study host—-microbe interactions. To address this gap in knowledge, we present
the annotated draft genome sequences of seventy-two cultivable Ectocarpus-associated bacteria. A screening of gene clusters
related to the production of secondary metabolites revealed terpene, bacteriocin, NRPS, PKS-t3, siderophore, PKS-t1, and homo-
serine lactone clusters to be abundant among the sequenced genomes. These compounds may be used by the bacteria to com-
municate with the host and other microbes. Moreover, detoxification and provision of vitamin B pathways have been observed in
most sequenced genomes, highlighting potential contributions of the bacterial metabolism toward host fitness and survival. The
genomes sequenced in this study form a valuable resource for comparative genomic analyses and evolutionary surveys of alga-
associated bacteria. They help establish Ectocarpus as a model for brown algal holobionts and will enable the research community to
produce testable hypotheses about the molecular interactions within this complex system.

Key words: brown algae, holobiont, alga-associated bacteria, biosynthetic gene clusters, detoxification, metabolic
networks.

Introduction (Cock et al. 2010), the possibility of cultivation in the lab,

Brown macroalgae are important primary producers and
major ecosystem engineers on marine rocky shores, pro-
viding both shelter and nutrients for other forms of life
(Brodie et al. 2017). They belong to the stramenopiles,
an evolutionarily distinct lineage from the Achaeplastida,
which comprise red and green algae as well as land plants
(Charrier et al. 2008) and are of commercial importance in
several regions of the world (Koru 2013; Raja et al. 2013;
Venkatesan et al. 2015). Ectocarpus is a genus of brown
algae that has been established as a laboratory model for
this lineage (Peters et al. 2004) due to its small genome

and its short life cycle.

Like most if not all multicellular eukaryotes, brown algae,
including Ectocarpus, are associated with bacteria (Paix et al.
2019). These interactions may be so intimate that the term
holobiont has been suggested to describe the functional unit
of a host and its associated microbiome (Zilber-Rosenberg and
Rosenberg 2008; Douglas and Werren 2016). For instance,
it has been estimated that approximately half of all algae
(including 49 out of 83 surveyed stramenopiles) rely on their
bacteria associated to provide them with vitamin B12
(Croft et al. 2005; Tang et al. 2010). In Ectocarpus, associated
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bacteria are known to provide functions related to develop-
mental transitions and growth of the algae (Pedersen 1968;
Tapia et al. 2016). Furthermore, they may impact their capac-
ity to tolerate environmental stressors (Dittami et al. 2016).

Collections of cultivable bacteria provide a valuable re-
source to study the mechanisms underlying these interactions,
and in Ectocarpus three recent papers describe the generation
of culture collections. In Ectocarpus siliculosus Tapia et al.
(2016) have reported the isolation of 9 bacterial strains, and
in Ectocarpus subulatus KleinJan et al. (2017) cultivated 46
strains corresponding to 33 different bacterial genera from
algal surfaces. An additional 95 strains corresponding to 27
different genera have also recently been isolated from field
material of E. subulatus (Dittami et al. 2019).

In present study, we describe genomic resources for 72 of
these cultivable Ectocarpus-associated bacteria. Sixty-two
genomes were sequenced specifically for this study, plus ten
previously sequenced genomes from the same culture collec-
tion (Burgunter-Delamare et al. 2019) were also included.
These genomes constitute a valuable resource both to study
the genomic adaptations of bacteria to life on the surface of
brown algae, but also to generate hypotheses on potential
beneficial interactions between the bacteria and their host,
for example, via metabolic complementarity-based
approaches (Frioux et al. 2018). They furthermore constitute
a first step toward filling a big gap in our current knowledge:
The fact that currently (September 2019), based on our re-
search through Marine Metagenomics Portal (Robertsen et al.
2017; Klemetsen et al. 2018), only ~100 draft and complete
bacterial genomes isolated from algae/seaweed are publicly
available in GenBank. Thus, the genomes from this study
could add a great amount of information to algal micro-
biomes and will promote other studies aiming to decipher
algal-microbial associations.

Materials and Methods

Bacterial Strains and DNA Extraction

Bacterial strains were isolated from a laboratory culture of
E.subulatus (strain CCAP 1310/19; KleinJan et al. 2017) as
well as from field samples of the same species (Dittami et al.
2019). Field samples were collected in March 2017 from two
locations along the Hopkins River, Victoria, Australia, a few
km upstream of Hopkins River falls, the original collection site
of strain CCAP 1310/19 (West and Kraft 1996): Framlingham
Forest reserve (-38.297064, 142.668291) and Kent's Ford
(-38.191574, 142.698058). All bacterial strains were identi-
fied by Sanger-sequencing of the 16S rDNA gene using the
8F and the 1492R primer pair (Weisburg et al. 1991). Bacteria
were grown on 90mm Petri dishes with R2A medium
(Reasoner and Geldreich 1985) Sigma-Aldrich at 19°C for
4-7 days. Subsequently, a single colony was selected and
grown at 25 °C in liquid R2A medium overnight. The bacterial

genomic DNA was extracted using Promega Wizard Genomic
DNA purification kit following the manufacturer’s instruc-
tions. The extracted DNA was quantified using a Qubit and
its quality was determined using agarose gel electrophoresis.

Genome Sequencing, Assembly, and Annotation

Paired-end DNA libraries with an average insert size of 500 bp
were prepared using the Nextera XT DNA library kit (library
average size ~1,100 bp). Libraries were then sequenced using
the lllumina MiSeq technology (V3, paired-end, 2 x 300 bp
reads) at GENOMER platform (Station Biologique de
Roscoff), multiplexing ~20 bacterial genomes per run. Raw
reads were first examined using FastQC (Andrews 2010).
Low-quality sequences were trimmed or removed using
Trimmomatic v.0.38 and a sliding window with a quality score
of 15 as well as a minimal read length of 36bp as filters.
Trimmed read pairs were used for genome assembly with
SPAdes v.3.12.0 (Bankevich et al. 2012) using default param-
eters. Genomic sequences encoding parts of the ribosome
were identified using Barrnap v. 0.8 (https:/github.com/tsee-
mann/barrnap) and 16S rDNA sequences used to search for
complete reference genomes in the GenBank. These refer-
ence genomes were used for scaffolding with Medusa version
1.6. Finally, gaps in the scaffolds were filled wherever possible
using GapCloser 1.12 (Li et al. 2010) and the resulting draft
genomes were annotated and prepared for submission to
public databases using the MicroScope platform (Vallenet
et al. 2017). The genomes were deposited at the European
Nucleotide Archive.

Phylogenomic Analyses

Phylogenomic relationships among all studied strains were
confirmed by running genome clustering based on pairwise
distances and Average Nucleotide Identity (ANI) between all
selected genomes using the Neighbor-Joining algorithm in
MicroScope. Furthermore, the closest genome has been pro-
vided for all genomes, based on their resulting Tetra-
nucleotide signature correlation index via the JSpeciesWsS
tool (Richter et al. 2016).

In Silico Analysis of Bacterial Metabolism

Models of primary metabolism for each sequenced bacterium
were generated using the Pathway tools pipeline imple-
mented in the MicroScope platform. The output of this pipe-
line is a pathway completion value, that is, the ratio between
the number of reactions for a specific pathway in a bacterium
and the total number of reactions for that pathway defined in
the MetaCyc (Caspi et al. 2018) or KEGG (Kanehisa et al.
2008) databases. In addition, secondary metabolite-related
gene clusters were predicted using antiSMASH (Blin et al.
2017).

3648 Genome Biol. Evol. 12(1):3647-3655 doi:10.1093/gbe/evz278 Advance Access publication December 16, 2019

020z IdY g uo 3senb Aq 68.8295/.79¢/1 /21 AoeNSqe-sjoiie/aq6/woo dno-oiwapese//:sdpy woly papeojumoq


Deleted Text: e.g.
Deleted Text: s
Deleted Text: ; Robertsen, et<?A3B2 show $146#?>al. 2017
Deleted Text: about 
Deleted Text: <italic>ctocarpus</italic>
Deleted Text: ) (
Deleted Text: (-
Deleted Text: (-
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: -
Deleted Text: <sup>&hx00AE;</sup>
Deleted Text:  
Deleted Text: <sup>&hx00AE;</sup>
Deleted Text: s
Deleted Text: a
Deleted Text: a
Deleted Text: approximately 
https://github.com/tseemann/barrnap
https://github.com/tseemann/barrnap
Deleted Text: 6
Deleted Text: a
Deleted Text: s
Deleted Text: a
Deleted Text: b
Deleted Text: m
Deleted Text: i.e.

Resource for Algal Microbiology

GBE

Results and Discussion

Genome Characteristics

Here, we report the sequencing of 62 and the analysis of 72
genomes of Ectocarpus-associated bacterial strains corre-
sponding to 43 different genera and 16 different orders.
The individual strains as well as key attributes of their genome
sequences are listed in table 1. The genome size of all strains
ranged from 2.4 Mb to 6.8 Mb. The largest genome was that
of Imperialibacter sp. strain SDR9 from the Bacteroidetes and
the smallest was that of Micrococcus sp. strain 11B from the
Actinobacteria. The analyzed genomes showed diverse GC
contents with strains belonging to the Bacteroidetes and
Firmicutes exhibiting GC contents <40% (e.g., 30% in
Flavobacterium sp. 9AF) contrary to Actinobacteria, where
most strains exhibit GC contents over 70%. Overall, the GC
content was positively correlated with genome size (Pearson
correlation r=0.73, P=0.042). CheckM analyses (Parks et al.
2015) suggest that the sequenced genomes are nearly com-
plete (>98%, table 1) and free of or with very low levels of
contamination  (<2.5%;  supplementary  table ST,
Supplementary Material online). The only exception was
Arthrobacter sp. strain 9V with 4.8% contamination (22
marker genes). This indicates that, overall, the presented
genomes are suitable for downstream analyses such as com-
parisons of metabolic capacities.

Phylogenomic Tree

Several of the sequenced bacteria in this study correspond to
bacteria with no or only few closely related sequences in the
databases. Notably, Enterobacterales bacterium 8AC, and
Moraxellaceae bacterium 17A could be confidently identified
only to the family level through RDP classifier (supplementary
table S1, Supplementary Material online), making these strains
candidates for new species or genera. Besides, fifteen strains
including Imperialibacter sp. EC-SDR9, Marinoscillum sp. 108,
Sphingomonas sp., AX6, and Novosphingobium sp., and
Burkholderiales bacterium 8X have low similarity (z-score be-
low cutoff < 0.989) with their closest genome-sequenced rel-
atives (based on the tetra-nucleotide signature correlation
index, table 1 and supplementary fig. S1, Supplementary
Material online). This phylogenomic analysis yielded a tree gen-
erally grouping together bacteria from the same taxon (sup-
plementary fig. S1, Supplementary Material online). However,
Imperialibacter sp. EC-SDR9 and Sphingobacterium sp. 8BC
from Bacteroidetes clustered with Firmicutes.

Secondary Metabolic Activities and Potentially Symbiosis-
Related Metabolites

Algal-associated microbes are likely to interact with both the
host and other microbes within the community. Secondary
metabolites are metabolites not essential for normal growth
of microorganisms, but they play a major role as chemical

signals for interaction with other microorganisms (Netzker
et al. 2015), restriction of pathogens (antimicrobial activities),
and biofouling (Wiese et al. 2009; Nasrolahi et al. 2012;
Susilowati et al. 2015). For instance, terpenes as the largest
class of natural compounds have protective roles against com-
petitors and are involved in interspecies signaling (Gershenzon
and Dudareva 2007; Yamada et al. 2015). Similarly, bacter-
iocins, peptidic toxins produced by bacteria, have been sug-
gested to play a role in pathogenesis by induction of cell lysis
(Li and Tian 2012). The annotation of the 72 bacterial
genomes with respect to genes involved in secondary metab-
olism obtained from AntiSMASH via the MicroScope platform
showed that all analyzed strains except Oceanicaulis sp. strain
350, had at least one secondary biosynthetic gene cluster.
Furthermore, 68% of genomes have at least one predicted
terpene cluster gene, followed by bacteriocin (40.2%), non-
ribosomal Peptide Synthetases (NRPS, 36%), Type 3 polyke-
tide synthases (PKS-t3, 33.33%), siderophores (23.6%), Type
1 polyketide synthases (PKS-t1, 20.8%), and homoserine lac-
tone synthesis genes (16.6%; fig. 1 and supplementary table
S1, Supplementary Material online). These genes are likely to
be at least partially involved in the communication with the
host and between microbes.

Detoxification Role of Symbionts and Provision of Vitamins

In terms of detoxification mechanisms, one pathway that was
complete in all studied genomes was the capacity to degrade
superoxide radicals. Moreover, 46 strains of 72 possessed the
complete pathway for glutaredoxin synthesis (fig. 1). This
mechanism is important for the degradation reactive oxygen
species (ROS), which are formed by the algae through meta-
bolic processes and in response to different stressors (Cosse
et al. 2007). ROS can cause significant damage to the cell;
thus, microorganisms have developed defense systems to de-
toxify ROS in order to survive.

Furthermore, the cyanate degradation pathway was com-
plete or semicomplete in all bacteria except in strains 8BE, 8AC,
and 8AQ. Cyanate is a common compound in marine environ-
ments and may serve as both an energy source for marine
microbes (Palatinszky et al. 2015) as well as a potential source
of nitrogen (Kamennaya et al. 2008; Sdez et al. 2019). Whether
this pathway also plays a role during the interactions of microbes
with their algal host, for example, by enabling the microbes to
provide nitrogen to their host, remains to be tested.

Finally, most genomes analyzed encoded nearly complete
or complete pathways for production of B vitamins like biotin
(B7), folate (B9), riboflavin (B2), thiamine (B1), and pyridoxine
(B6) (fig. 1). They may thus be contributors of vitamin B for the
algal host, as has previously been suggested for diatom-
bacteria associations (Behringer et al. 2018). All in all, these
studied metabolic features highlight the possible contribu-
tions of the alga-associated bacteria to maintain host fitness
and survival.
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The genomic resources provided here constitute a valuable
resource for comparative genomic analyses and evolutionary
surveys of alga-associated bacteria and will allow us to
produce testable hypotheses about the molecular interactions
between the microbes and their host. They may, among other
uses, facilitate metabolic complementarity centered approach
as proposed by Dittami et al. (2014), to identify potential ben-
eficial interactions between the partners. They will also form
the bases for more targeted molecular approaches, for exam-
ple, gene knockouts or gene expression analyses once specific
interactions are being targeted in coculture experiments.

Supplementary Material

Supplementary data are available at Genome Biology and
Evolution online.
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