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Abstract: Although the transcription factor EGR1 is known as NGF1-A, TIS8, Krox24, zif/268, and
ZENK, it still has many fewer names than biological functions. A broad range of signals induce Egr1
gene expression via numerous regulatory elements identified in the Egr1 promoter. EGR1 is also the
target of multiple post-translational modifications, which modulate EGR1 transcriptional activity.
Despite the myriad regulators of Egr1 transcription and translation, and the numerous biological
functions identified for EGR1, the literature reveals a recurring theme of EGR1 transcriptional activity
in connective tissues, regulating genes related to the extracellular matrix. Egr1 is expressed in
different connective tissues, such as tendon (a dense connective tissue), cartilage and bone (supportive
connective tissues), and adipose tissue (a loose connective tissue). Egr1 is involved in the development,
homeostasis, and healing processes of these tissues, mainly via the regulation of extracellular matrix.
In addition, Egr1 is often involved in the abnormal production of extracellular matrix in fibrotic
conditions, and Egr1 deletion is seen as a target for therapeutic strategies to fight fibrotic conditions.
This generic EGR1 function in matrix regulation has little-explored implications but is potentially
important for tendon repair.
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1. Tendon is a Proper Dense Regular Connective Tissue

Connective tissues support and link organs, and are composed of specialized fibroblasts derived
from mesenchymal stem cells. A feature of connective tissues is the presence of extracellular matrix
conferring specific biomechanical properties and functions, reviewed in [1]. Connective tissues include
proper and supportive connective tissues, such as cartilage and bone. Proper connective tissues
are further divided into two types: dense and soft/loose, reviewed in [2]. The dense connective
tissues can also be divided into two subtypes: (1) the regular connective tissue, which refers to
tendons/ligaments built with regular collagen fibers and (2) the irregular connective tissues embedding
organs, composed of irregular collagen fibers, such as skeletal muscle connective tissue, pericardium, or
peritoneum. Adipose tissue is a proper loose connective tissue mainly composed of adipocytes, included
in a disorganized network of collagen fibers. Connective tissues contain fibroblasts described as
interstitial cells producing extracellular matrix. However, fibroblasts display remarkable heterogeneity
of molecular signatures and phenotypes across connective tissues, reviewed in [3] and fibroblast
populations are still not well characterized. Fibroblast deregulation leads to fibrosis, assessed by
excessive deposition and anarchic organization of extracellular matrix (ECM).

Tendon is a proper dense regular connective tissue that links muscle to bone and is involved in
the transmission of forces generated by muscle contraction to bone. Tendon is a key component of
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the musculo-skeletal system, which allows body movement. Although tendon stem cells have been
identified [4], the molecular identity of tendon cells is not well defined and the understanding of
tendon biology lags behind that of other organs. Researchers in the tendon field eagerly await the
analysis of tendon transcriptomic single-cell data to characterize tendon cell propulations. The main
structural and functional component of the tendon is type I collagen. However, the presence of type I
collagen is not specific to tendon since it is expressed in many other connective tissues such as bone
and adipose tissue. Tendon specificity is given by the spatial organization of type I collagen fibrils
paralel to the tendon axis. A multitude of matrix molecules are involved in collagen fibrillogenesis
leading to the specific spatial organization of type I collagen in tendons, reviewed in [5,6]. To date, the
bHLH transcription factor Scleraxis (SCX) and the transmembrane protein tenomodulin (TNMD) are
recognized as matrix regulators in tendons during development, homeostasis, and repair, as reviewed
in [7] for SCX and in [8] for TNMD. SCX is recognized to regulate Tnmd expression [9,10]. However,
these two genes are not fully specific to tendons, since they are expressed in other connective tissues.
Scx is also expressed in heart valves [11], muscle connective tissue [12], and fibroblasts of kidney, testis,
and lung [13]. In addition to being expressed in tendon, Tnmd is also expressed in dermis, brain, and
adipose tissue, reviewed in [8]. In addition to SCX, two other transcription factors have been shown to
positively regulate the expression of Col1a and Col1a2 genes and type I fibril organization in tendons:
the homeobox Mohawk (MKX) and the zinc finger transcription factor Early growth response gene 1
(EGR1). However, Mkx and Egr1 are also not specific to tendon, since they display numerous expression
sites and have been shown to be involved in mutiple biological processes, reviewed in [14,15].

In this review, we will focus on the EGR1 transcription factor and its generic function as a regulator
of gene transcription of extracellular matrix components in tendon, bone, and adipose tissue (Figure 1),
both in physiological and pathological conditions.

Figure 1. Schematic representation of two connective tissues: a dense regular connective tissue, the
tendon (A), and a loose connective tissue, the adipose tissue (B). Left panels represent tendon (A) and
adipose tissue (B). Arrows in left panels indicate the section levels in each tissue. Right panels show
the cellular composition on sections of tendon (A) and adipose tissue (B).
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2. Egr1 “Identity Card”

2.1. Multiple Names for a Single Gene

The Egr1 (Early growth response 1) gene was first identified as NGFI-A (Nerve Growth Factor
Induced-A) because of its activation by NGF (nerve growth factor) in the neuronal rat cell line PC12 [16].
It was subsequently described in four different laboratories as a rapidly and transiently activated gene
in various fibroblast cell lines. Serum addition or mitogen treatment with the tumor promoter TPA
(tetradecanoyl phorbol acetate) on mouse fibroblasts led to a rapid and strong induction of an early
growth response gene then named Egr1 [17,18]. Egr1 was also named TIS8 (TPA Inducible Sequence 8),
because of its activation following TPA treatment in a murine 3T3 cell line [19]. After the identification
of a zinc-finger-region similar to the Drosophila Krüppel segmentation gene in the Egr1 genomic
sequence, the murine gene was called Krox24, for “Krüppel box 24” [20] or zif/268 in reference to three
tandem zinc finger sequences [21]. Presentation of recorded bird songs to songbirds such as canaries
and zebra finches induces Egr1 expression in their forebrains. In this case, Egr1 was referred to by the
acronym ZENK [22]. The Egr1/EGR1 gene spans about 3.8 Kb and is located on chromosome 18 in mice
and on chromosome 5 in humans. It is composed of two exons and one 700 bp intron. The first exon
includes the first 99 amino acids of the protein and the second exon includes the three tandem zinc
finger motifs [23]. The Egr1/EGR1 gene is highly conserved between mouse, rat, chicken, zebrafish,
chimpanzee, dog, cow, and human.

2.2. Numerous Extracellular Signals Regulate Egr1 Expression via Diverse Intracellular Signalling Pathways

The analyses of 5′-upstream sequences of murine Egr1 and human EGR1 genes reveal the conserved
presence of many regulatory elements, indicating that Egr1 expression is regulated in response to
multiple stimuli. The seemingly endless list of extracellular stimuli inducing Egr1 transcription include
hormones, growth factors, cytokines, UV, hypoxia, stress, and mechanical signals (Figure 2). The MAPK
(mitogen-activated protein kinase) signalling pathways has a central role downstream of these external
stimuli to regulate Egr1 expression. Egr1 expression is activated by a variety of MAPK-inducing factors,
including TNFs (tumor necrosis factors) in primary human fibroblasts and rat chondrocytes [24,25],
different pro-inflammatory cytokines IL-1, TNFα, and IL-17 in osteoblast-like cells [26], FGF21 in mouse
adipose tissue [27], and the antimicrobial peptide LL-37 in adipose stem cells [28]. These secreted
molecules activate the MAPK pathways, which leads to the recruitment of the SRF (serum response
factor) transcription factor together with the ternary complex factor (TCF)/Ets family member ELK1
to the serum response elements (SRE) of Egr1 promoter [29]. The contribution of individual SRE in
Egr1 transcriptional activation depends on cell types [30,31]. Interestingly, TGFβ upregulates Egr1
expression through a Smad-independent pathway in human fibroblasts, and activates the MEK1/2/ERK
signalling cascade converging on ELK-1 to induce Egr1 expression [32]. The MKK7-JNK-cJun MAPK
pathway can also activate mouse Egr1 expression through the formation of the AP1 complex [33].
AP1 complexes are heterodimeric transcription factors that bind to Tetracecanoyl Phorbol Acetate
Response Elements, also called AP1 elements. AP1 complexes are composed of combination of proteins
belonging to the c-Fos, c-Jun, activating transcription factor (ATF), and Jun dimerization protein
families reviewed in [34]. cJun directly binds to the AP1 element of the Egr1 promoter but not to the
SREs, meaning that cJun directly activates Egr1 expression via the AP1 site and indirectly via the SRE
sites [33].
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Figure 2. Schematic representation of the external stimuli that regulate Egr1 transcription.

Analysis of deletions in the human EGR1 and mouse Egr1 promoters in fibroblasts revealed that
AP1 and EGR1 binding sites played minor roles in its activation [35]. EGR1 binds to its own promoter
in mouse fibroblasts [36]. This finding leads to the observation that the ubiquitously expressed
transcription factor SP1 (specificity protein 1) binds to a consensus recognition sequence that partially
overlaps with the EGR1 binding site (EBS) [36] and blocks EGR1 recruitment to EBS (Figure 2). Serum
stimulation leads to Egr1 overexpression, which binds competitively with SP1 to EBS. This binding
of EGR1 to its own promoter downregulates Egr1 expression [37], presumably through the MAPK
pathways. In addition to MEK/ERK pathways, the cAMP/PKA/CREB pathway mediates Egr1 activation
downstream of hormones or cytokines [38–40].

Egr1 expression is rapidly but transiently induced by insulin in 3T3-L1 adipose cell line and in
mouse adipose tissue [41]. Insulin secretion induces a cascade of intracellular events in the adipocyte
cell lineage [42] including the PI3K/Akt pathway responsible for glucose uptake and glycogenesis
and the ERK1/2 MAPK pathway, which decreases insulin signalling [43,44]. Glucose stimulation
induces a rise in cytoplasmic Ca2+ which is necessary for AP1, CRE, and SRE-mediated activation
of Egr1 expression [45]. A high insulin and glucose concentration represses the phosphorylation
of AMP-activated protein kinase (AMPK) in rat tenocytes, which prevents its positive role in Egr1
expression and alters tendon homeostasis [46].

Several stress signals, such as UV, hypoxia, and mechanical shear stress have been shown to
activate Egr1/EGR1 transcription. UV irradiation activates Egr1 expression in multiple cell types,
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including mouse and human fibroblasts as well as human fibrosarcoma cells [47]. The UV-B effect on
Egr1 expression is mediated through the activation and recruitment of the NFκB family member p65 to a
NFκB binding site located on the Egr1 promoter [48]. Under hypoxic conditions, the hypoxia-inducible
factor-1α (HIF1α) binds to the EGR1 promoter in adipose stem cells isolated from obese patients, but
not not in hASCs from healthy patients [49]. Hypoxia induces EGR1 upregulation in hASCs of diabetic
patients either through the MAPK/ERK pathway or via the direct recruitment of HIF1α to the EGR1
promoter [49]. Fluid shear stress activation activates EGR1 transcription in human endothelial cells
and epithelial cells [50].

In summary, Egr1 expression is regulated by a myriad of secreted molecules and stress factors
through numerous regulatory elements located upstream of the Egr1 coding sequence.

2.3. EGR1 Protein: Structure and Transcriptional Activity

The EGR1 protein contains 533 and 543 amino acids in mice (Figure 3) and humans, respectively,
with a predicted molecular weight of 58 kDa. However, EGR1 detection by Western-blot analysis
shows an apparent molecular weight running from 80 to 100 kDa, presumably due to post-translational
modifications [24,36,51]. EGR1 contains a highly conserved DNA-binding domain composed of
three Cys2-His2 type zinc fingers [52]. These three zinc fingers recognize a consensus nine-base-pair
segment of a G/C rich region of DNA (5′-GCG(C/G/T)GGGCG-3′), with each zinc finger spanning three
nucleotides [36,52,53]. EGR1 also contains a bipartite nuclear localization domain, a strong activation
domain, a weak activation domain, and an inhibitory domain [54] on which NAB1 and NAB2 (NGF1-A
binding proteins) bind to repress transactivation by EGR1 [55,56]. According to EGR1 structure, EGR1
displays activator or repressor transcriptional activities [55–57].

Figure 3. Schematic representation of the post-translational modifications on EGR1 protein.

The phosphorylation of the different EGR1 domains (Figure 3) is controlled by protein kinases
and phosphatases [58]. Phosphorylation can either enhance or block EGR1 transcriptional activity.
In fibrosarcoma, UV exposure leads to EGR1 phosphorylation by PKC (protein kinase C) and tyrosine
kinases [59], conferring on EGR1 a protective and anti-apoptotic function [60]. In contrast, EGR1
phosphorylation by the protein kinase CKII has a negative effect on EGR1 DNA binding and transcriptional
activities [61]. EGR1 can be acetylated (Figure 3) by the CBP/p300 complex [62]. In summary, EGR1
activates or represses specific genetic programs according to its “phosphorylation/acetylation pattern”.

EGR1 can be multi-ubiquitinated and thus degraded by the ubiquitin-dependant proteasome
pathway [63]. The coordinated sumoylation (Figure 3) and ubiquitination of EGR1 by SUMO-1
(Small Ubiquitin like MOdifier 1) and UBC9 (ubiquitin conjugating enzyme 9) have been shown to be
involved in EGF-induced EGR1 expression and stability in the human endothelial cell line ECV304 [64].
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Redox (Reduction-Oxidation) reactions are involved in various vital cellular functions, such as aerobic
cellular respiration, nucleic acid synthesis, and also for the production and elimination of reactive
oxygen species (ROS), which includes superoxide, nitric oxide, hydroxyl radical, hydrogen peroxide,
and hypochlorus acid. At high doses, ROS are toxic for the cell and the damage they cause was
termed oxidative stress. Oxidative stress induces bone loss by stimulating osteoclastic bone resorption
and inhibiting osteoblastic differentiation [65–68]. However, hydrogen peroxide at non-toxic doses
increases the expression and DNA-binding activity of EGR1 in mouse and human osteoblastic cells
without affecting their differentiation [69,70]. The DNA-binding properties of EGR1 are modulated by
the redox state: EGR1 binding to the DNA depends on the presence of reducing agents, which are
necessary for the correct conformation of the EGR1 zinc-finger region. Oxidized or metal-free EGR1
does not bind to DNA [71]. In the human osteoblastic HOBIT cell line, under non-toxic ROS doses, a
DNA repair enzyme, the APE1 (apurinic/apyrimidic endonuclease 1) increases EGR1 binding to DNA
with nuclear redox activity. EGR1 also upregulates APE1 gene expression, showing the existence of a
positive-autoregulatory loop between APE1 and EGR1 proteins [70].

In summary, EGR1 displays diverse transcriptional activation or repression functions depending
on its post-translational modification statues.

2.4. Egr1 Expression Profile In Vivo

Egr1 is expressed in numerous organs and cell types during development and adult life. However,
Egr1 expression is not ubiquitous. In situ hybridization experiments performed on chicken and mouse
embryos indicate a punctiform location of Egr1 transcripts in various tissues such as tendon, cartilage,
bone, skeletal muscle, innervation, vessels, and dermis [72,73]. In developing tendons, Egr1 transcripts
are not observed in all tendon cells, but in subregions, such as the myotendinous junction and around
long tendons in mouse and chicken embryos [73,74]. In the adult, the mouse ENCODE transcriptome
data set indicates that Egr1 is expressed in many if not all adult tissues, with high expression in cortex,
mammary gland, ovary, and thymus [75]. In situ hybridization and immunohistochemistry experiments
performed on adult mouse tissues show Egr1 expression in Achilles tendons [76], subcutaneous adipose
tissue [77], hypertrophic cartilage [78,79], and bone [80,81].

3. EGR1 Roles in Connective Tissue Formation, Homeostasis and Healing

Consistent with the broad range of Egr1/EGR1 expression sites, EGR1 is involved in the formation
and homeostasis of many organs. One powerful tool for addressing gene function is the use of
knock-out mice. The Egr1 gene was inactivated in mice by homologous recombination with the
insertion of the neomycin resistance cassette upstream of the EGR1 DNA-binding domain [82] and
with the insertion of the LacZ coding sequence within the Egr1 5′ untranslated region added with a
frameshift mutation upstream of the DNA-binding domain of Egr1 [83]. Both Egr1 mutant mouse
lines were initially described with no overt phenotype during development or postnatal life [82,83];
with the exception of subtil pituitary and ovarian defects observed in the LacZ insertion mutant
mice [83]. However, connective tissue defects were subsequently described in these Egr1 mutant mice,
affecting tendon, cartilage, bone and adipose tissue formation and homeostasis. The analysis of Egr1
loss-of-function in mice has identified numerous EGR1 target genes in connective tissues (reported in
Table 1). A striking point is that the target genes positively regulated by EGR1 are mainly components
of the extracellular matrix (ECM) or linked to ECM regulation, while those negatively regulated by
EGR1 are cartilage, bone, or adipose tissue differentiation markers (Table 1).
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Table 1. List of genes regulated by EGR1 in three connective tissues: tendon, bone, and adipose tissue.

Genes Regulated by EGR1
Gene Names

(Protein Names)

Activated (+) or
Repressed (−) by EGR1 References Expression in Connective Tissues

o
Physiological /Pathological Roles

in Connective Tissues

(I) Extracellular Proteins:
(1) Extra Cellular Matrix (ECM) Components

Acan
(Aggrecan) − [25] Cartilage

Tendon ECM component of cartilage negatively regulated by EGR1

Bgn
(Biglycan) + [46,76,84] Tendon ECM component of tendon

Collagen fibrillogenesis

Col1a1 *
(1 chain of type I collagen) + [73,76,77,84–90]

Tendon
Bone

White adipose tissue

Main ECM structural and functional component of tendons
ECM component of adipose tissue

Fibrosis

Col1a2 *
(2 chain of type I collagen) + [46,76,77,85,91]

Tendon
Bone

White adipose tissue

Main ECM structural and functional component of tendons
ECM component of adipose tissue

Fibrosis
Col2a1 *

(1 chain of type II collagen) − [25,92] Cartilage Major ECM component of cartilage negatively regulated by EGR1

Col3a1
(1 chain of type III collagen) + [73,76,77,86–88,90] Tendon

White adipose tissue

ECM component of tendon and adipose tissue
Collagen fibrillogenesis

Fibrosis
Col5a1

(1 chain of type V collagen) + [73,76,77] Tendon
White adipose tissue

ECM component of tendon and adipose tissue
Collagen fibrillogenesis

Col5a2
(chain of type V collagen) + [77] Tendon

White adipose tissue
ECM component of tendon and adipose tissue

Collagen fibrillogenesis
Col6a1

(1 chain of type VI collagen) + [76] Tendon
White adipose tissue

ECM component of tendon and adipose tissue
Fibrosis

Col14a1
(1 chain of type XIV collagen) + [73,76,77] Tendon

White adipose tissue
ECM component of tendon and adipose tissue

Collagen fibrillogenesis
Dcn

(Decorin) + [76,77,84] Tendon
White adipose tissue

ECM component of tendon and adipose tissue
Collagen fibrillogenesis

Fbn1
(Fibrillin 1) + [76,77] Tendon

White adipose tissue
ECM component of tendon and adipose tissue

Collagen fibrillogenesis

Fn1
(Fibronectin) + [77] Tendon

White adipose tissue

ECM component of tendon and adipose tissue
Matrix organizer

Collagen fibrillogenesis
Hapln1 *

(Hyaluronan and proteoglycan link
protein 1)

− [25] Cartilage
Tendon ECM component of cartilage negatively regulated by EGR1

Postn
(Periostin) + [77]

Tendon
Bone

White adipose tissue
ECM component of tendon, bone, and adipose tissue

Tnc
(Tenascin) + [76] Tendon

White adipose tissue
ECM component of tendon and adipose tissue

Collagen fibrillogenesis



Int. J. Mol. Sci. 2020, 21, 1664 8 of 25

Table 1. Cont.

Genes Regulated by EGR1
Gene Names

(Protein Names)

Activated (+) or
Repressed (−) by EGR1 References Expression in Connective Tissues

o
Physiological /Pathological Roles

in Connective Tissues

(2) Secreted Proteins/Hormones

Bglap
(Osteocalcin) + [93] Bone Bone-derived hormone involved in bone mineralization

Regulation of glucose homeostasis
Csf1 *

(Macrophage Colony Stimulating Factor,
M-CSF)

− [80,81]
Bone

Osteoclast precursors Osteoclast proliferation and differentiation

Ctsk
(Cathepsin K) + [77,93]

Bone
Tendon

Adipose tissue

ECM remodelling enzyme involved in bone formation during
skeletal repair

Lep *
(Leptin) + [41,77] White adipose tissue Hormone secreted by adipocytes involved in energy balance

regulation
Tgfb2 *

(Transforming Growth Factor beta2,
TGFbeta2)

+ [73,76,85] Tendon Tendon development, homeostasis, and repair
fibrosis

(II) Transmembrane Proteins

Tnmd
(Tenomodulin) + [73,76,84,85] Tendon

White adipose tissue

Main tendon differentiation marker
Transmembrane glycoprotein involved in tendon formation,

homeostasis, and repair
Increased in obese patients

(III) Cytoplasmic Proteins

Pnpla2 *
(Adipose Triglyceride Lipase, ATGL) − [94] White adipose tissue

Enzyme involved in adipose triglyceride lipolysis to mobilize
triglyceride for energy production

Acp5
(Tartrate-resistant acid phosphatase) + [93] Bone Metalloprotein enzyme involved in endochondral bone formation

and repair

Ucp1 *
(Uncoupling protein 1) − [77] White and brown adipose tissues Thermogenic protein expressed in brown adipose tissue

Upregulated in the context of white adipose tissue browning

(IV) Transcription Factors/Nuclear Proteins

Cebpb *
(CCAAT/Enhancer Binding Protein ß,

C/EBPß)
− [77] White adipose tissue Adipocyte differentiation

Overexpression induces osteopenia

Egr1 *
(Early Growth Response 1) − [37]

Tendon
Bone (hypertrophic cartilage)

White adipose tissue

Zinc finger transcription factor involved in tendon formation,
homeostasis, and repair

Egr1 deletion induces bone loss
Egr1 deletion induces white fat browning

Fibrotic factor
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Table 1. Cont.

Genes Regulated by EGR1
Gene Names

(Protein Names)

Activated (+) or
Repressed (−) by EGR1 References Expression in Connective Tissues

o
Physiological /Pathological Roles

in Connective Tissues

(IV) Transcription Factors/Nuclear Proteins

Foxc2
(Forkhead box protein C2) − [95] Adipose tissue Increases insulin sensitivity and is down-egulated in type 2 diabetic

patients
Mkx

(Mohawk) + [46] Tendon Homeobox protein involved in tendon formation and homeostasis

Pparg *
(Peroxysome Proliferator Activated

Receptor PPAR)
− [96] Adipose tissue

Chondrocytes

Positive regulator of adipocyte differentiation
Negative regulator of osteocyte differentiation

Anti-fibrotic factor

Scx
(Scleraxis) + [73,76,84,85] Tendon

Main tendon marker
bHLH transcription factor involved in tendon development,

homeostasis, and repair

Genes marked with * are directly regulated by EGR1.
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3.1. EGR1 Is a Potent Inducer of Extracellular Matrix Production in Tendons

3.1.1. EGR1 Function in Tendon Formation, Homeostasis, and Ageing

Several studies have addressed the role of EGR1 in tendon biology. In developing limb tendons,
Egr1 is expressed close to the myotendinous junction and delineates the long tendons in mouse and
chicken embryos [73,74]. The Egr1 mutant mice do not display a strong overt tendon phenotype;
however, Egr1−/− mice show a significant decrease in the expression of the key tendon markers, Scx,
Tnmd, and Col1a1 in addition to that of tendon-associated collagens in developing E18.5 limbs [73]
and adult tail tendons and Achilles tendons [76]. Comparison of adult tail tendons in Egr1−/− versus
Egr1+/+ mice shows a reduced number of collagen fibers in mutant mice. Tail and Achilles tendons have
collagen fibrils with smaller diameter and impaired biomechanical properties in Egr1−/− compared to
Egr1+/+ mice [76]. Conversely, Egr1 is sufficient to induce de novo expression of a large variety of tendon
genes (including Scx and tendon-associated collagen genes) in ectopic contexts in chicken embryos [73].
The Egr1 gene is sufficient to induce ectopic Scx, Col1a1, Col3a1, Col5a1, and Col14a1 expression in the
neural tube, an unrelated embryonic tissue derived form the ectoderm [73]. Consistently with the
in vivo situation, EGR1 is sufficient to induce the expression of a large panel of tendon genes including,
Scx and Tnmd, collagen associated-tendon genes (Col1a1, Col1a2 Col3a1, Col5a1, Col6a1, Col14a1), and
tendon matrix-associated molecules (Tnc, Bgn, Dcn, and Fbn1) in mouse C3H10T1/2 mesenchymal stem
cells [76]. EGR1 also promotes the formation of 3D-engineered tendon constructs made of C3H10T1/2
cells by increasing the expression of Scx, Tnmd, and Col1a genes [76,85]. Moreover, EGR1 induces
tenogenic differentiation in rabbit tendon stem cells [97]. EGR1 mediates the promoting effect of the
anti-miR124 on collagen production in human tendon-derived stem cells [98] and the promoting effect
of ferulic acid on self-renewal ability of human tendon-derived stem cells [99]. Consistent with the
positive regulation of Col1a gene transcription by EGR1 observed both in vivo and in vitro, chromatin
immunoprecipitation (ChIP) experiments show the recruitment of EGR1 to the tendon regulatory
regions of the Col1a1 promoter in E18.5 limbs [73] and to Col1a1 and Col1a2 regulatory regions in adult
Achilles tendons [76]. Lastly, Egr1 downregulation has been associated with a loss of the tenogenic
differentiation potential in ageing human tendon progenitor cells, while Egr1 gain-of-function has the
ability to rescue their tendon differentiation potential as assessed by the upregulation of Scx, Tnmd,
Bgn, Dcn, and Col1a1 gene expression [84].

3.1.2. EGR1 Function in Tendon Healing

EGR1 has been shown to be required for the expression of the key tendon markers and
tendon-related ECM genes during healing after tendon injury [76]. Tendon injury models where the
tension is maintained (partial rupture) induce a massive increase of tendon gene expression [76,100],
while tendon injury models where the tension is lost (total rupture) induce a loss of tendon gene
expression [101,102]. Different models of tendon injury, where tension is maintained, lead to a massive
increase of Egr1 expression after injury, in mouse or rat Achilles tendons [76,100] and rabbit flexor
tendons [103]. In addition, needle-induced microlesions in healing rat Achilles tendons increase Egr1
expression [104]. The transcriptional response i.e., the increase of Scx, Tnmd, Col1a1, Col1a2, Col5a1,
Col6a1, Col14a1, Tnc, and Dcn gene expression in response to longitudinal lesion along the tendon axis is
drastically decreased in Egr1−/− Achilles tendons, showing that Egr1 is required for the injury-induced
expression of tendon-related ECM genes and key tendon markers [76]. Moreover, EGR1-producing
cells promote tendon repair in a rat model of Achilles tendon injury [76] and in a rabbit model of
rotator cuff injury [97].

In summary, Egr1 appears to be required for the correct expression of matrix genes during tendon
formation, homeostasis, and ageing in vitro and in vivo, but also during tendon healing. A recent
discovery is that tendons are peripheral circadian clock tissues, reviewed in [105], in which collagen
synthesis and homeostasis is under a circadian control [106]. Interestingly, the circadian clock is
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disturbed in Egr1−/− mice, associated with impaired locomotor activity and body temperature [107],
suggesting that Egr1 could be involved in the circadian synthesis of tendon-associated collagens.

3.2. Egr1 Is a Mechanosensitive Gene in Tendon

Due to its function to transmit load from muscle contraction to the skeleton, tendon is a
mecanosensitive tissue. Mechanical signals are necessary parameters involved in tendon development,
homeostasis, and healing, reviewed in [108–110]. Mechanical tendon properties have been identified
in developing embryonic tendons [111]. Muscle contractions are required for tendon development.
In the absence of muscles or muscle contractions, head, axial, and limb tendons do not form; this
muscle-dependency for tendon formation is observed in zebrafish, chicken, and mouse embryos,
reviewed in [14]. TGFβ and FGF signalling pathways prevent tendon gene downregulation in
paralyzed developping limbs in chicken embryos [112]. Since EGR1 has been shown to directly activate
Tgfb2 transcription in mouse developping limbs [73], EGR1 is one possible mechanosensor protein
downstream of mechanical forces and upstream of TGFβ signalling in developing limbs. Consistent
with this mechanosensor function, Egr1 is activated by mechanical loading in 3D-engineered tendons
made of human tendon cells [113] and equine tenocytes derived from induced-pluripotent stem
cells [114]. Moreover, EGR1 regulates tendon gene expression downstream of mechanical signals in
3D-engineered tendons made of mouse mesenchymal cells [85,113]. Forced-EGR1 expression prevents
the downregulation of the tendon genes, Scx, Tnmd, Col1a1, Col1a2, and Tgfb2 in 3D-engineered
tendons after tension release [85]. Mechanical signals are also required for tendon homeostasis. Loss
of mechanical loading induces tendon defects is reviewed in [108,115]. Botox (botuliniumtoxin A)
injection into the gastrocnemius muscle of hindlimb induces a decrease of Egr1 transcription in addition
to Scx, Col1a2, and Tgfb2 transcription in mouse Achilles tendons [85]. It is also recognized that
the lack of mechanical stimulation is deleterious for tendon healing, while mechanical stimulation
improves tendon healing in rats, mice, and humans [108,115]. Egr1 expression is increased within
15 min in response to loading during the healing process in injured rat tendons [100], indicating
that Egr1 expression reflects a rapid transcriptional response following loading changes in healing
tendons. The increase of Egr1 expression in injured Achilles tendons after mechanical loading is
followed by an increase of tendon strength, indicating a beneficial role for Egr1 in tendon healing [100].
These observations confirm the mechanosensor role for EGR1 during tendon healing. Conversely,
Egr1 expression is decreased in a mouse Achilles tendon injury model in reduced load conditions [85].
The Egr1 downregulation is concomitent with the downregulation of tendon genes Scx, Tnmd, Col1a1,
Col1a2, but also that of Tgfb2 genes [85]. EGR1 rescue experiments in reduced load conditions and after
tendon injury increase the expression of tendon-associated genes, including Scx, Tnmd, Col1a1, Col1a2,
and Tgfb2 [85]. These observations suggest that Egr1 is sufficient to drive the tendon differentiation
program in the absence of mechanical signals during the healing process in vivo.

Mechanical signals are the driving force for tendon cell differentiation in different contexts.
Although the scheme is not complete, one attempt to hierarchize mechanical and molecular signals
would be that mechanical signals activate molecular signals such as EGR1 transcription factor, which
then in turn activate the expression of tendon genes such as Scx and Tnmd and Col1a genes (Figure 4).
It has to be noticed that Tgfb2 transcription is also induced by EGR1 rescue experiments in unload
conditions in a mouse model of Achilles tendon injury and 3D-engineered tendons [85]. This data,
combined with the direct binding of EGR1 to Tgfb2 promoter regions in adult tendons [76], leads to the
hypothesis that EGR1 activates Tgfb2 dowstream of mechanical signals, which in turn will activate
tendon matrix genes (Figure 4). This is consistent with the recognized role of TGFβ signalling in
the control of tendon adaptation to mechanical loading, reviewed in [116]. The link between EGR1
transcription factor and the YAP key mechanotransduction pathway [110] remains to be established.
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Figure 4. Schematic representation of the position of Egr1/EGR1 in the molecular cascade downstream
of mechanical signals involved in tendon gene expression.

3.3. EGR1 and Endochondral Bone Formation and Healing

Bone is a supportive connective tissue composed of cells, fibers, and a mineralized solid ground
substance [117]. Egr1 expression is detected in several areas undergoing endochondral bone formation,
such as hypertrophic cartilage [78,79] and periostal regions of the developping long bones [72,73]. Egr1
is a negative regulator of cartilage markers [92]. Egr1−/− mice display bone loss [80,118,119]. The bone
loss upon Egr1 deletion is a consequence of an increased bone resorption, via the increased production of
the colony stimulating factor-1 CSF-1/M-CSF known to positively regulate osteoclast differentiation [80].
Bone development and homeostasis is controlled by the interplay between bone-forming osteoblasts
and bone-resorbing osteoclasts [120], and this equilibrium is lost in Egr1−/− mice. EGR1 is a negative
regulator of the osteoclastogenic cytokine CSF-1 production by stromal cells. Phosphorylated-EGR1
(upon estrogen) blocks Csf1 gene transcription by preventing the binding of the transcriptional activator
SP1 to the Csf1 promoter [80]. The failure of estrogen to rescue the CSF-1 production and consequent
osteoclast formation in Egr1−/− in ovariectomized mice positiones Egr1 as a pivotal actor to mediate
the anti-osteoclastogenic effect of estrogen [80,81].

Transcription factors that play a role in bone formation are expected to participate in bone
healing after fracture since endochondral bone formation that occurs in embryos is recapitulated
during bone healing. In a bone fracture mouse model, Egr1 deficiency leads to several bone defects
including persistant fibrin accumulation in the fracture gap, abnormal callus ossification with enlarged
areas of cartilaginous tissue, decreased expression levels of Bglap (Osteocalcin), and bone resorbtion
markers that regulate extracellular matrix, including Acp5 (Tartrate-resistant acid phosphatase) and
Ctsk (Cathepsin K) genes [93,118]. This data confirms that EGR1 controls the balance between bone
tissue formation and resorption during skeletal repair.
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3.4. EGR1 Regulates Extracellular Matrix Production in Adipose Tissue

Adipose tissue is a loose connective tissue mainly composed of specialized white adipocytes, held
in a framework of collagen fibers, which plays a fundamental role in fat storage, metabolic control,
and thermoregulation [121]. Adipocytes are surrounded by an extracellular matrix, which serves
as mechanical support and is mainly composed of collagens, fibronectin, and elastin [122]. Cells
producing ECM in adipose tissue are not clearly indentified; however, it is recognized that collagens
are mostly produced by adipocytes, but also by endothelial cells and adipose stem cells in normal
conditions [123]. The molecular signature of subcutaneous white adipose tissue with Egr1 deletion
identifies a downregulation of ECM genes, including Col1a1, Col1a2, Col3a1, Col5a1, Col5a2, Col14a1,
Fn1, Dcn, and Post (Periostin) [77]. Egr1 deletion is also associated with a spontaneous browning of
subcutaneous white adipose tissue in Egr1 mutant mice compared to wild-types [77]. The browning
phenotype corresponds to the appearence of beige adipocytes within the white adipose tissue mainly
by de novo differentiation of progenitors [124]. In contrast to white adipocytes, beige adipocytes
dissipate excess energy through heat production by a large number of mitochondria, which exhibit
uncoupling activity via the thermogenic protein UCP1 (uncoupling protein-1) [125]. Consistent with
the browning phenotype, transcriptomic analysis in Egr1-deleted adipose tissue shows a concomitant
downregulation of the white adipocyte marker, Lep (leptin) and upregulation of the key beige adipocyte
marker Ucp1 [77]. Both positive (Lep) and negative (Ucp1) transcriptional regulations have been shown
to occur via direct EGR1 recruitment to regulatory regions of these genes [41,77]. The browning
process reduces the deleterious consequences of fat accumulation and is seen as possible mechanism to
fight against obesity and to improve metabolic health [125]. Consistently, Egr1−/− mice are protected
from high fat diet-induced obesity via an increase of energy expenditure [95]. Conversely to Egr1
loss-of-function in mice, Egr1 overexpression in C3H10T1/2 cells increases the transcription of matrix
genes and prevents the beige adipocyte differentiation [77]. Overall, Egr1 deletion leads to a drastic loss
of ECM genes associated with a browning phenotype in subcutaneous white adipose tissue in mice.

To summarize, Egr1 loss-of-function is associated with reduced ECM production in tendon (a dense
connective tissue), bone (a supportive connective tissue), and adipose tissue (a loose connective tissue).
Although the altered matrix genes upon Egr1 deletion appear to be similar in the different connective
tissues, the reduced ECM production is deleterious for tendon and bone formation and homeostasis,
while being beneficial for white adipose tissue to increase energy expenditure.

4. EGR1 Is a Fibrotic Factor

Fibroblast deregulation leads to fibrosis, a process attributed to anarchic deposition of extracellular
matrix, in response to injury or in pathological conditions. Fibrosis is observed in almost any tissue in
cases of organ dysfunction, but is also a key process in cancer, inflammation, and ageing. Myofibroblasts
are the main cellular component of fibrosis. Myofibroblasts are non-muscle contractile cells responsible
for the excessive synthesis, deposition, and remodelling of ECM proteins in fibrosis; for a recent
review see [126]. A recognized molecular driver of fibrosis is the TGFβ signalling pathway. TGFβ
drives the conversion of fibroblasts to myofibroblasts to induce the excessive deposition of collagen
and inappropriate ECM during fibrosis, recently reviewed in [127]. Generic molecular markers for
myofibroblasts are similar to markers for smooth muscle cells, such as Acta2 (smooth muscle actin),
whose expression is regulated by TGFβ signalling [127]. Although myofibroblasts and TGFβ are
recognized to be the respective cellular and molecular hallmarks of fibrosis, there is no comprehensive
understanding of the cellular and molecular mechanisms underlying fibrosis. As EGR1 is a potent
regulator of matrix components in different contexts, EGR1 is seen as a fibrotic factor.

4.1. EGR1 and Fibrosis in Metabolic Diseases Linked to Adipose Tissue (Obesity and Diabetes)

Fibrosis in adipose tissue is considered a hallmark of metabolically dysfunctional adipose tissue
and is associated with obesity and insulin resistance [86,122,128]. In pathological conditions such as
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obesity, the rapid expansion of adipose tissue causes hypoxia since neovascularization cannot keep up
with rapid adipose tissue growth. Hypoxia is followed by the necrosis of adipocytes accompanied
with the infiltration of inflammatory leucocytes and macrophages to remove the dead cells. In these
pathological conditions, myofibroblasts associated with the inflammatory response, accumulate within
the adipose tissue and cause ECM thickening, characteristic of fibrosis [121,129]. Adipose tissue
fibrosis results from the imbalance between excess synthesis and impaired degradation of type I,
III, and VI collagens [130]. Consistently, type I, III, and VI collagens are particularly abundant in
adipose tissue of obese patients [131] and collagen content affects tensile strengh of adipose tissue [132].
Moreover, Col6a1 loss-of-function significantly reduces adipose tissue fibrosis in obese mice [122].
Egr1/EGR1 expression is increased in adipose tissue of obese Lep/Lep mice and patients [95], and of
diabetic db/db mice and type 2 diabetes mellitus (T2DM) patients [133]. T2DM is associated with insulin
resistance and the majority of T2DM patients are overweight or obese [129]. Egr1 gain-of-function in
epididymal fat induces insulin resistance [133], while Egr1 loss-of-function improves the whole-body
insulin sensitivity in diabetic mice [133]. One possible mechanism would be that insulin-induced
EGR1 [41,133] directly inhibits Pnpla2 (ATGL, Adipose TriGlyceride Lipase) expression in adipocytes that
leads to lipolysis inhibition and promote fat accumulation [94].

Egr1 overexpression is associated with metabolically dysfunctional adipose tissues. As Egr1
regulates matrix production in subcutaneous white adipose tissue and tendon, Egr1 is a credible
regulator of inappropriate ECM production in metabolically dysfunctional adipose tissues. Consistent
with this idea, Egr1 transcription is directly activated by insulin and HIF1α [49] via direct recruitment
to Egr1 promoter. In addition, the insulin and HIF1α expression is increased in obese and T2DM mice
and HIF1α regulates the expression of ECM genes such as Col1a1, Col3a1, and Col14a1 [86,87]. Egr1 is
thus a good therapeutic target to counteract obesity and associated fibrosis since its loss-of-function
reduces ECM production and stimulates the white fat browning process.

Interestingly, the tendon differentiation gene, Tmnd, involved in ECM regulation in tendons [8], is
also involved in adipose tissue function. TNMD mRNA expression levels are strongly correlated with
the body mass index. TNMD gene expression is significantly higher in obese subjects compared to lean
subjects [134–136], while TNMD gene expression is downregulated in visceral adipose tissue during
diet-induced weight loss [134]. Although EGR1 and TNMD genes share the same expression profile
in white adipose tissues of obese patients, in contrast to EGR1, TNMD acts as a protective factor in
visceral adipose tissue to alleviate insulin resistance in obesity [136].

4.2. Tendon Defects in Type 2 Diabetes Mellitus

Type II diabetes mellitus (T2DM) is associated with high risk of tendinopathy or tendon tears,
reviewed recently in [137,138]. Various T2DM rodent models, which cannot be dissociated from obese
mouse models, display tendons with decreased collagen content, ECM disorganization, and impaired
mechanical properties, reviewed in [138]. T2DM also impairs the healing process following tendon
injury and amplifies the fibrotic process during healing, leading to scarred tendons. There is an increase
of Col1a1 and Col3a1 expression in FDL tendons after injury associated with decreased mechanical
properties in diet-induced obesity mice [88]. High glucose also affects tendon gene expression and cell
behavior in tendon cell cultures, which induces changes in extracellular matrix [139]. Interestingly,
Egr1 expression was also modified (associated with Mkx, Tgfb1, Col1a2, and Bgn expression alteration)
in rat tendon cells cultured in high glucose for 14 days [46].

4.3. EGR1 Controls Fibrosis in Systemic Sclerosis

A classical fibrotic disease is systemic sclerosis, also known as scleroderma, which is a rare disease
characterized by excessive collagen deposition resulting in fibrosis in different organs such as skin and
lungs but also the diggestive track (esophagus, stomach, and intestine) and myocard [140,141]. Systemic
sclerosis pathology also displays inflammation and vasculopathy components. Myofibroblasts are
key cells of the physiopathology of systemic sclerosis [140]. TGFβ and Wnt signalling are recognized
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to play a fundamental role in the pathogenesis of fibrosis in systemic sclerosis, in particular in the
differentiation process of activated myofibroblasts [141].

EGR1 transcription factor has been shown to be at the crossroad of the molecular processes leading
to the TGFβ-dependent fibrosic process in systemic sclerosis, reviewed in [142,143]. EGR1 expression
is increased in biopsies of fibrotic skin and lung from patients with systemic sclerosis [32]. In the
mouse model of bleomycin-induced scleroderma, fibrosis is reduced in skin and lung of Egr1−/− mice,
with decreased Col1a1 expression and αSMA+ fibroblasts in both tissues [89]. In human fibroblasts,
EGR1 upregulates COL1A2 transcription downstream of TGFβ [91]. The high throughput analysis of
EGR1-responsive genes in human primary fibroblasts identifies over 600 genes involved in extracellular
matrix synthesis, wound healing, and TGFbeta signalling, but also in cell proliferation and vascular
development [144]. This EGR1-responsive genes signature is enriched in skin biopsies from patients
with systemic sclerosis compared to healthy controls [144]. The demonstrated involvement of EGR1 in
this fibrotic disease identifies EGR1 as a pertinent target to control fibrosis in systemic sclerosis [142,143].

4.4. EGR1 Is at the Crossroad of the Molecular Pathways Involved in the Fibrotic Process in Animal Models for
Organ Fibrosis

Classical animal models for fibrosis target idiopathic pulmonary fibrosis, renal fibrosis, liver
fibrosis, and heart fibrosis. EGR1 is frequently mentioned as being associated with the progression
of fibrotic process in animal models and in the transcription of fibrotic genes in cellular models.
Egr1 deletion is often described as being beneficial to fight fibrosis progression in animal models of
organ fibrosis.

Lung fibrosis. EGR1 is involved in lung fibrosis downstream of IGFBP-5 (insulin-like growth factor
(IGF) binding protein-5) to promote fibrotic gene transcription [145] and downstream of TGFβ1 to
activate the transcription of the hyaluronan receptor CD44V6 (CD44 containing variable exon 6 (v6))
expression in lung fibroblasts in the context of idiopathic pulmonary fibrosis [146].

Renal fibrosis. In a mouse model of adenine-enriched diet induced tubulointerstitial nephritis
leading to renal fibrosis, Egr1 is increased in kidney. Egr1−/− mice display reduced TGFbeta activity and
reduced renal fibrotic zones and were protected from renal failure [147]. The miR181 was identified as
an inhibitor of renal fibrosis via Egr1 inhibition, which suppressed the expression levels of alphaSMA
(ACTA2), connective tissue growth factor (CTGF), collagen type I (COL1A1), and type III collagen
(COL3A1) in NRK49F cells [90].

Liver fibrosis. Egr1 has been shown to contribute to liver fibrosis progression downstream of Elk-3 in
CCl4-induced mouse liver fibrotic tissues and human liver cirrhotic tissues [148]. However, the beneficial
effect of Egr1 deletion in the context of liver fibrosis is contradictory. In an acute acetaminophen-induced
liver injury mouse model, the inhibition on ERK1/2-mediated Egr1 transcriptional activity attenuates
hepatotoxicity, suggesting that inhibiting Egr1 is beneficial to protect against liver fibrosis observed
in long-term application of acetaminophen [149]. By contrast, another study shows that livers of
Egr1−/− mutant mice exhibit a more severe fibrotic response compared to those of wild-type mice under
acetaminophen overdose [150]. The Egr1 function remains elusive in liver fibrosis.

Heart fibrosis. EGR1 has been shown to be involved in cardiovascular homeostasis and diseases.
Notably, Egr1 transcription is activated in hypoxic and ischemic conditions in heart and in calcified
heart valves [151,152]. The miR-150-5p retards the progression of myocardial fibrosis by targeting
EGR1 [153].

As EGR1 is systematically mentioned as being involved in fibrosis progession in organ fibrosis
animal models, Egr1 is seen as a putative target to fight fibrosis. A recent antifibrotic chemical
component has been identified with the PPARγ agonist (pioglitazone) that inhibits TGF-β-driven
fibrosis in animal models for pulmonary, renal, and cardiac fibrosis, reviewed in [154]. Interestingly,
pioglitazone has been shown to repress Egr1 transcription and traduction in kidneys of TGF-β-driven
renal fibrosis in mice [155] and in pancreas of a cerulein-induced acute pancreatitis mouse model [156].
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4.5. EGR1 and Matrix Production in Rheumatoid Arthritis and Osteoarthritis

Consistent with Egr1 expression in cartilage and bone, the Egr1 gene is reiteratively cited to be
involved in chronic diseases that lead to articular cartilage degeneration, such as osteoarthritis and
rheumatoid arthritis [157]. The molecular cascade underlying the pathogenesis of these two joint
diseases are not well understood. Osteoarthritis leads to cartilage degeneration, reviewed in [158], while
rheumatoid arthritis is an autoimmune and inflamatory disease associated with an increase of synovial
fibroblasts leading to joint degeneration [159]. TNFα levels are increased in the synovial fluid of patients
with osteoarthritis and rheumatoid arthritis [25] and reduce the expression of Col2a1, Acan (Aggrecan),
and Hapln1 through EGR1 recruitment to their promoters [25]. Classical and global transcriptomic
analysis identified high EGR1 expression in articular cartilage of patients with osteoarthritis [96,160,161]
and in synovial tissues of rheumatoid arthritis patients [162–164]. Chondrocytes stimulation with
interleukin-1β (IL-1) leads to the recruitment of EGR1 to Pparg promoter and downregulates its
expression, preventing the protective effect of PPARγ in osteoarthritis [96]. Ectopic expression of EGR1
in articular cartilage aggravated the degradation of the cartilage matrix in mice [78]. The excess of EGR1
induced an increase of transcripts and protein of type I collagen in synovial fibroblasts from rheumatoid
arthritis patients [165]. Egr1 represents a potential target for drug intervention in osteoarthritis or
rheumatoid arthritis.

4.6. EGR1 and Scarred Tendon

Abnormal tendon healing is frequent following tendon injury reviewed in [166,167]. Following
accute rupture, tendons undergo a healing process involving the sequential and overlapping phases of
inflamation, cell migration, cell proliferation, ECM production, and remodelling. These successive
phases ultimately result in the production and spatial organization of type I collagen. However, the
healing process is often incomplete in tendons, which leads to scar tendons that do not regain the
mechanical properties of native tendons. The cellular basis of tendon fibrosis is not well understood and
involves the contribution of intrinsic (tendon sheeths) and extrinsic (circulating cells) cell populations,
recently rewiewed by [168]. The molecular basis underlying tendon fibrosis involves the main fibrotic
signalling pathway, TGFβ [102], the transmenbrane protein TNMD [169], and the SCX transcription
factor [170], which are also the main actors involved in tendon development [9,171,172]. Interestingly,
SCX directly regulates the transcription of the Acta2 gene (a fibrotic marker) in cardiac fibrosis [173].
Although Egr1 is required for the correct transcriptional response in healing tendons [76], EGR1 function
in the fibrotic response in tendon has not been established. However, given the EGR1 involvement in
the fibrotic response in organs, EGR1 is very likely to be involved in tendon scarring.

5. Concluding Remarks

In addition to being involved in matrix production in normal conditions and fibrotic processes,
EGR1 transcription factor has been associated with numerous cancers and has been shown to act
as a tumor suppressor or a tumor promoter depending on cancer types, for reviews see [174,175].
The reason for this paradoxal/antagonistic EGR1 function depending on cancer types is not clear.
Interestingly, EGR1 expression is correlated with prostate cancer progression and promotes prostate
cancer metastases [176], which are associated with a massive increase of matrix [177]. Egr1 has been
already targeted to prevent the progression of prostate cancer carcinoma [178]. Interestingly, there is
no associated cancer in tendons. Giant cell tumor of the tendon sheath (GCTTS) very rarely impacts
tendon proper [179]. One attractive hypothesis is that the tendon matrix environement regulated by
EGR1 is protective against cancer.

In summary, the EGR1 transcription factor is a key checkpoint in the transcriptional response to
external stimuli. Despite multiple regulatory elements in the Egr1 promoter, Egr1 has been repeatedly
associated with matrix production in connective tissues in homeostatic and pathological conditions.
Egr1 deletion is a good therapeutic option for reducing fibrosis in many tissues. One attractive
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hypothesis is that EGR1 has a generic function in the transcription of matrix genes. Based on a recent
report of EGR1 function in the brain, in the epigenetic control of the methylome during development
and upon neuronal activity [180], EGR1 could act on the methylome of matrix genes in tendons and
other connective tissues.
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