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Abstract. Modes of climate variability strongly impact our
climate and thus human society. Nevertheless, the statistical
properties of these modes remain poorly known due to the
short time frame of instrumental measurements. Reconstruct-
ing these modes further back in time using statistical learning
methods applied to proxy records is useful for improving our
understanding of their behaviour. For doing so, several sta-
tistical methods exist, among which principal component re-
gression is one of the most widely used in paleoclimatology.
Here, we provide the software ClimIndRec to the climate
community; it is based on four regression methods (principal
component regression, PCR; partial least squares, PLS; elas-
tic net, Enet; random forest, RF) and cross-validation (CV)
algorithms, and enables the systematic reconstruction of a
given climate index. A prerequisite is that there are proxy
records in the database that overlap in time with its observed
variations. The relative efficiency of the methods can vary,
according to the statistical properties of the mode and the
proxy records used. Here, we assess the sensitivity to the
reconstruction technique. ClimIndRec is modular as it al-
lows different inputs like the proxy database or the regression
method. As an example, it is here applied to the reconstruc-
tion of the North Atlantic Oscillation by using the PAGES
2k database. In order to identify the most reliable reconstruc-
tion among those given by the different methods, we use the
modularity of ClimIndRec to investigate the sensitivity of the
methodological setup to other properties such as the num-
ber and the nature of the proxy records used as predictors or

the targeted reconstruction period. We obtain the best recon-
struction of the North Atlantic Oscillation (NAO) using the
random forest approach. It shows significant correlation with
former reconstructions, but exhibits higher validation scores.

1 Introduction

The interdependent components of the climate system, such
as the atmosphere and the ocean, vary at different timescales.
The interactions between those components (Mitchell et al.,
1966) lead the climate to vary from the hourly to the mul-
tidecadal timescales. Preindustrial control simulations of
global coupled climate models have evidenced that such a
variability is still present without any modulation of the
external forcings, which is frequently referred to as inter-
nal variability (Hawkins and Sutton, 2009). External factors
such as volcanic aerosols (Mignot et al., 2011; Swingedouw
et al., 2015; Khodri et al., 2017), anthropogenic aerosols
(Evan et al., 2009, 2011; Booth et al., 2012), solar irradi-
ance (Swingedouw et al., 2011; Seidenglanz et al., 2012) and
greenhouse gas concentrations (Stocker et al., 2013) also in-
fluence the variations and dynamics of the climate system by
altering the Earth’s radiation balance. By only considering
the impact of external forcings which are not due to human
activity, we can characterized the so-called natural climate
variability.

Published by Copernicus Publications on behalf of the European Geosciences Union.



842 S. Michel et al.: Multiproxy climate index reconstruction

An unequivocal synchronous rise in both the greenhouse
gas concentration in the atmosphere and the global mean
temperature has been observed in instrumental measure-
ments (Stocker et al., 2013). However for temperatures,
fluctuations around this trend from one decade to another
(Kosaka and Xie, 2013; Santer et al., 2014; Swingedouw
et al., 2017) highlight the modulating role of natural variabil-
ity at decadal to multidecadal scales. Improving our knowl-
edge about past natural climate variability and its sources is
therefore essential to better understand the potential coming
changes in climate.

Physics driving the climate system induce large-scale vari-
ations, organized around recurring climate patterns with spe-
cific regional impacts and temporal properties. These varia-
tions are known as climate modes of variability. Their evo-
lution is usually quantified by an index that can be calcu-
lated from a specific observed climate variable. These indices
provide an evaluation of the corresponding climate varia-
tions and their regional impacts (Hurrell, 1995; Neelin et
al., 1998; Trenberth and Shea, 2006). As an example, the
North Atlantic Oscillation (NAO) is the leading mode of at-
mospheric variability in the North Atlantic basin (Hurrell
et al., 2003). Generally defined as the sea level pressure
(SLP) gradient between the Azores High and the Icelandic
Low, the NAO describes large-scale changes of winter at-
mospheric circulation in the Northern Hemisphere and con-
trols the strength and direction of westerly winds and storm
tracks across the Atlantic (Hurrell, 1995). A stronger than
normal SLP gradient between the two centres of action in-
duces a northward shift of the eddy-driven jet stream. Such
large scale changes in atmospheric circulation lead to precip-
itation and temperature variations in various regions (North
Africa, Eurasia, North America and Greenland; Casado et al.,
2013). Moreover, these meteorological impacts have major
influences on many ecological processes, including marine
biology (Drinkwater et al., 2003) and terrestrial ecosystems
(Mysterud et al., 2001). This mode also affects the oceanic
convection in the Labrador Sea and the Greenland, Iceland
and Norwegian seas through changes in atmospheric heat,
freshwater and momentum fluxes (Dickson et al., 1996; Vis-
beck et al., 2003). These changes may lead in turn to modi-
fications in the Atlantic Meridional Overturning Circulation
(AMOC) which then affect poleward heat transport and the
related sea surface temperature (SST) pattern over the At-
lantic (Trenberth and Fasullo, 2017).

The dynamics of these modes are still not fully under-
stood due to the relatively short duration of the instrumental
records, which prevents robust statistical evaluation of their
properties (e.g. spectrum, stability of teleconnections, under-
lying mechanisms). To partly overcome this limitation, re-
constructions of climate beyond the period of direct measure-
ments have been performed in numerous studies that com-
bine appropriate statistical methods and information from
proxy records. Proxy records provide indirect estimates of
past local or regional climate, derived from natural archives

coming for instance from sediment cores, speleothems, ice
cores or tree rings. According to its nature, each proxy record
has a specific temporal resolution, from years to millennia,
and can cover a specific period: from hundreds to millions of
years. New proxy records are continuously gathered, extend-
ing the available datasets and allowing paleoclimatologists
to build increasingly consistent reconstructions (PAGES 2K
Consortium, 2013, 2017).

Based on the assumption that climate modes such as the
NAO affect climate conditions in different locations, some
studies have used regression-based methods on temperature
and drought-sensitive proxy records to reconstruct the vari-
ability of these modes over the last thousand years. Luter-
bacher et al. (2001) first proposed a partly monthly and sea-
sonal reconstruction of the NAO that extends back to 1500
using the principal component regression (Hotelling, 1957)
(PCR) method. Another study reconstructed the SLP fields
in Europe covering the same time frame using a PCR ap-
proach as well (Luterbacher et al., 2002), and found consis-
tencies with the Luterbacher et al. (2001) NAO reconstruc-
tion. Cook et al. (2002) also proposed a complete method-
ology of nested PCR using annually resolved proxy records
bounding the North Atlantic to reconstruct the NAO variabil-
ity further back to 1400. More recently, Ortega et al. (2015)
performed a NAO reconstruction from 1073 to 1969, also
based on the PCR, using 48 proxy records that were signif-
icantly correlated with the historical NAO index over their
common time window. Instead of nesting reconstructions of
different sizes, which can lead to inhomogeneities between
time windows using different proxy selections, this study
used several random calibration/validation samplings of the
overlap period of the NAO index and the proxy records to
perform individual reconstructions on the same time frame.
Regression-based methods have also been used for recon-
structing climate modes indices other than NAO, such as for
instance El Niño–Southern Oscillation index (Li et al., 2013)
and the Atlantic Multidecadal Variability index (Gray et al.,
2004; Wang et al., 2017).

More recent algorithms than PCR provide alternative re-
gression methods that can also be used to reconstruct cli-
mate modes, and may possibly further improve the quality
and the robustness of these reconstructions. In this paper,
we present the computer tool ClimIndRec (Climate Index
Reconstruction) version 1.0, which includes multiple statis-
tical approaches, for reconstructing climate modes indices.
It is based on four regression methods: PCR (Hotelling,
1957), partial least squares (PLS; Wold et al., 1984), elas-
tic net (Enet; Zou and Hastie, 2005) and random forest
(RF; Breiman, 2001). It communicates with a large proxy
database that contains various types of proxy records dis-
tributed worldwide, which are sensitive to different climate
variables. ClimIndRec is thus designed to reconstruct the
past variability of different climate modes (Fig. 1). It should
be stressed that ClimIndRec will only be useful with climate
indices for which there are enough proxy records represent-
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Figure 1. Scheme summarizing the main features of ClimIndRec.

ing their regional climate imprints, and that have the appro-
priate time resolution to capture their preferred timescale of
variability. Besides the climate modes, ClimIndRec can also
be used to reconstruct other kinds of climate time series such
as temperature or precipitation in a given location.

Section 2 develops the functioning and the added-value
of ClimIndRec for climate time series reconstruction. Sec-
tion 3 compares the four regression methods by reconstruct-
ing the NAO index over the last millennium and investigates
the reconstruction sensitivity to methodological choices such
as the method used, the learning period or the proxy records
selection for regression. Finally, Sect. 4 presents a discussion
including some outlooks for the next version of ClimIndRec
and the conclusions of this study.

2 Data, notation and methodologies

2.1 General methodology of ClimIndRec

We here compare four models that all consist of regression
methods among which the PCR has been used in many pale-
oclimate studies (Luterbacher et al., 2001, 2002; Cook et al.,
2002; Gray et al., 2004; Ortega et al., 2015; Wang et al.,
2017). The methods we added (PLS, Enet and RF) aim at
exploring alternative approaches to PCR and comparing dif-
ferent reconstructions using relevant metrics. PLS is a sim-
ilar approach to PCR, where the difference is that the ma-
trix of empirical orthogonal functions (EOFs) is calculated
by maximizing the variance of the projected proxies on the
EOFs and the targeted climate index instead of the variance
of the projected proxies (Wold et al., 1984). Enet belongs
to the regularized regression method family not usually used
in paleoclimate reconstructions (Zou and Hastie, 2005). It is
here investigated in order to find out if this kind of regres-
sion approach is relevant for climate index reconstruction.
Finally, the RF method is an aggregation of multiple predic-
tors called “regression trees”, which are non-linear regres-
sion approaches (Breiman, 2001). The mathematical details
for each method are elaborated in Sect. S1 in the Supplement.
Given a climate index and proxies, ClimIndRec optimizes

a given regression method with cross-validation-based tech-
niques and can thus be extrapolated to other regression-based
approaches. Hence, updates of ClimIndRec will be dedicated
to propose other regression methods such as adaptive lasso
regression (Zou, 2006).

In the case of the reconstruction of climate indices, regres-
sion methods seek to establish for each common time step the
relationships between the proxies and the climate index to be
reconstructed over the period of instrumental measurements.
This set of relationships constitutes a statistical model of
the considered climate index. The paleo-variations of proxy
records are then translated into a climate index in the past
using the relationships previously established by the statisti-
cal model. Since they all use unknown parameters, they must
be optimized to make the reconstruction as robust as possi-
ble. In the case of PCR, for example, the number of principal
components of the proxies used to regress the climate index
directly affects the reconstruction since it modifies the set
of predictors. The term “control parameter” is used to de-
sign this ensemble of parameters inherent to each method.
They are identified for each method in Sect. S1. Their tuning
(or optimization) using cross-validation techniques (Stone,
1974; Geisser, 1975) are elaborated later in this section.

Reconstruction of the same climate index obtained from
different regression methods may significantly differ. Thus,
if the same index is reconstructed using different regression
methods that each suggest different interpretations of the
past, it may be difficult to compare them directly. A common
approach is to separate the observation years (called learn-
ing period) in two to evaluate a statistical model. The first
period, called the training (or calibration) period, is used to
build the model using control parameter tuning, and thus to
establish relationships between the climate index and prox-
ies. The proxies of the second period, called the testing (or
validation) sample, are then translated into a climate index
over the years of observations of this period. The actual val-
ues of the climate index can then be compared with the recon-
structed climate index over the testing period using a given
metric which will be defined in Sect. 2.3.2. It gives a score
estimating the model ability to reconstruct the climate index
using the first-seen data of proxies. This procedure is called
the “hold-out” approach (McCornack, 1959).

The scores obtained for different regression methods for a
given training/testing sample might be impacted by the spe-
cific sampling. This is overcome by repeating the hold-out
approach several times where years of observations between
the training and the testing samples are shuffled. An ensem-
ble of scores is obtained, yielding an evaluation of the meth-
ods’ ability to reconstruct the climate index. The most robust
regression model is the one that has the highest scores, as
it means this is the most accurate at reconstructing the cli-
mate index using the first-seen data of proxies. This most ro-
bust regression method is then applied to the whole learning
period to build a final model and infer the paleo-variations
of the climate index from proxy records. In our study, and
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by default in ClimIndRec, the determination of the testing
samples is performed using a block-style approach over time.
This means that the first testing period of a given size encom-
passes the first time steps of the learning period. This testing
period is then shifted by one time step which gives the second
testing period of same size, and so on until each time step of
the learning period has been used at least once for testing.
The reason is that for climate time series, autocorrelation is
often large, so that one obtains skills from persistence alone.
Thus sampling is usually used with a block-style approach
for climate time series.

The reconstruction might also largely differ for a same
reconstruction method according to both the proxy records
used and the years of observations used. Here, the sources of
uncertainties associated with the proxy selection as well as
the learning period used can be reduced using the same hold-
out approach with evaluation and comparison of optimal sets
using scores.

The number of proxy records and the reconstruction pe-
riod are thus fixed for the different training/testing period
sections and the final model, in contrast with some previ-
ous studies which used nested approaches (Cook et al., 2002;
Wang et al., 2017). We make this choice because the aim of
this study is mainly focused on optimizing the methodologi-
cal approach for the reconstruction and not the reconstruction
itself. Nevertheless, ClimIndRec can be used to perform re-
constructions on different time windows which can then be
aggregated to perform a nested reconstruction, with associ-
ated scores for each portion of time.

It should be stressed that the approach of ClimIndRec im-
plicitly assumes that the climate index to be reconstructed
is a linear combination of the proxy records. It means as-
suming that the climate reacts to proxies, while the correct
etiological relationship is the other way around (Tingley et
al., 2012). Hence, it has to be specified that since climate
variations affect proxies variations, we can attempt to esti-
mate past climate fluctuations using statistical methods. An-
other caveat to highlight is that the proxy records used have
their own uncertainties that can come from various sources
such as measurement methodologies, dating uncertainties or
transfer function used to infer paleoclimate variations from
bio/geochemical data. This inevitably leads to an underesti-
mation of the true link between the climate index and the cli-
mate variable associated with the proxy record and therefore
leads to a biased reconstruction with loss of variance (Isobe
et al., 1990). To overcome this issue, previous climate index
reconstruction studies (Ortega et al., 2015; Wang et al., 2017)
rescaled the variance of the reconstruction according to the
observed climate index variance. However it implies that the
variance of the climate index is stationary, which might not
be true. In this study we thus present the raw reconstructions
and the loss of variance will be quantified and specified.

ClimIndRec has been developed using both bash and R
scripts. It uses different R packages (presented Table S5 in
the Supplement) that can be used independently to blindly

perform reconstructions of any climate index. The added-
value of ClimIndRec is to integrate the synchronous hold-out
approach and cross-validation according to the user inputs
(proxy records, regression method, reconstruction period tar-
geted, proxy records pre-selection). It therefore allows sev-
eral inputs to be tested and provides relevant metrics that can
be used to determine the optimal regression model.

2.2 Step-by-step procedure for reconstruction and
model evaluation

The general reconstruction and model evaluation procedure
follows 12 steps (Fig. 1), applied sequentially as follows:

1. An observational time series representing modulations
of the targeted mode of variability is chosen to be used
as the predictand.

2. A target time period T for the reconstruction is selected.

3. The statistical reconstruction method to be applied is
selected.

4. The proxy records that overlap with the selected recon-
struction period are extracted to be used as predictors.

5. The common period T between the observed climate
index and the selected proxy records is identified and
extracted for evaluating the reconstruction method.

6. This common period is split in two, one for training the
model (training period), and one for testing it (testing
period). This is repeatedR times following a block-style
approach to perform splits, R depending on the size of
the learning period and the size of testing periods deter-
mined by the user.

7. The proxy records that have a significant correlation at a
given threshold with the climate index over the training
period are selected to train the statistical model.

8. Each of the R sets of periods and proxies is calibrated
over the training window for all the different sets of con-
trol parameters of the given method selected in (3), and
the best performing one is identified.

9. The corresponding optimal setup is then applied to ex-
tend the reconstruction over the testing period for each
member.

10. Validation scores are computed by comparing each of
the observation-based testing series and each training
sample-based individual reconstruction over the corre-
sponding testing period.

11. The corresponding control parameters are tuned over
the whole learning period T and the final model is built.

12. The final reconstruction is obtained by applying the final
model to the proxies over the reconstruction period T .

Geosci. Model Dev., 13, 841–858, 2020 www.geosci-model-dev.net/13/841/2020/
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Thus ClimIndRec provides the final reconstruction with
associated uncertainties (Sect. S3) and a vector with R vali-
dation scores following different metrics as final outputs.

2.3 Model evaluation and optimization

This section aims to clarify the technical details of the
methodology presented in Sect. 2.1 and 2.2. It will thus call
on the elements mentioned above.

2.3.1 Data notation

To simplify the mathematical notation, we make the assump-
tion that the proxy record selection and truncation to their
common time window with the climate index have already
been undertaken (see Sect. 2.2, steps 4 and 5). In this study, it
is important that all proxy records are truncated to the same
time window to make them mergeable in the same matrix.
Each record has to cover at least the chosen reconstruction
time window T and it is excluded otherwise (Sect. 2.2, step
2). Hence, the proxy records matrix does not contain missing
values.

Figure 2 illustrates how the proxy data are organized
in the input matrix X. We denote X1

= (X1
t )t∈T , . . .,Xp =

(Xpt )t∈T , where t stands for the time (with N annual time
steps), and p is the number of proxy records on the same pe-
riod T . X is thus an N ×p matrix grouping the individual
records: X= [X1, . . .,Xp]. Y = (Y t )t∈T is the target climate
index, defined on the historical time window T called the
learning period, that contains n annual time steps. The period
where Y is not known is denoted τ , containingm annual time
steps (Fig. 2). Thus T = T ∪ τ is the entire reconstruction
period, which contains N = n+m annual time steps. With
these notations, the dimensions of the different matrices and
vectors are X ∈ RN×p; X(T ) ∈ Rn×p; X(τ ) ∈ Rm×p; Y ∈ Rn.
The learning set is denoted {X(T ),Y }, and the reconstruction
set is denoted {X(T )}.

2.3.2 Terms and validation metrics

We denote the chosen reconstruction method by M. Each
method is defined by a specific number of control parame-
ters q, contained in the vector denoted θ . We can denote the
function M as a function of (i) a set on which the model is
built ({X,Y }), (ii) observations of the predictors on the recon-
struction period (X(rec)) and (iii) an control parameter vector
(θ ):

M :
(
{X,Y } ,X(rec),θ

)
→ Ŷ θ , (1)({

Rn×p,Rn
}
,Rm×p,Rs)→ Rm

n,p,m,s ∈ N (not fixed). (2)

Hence, the M function gives an entire reconstruction of
size m ∈ N, depending on θ .

We introduce S as the score function, or validation metric.
This function is an indicator that estimates the quality of a

Figure 2. Scheme of the initial data. X and Y are respectively the
proxy records matrix and the index of the considered mode of vari-
ability. N is the size of the common period of all proxy records. n
is the size of the common period of all proxy records and the index
of the mode of variability. m is the size of the common period of
all proxy records, where the mode of variability is not known. p is
the number of proxy records. X(T ) is the sub-matrix of X where the
mode of variability is known. X(τ ) is the sub-matrix of X where the
mode of variability is not known.

reconstruction Ŷ with respect to the observed values Y (obs):

S : (Y (obs), Ŷ )→ s, (3)
(Rm,Rm)→ R. (4)

In this paper, three kind of validation metrics are used for dif-
ferent tasks. The first is a correlation function, the second is a
root mean squared error (RMSE) function and the third is the
Nash–Sutcliffe coefficient of efficiency (Nash and Sutcliffe,
1970):

Scor
(
Y (obs), Ŷ

)
= Cor

(
Y (obs), Ŷ

)
, (5)

SRMSE
(
Y (obs), Ŷ

)
= ‖Y (obs)− Ŷ‖ =

√√√√ m∑
i=1

(
Y i(obs)− Ŷ i

)2
, (6)

SNSCE
(
Y (obs), Ŷ

)
= 1−

∑m
i=1
(
Y i(obs)− Ŷ i

)2∑m
i=1
(
Y i(obs)−Y (obs)

)2 ,
with Y (obs) =

1
m

m∑
i=1

Y i(obs). (7)

SNSCE is used to validate the reconstruction methods over
the testing period, and SRMSE allows one to determine the
optimal control parameters (θ ) for the reconstruction. We use
Scor because it is used in the last NAO reconstruction of Or-
tega et al. (2015), with which we will compare our results.
SNSCE is a metric defined as being between−∞ and 1, where
values lower than 0 mean that using the mean over the train-
ing period is better than the proposed statistical model (Nash
and Sutcliffe, 1970); additional information about this met-
ric is presented in Sect. S2. Here, we will consider that a final
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reconstruction is robust and reliable when its R NSCE scores
are significantly positive at the 99 % confidence level using
the Student test. As the possible values of the NSCE score is
not symmetric around 0, the best reconstruction is identified
as the one that has a higher median of NSCE scores.

2.3.3 Control parameter tuning by cross-validation
and final reconstruction

As mentioned above, the initial learning sample is split into
R partitions of two subsets:

{
T
(r)
(train),T

(r)
(test)

}
, ∀1≤ r ≤ R

(Sect. 2.2, step 6). For a given method M, R reconstructions
are build on the R training samples. ∀1≤ r ≤ R; we denote{

X(r)(train),Y
(r)
(train)

}
as the training set, and

{
X(r)(test),Y

(r)
(test)

}
as

the test set. At each step, the columns of X, X(train) and X(test)
are normalized to the mean and the standard deviation of the
respective columns of X(train).

To estimate the optimal set of control parameters θopt
on a given training set {X(train),Y (train)}, we use the K-fold
cross-validation (CV) approach (KFCV; Sect. 2.2, steps 8
and 9; Stone, 1974; Geisser, 1975). Cross-validation meth-
ods, are in general, widely used as parametrization and model
validation techniques (Kohavi, 1995; Browne, 2000; Hom-
righausen and McDonald, 2014; Zhang and Yang, 2015).
Here, it is used as an optimization method to empirically de-
termine an optimal set of control parameters for θ . As pre-
sented in Fig. 3, the KFCV splits the observations into a
partition of K groups of same sizes (or approximately same
sizes if the length of the training set is not divisible by K).
∀1≤ k ≤K , we denote

{
X(k),Y (k)

}
, containing only infor-

mation for the kth drawn sample. Then,
{
X(−k),Y (−k)

}
is the

set containing all the K − 1 other sets. For all possible val-
ues of θ contained in 2, we scan the K models based on
the sets s

{
X(−k),Y (−k

}
1≤k≤K . The empirical optimal set of

control parameters is obtained by minimizing the averaged
SRMSE functions on the K splits by considering all possible
combinations of θ (Stone, 1974). Mathematically, the opti-
mal KFCV set of control parameters θKF is determined by

θKF = arg min
θ ∈2

1
K

K∑
k=1

SRMSE(
Y (k),M

({
X(−k),Y (−k)

}
,X(k),θ

))
. (8)

It should be noted that if dim(θ) > 1, then the different con-
trol parameters need to be optimized simultaneously, with
nested KFCVs.

Using this approach, we retain the control parameter vec-
tor θ̂opt = θKF for the given method M and a given learning
set {X,Y }. KFCV is applied to build a unique optimized re-
construction for every training sets and any given method.
Then, for all the corresponding and independent testing pe-
riods, the associated testing series Y (r)(test) are compared to
the individual reconstructions using the SNSCE function. This
way, R NSCE scores are obtained for M. In Sect. 3, the dis-

Figure 3. Scheme of a K-fold cross-validation procedure to select
the optimal control parameter of a specific learning method M. X is
the input set of predictors and Y the corresponding variability mode
index. ∀1≤ i ≤ n, {X(k),Y (k)} is the kth block-style-based group
of observation and {X(−k),Y (−k)} contains all observations except
the ith. 2=

(
θ1, . . .,θQ

)
is the ensemble of possible values of the

s control parameters θ ∈ Rs .

tributions of the NSCE scores will be used as a metric to
compare different reconstructions. Figure 4 shows the calcu-
lations that gives the NSCE scores for a given method M.

It should be stressed that K-fold cross-validation sam-
pling is also implemented following a block-style approach
in ClimIndRec for the same reasons than for the hold-out
approach. This means that the K groups of observations are
constructed along time instead of being randomly split. Also,
the choice of K can have implications for the estimation
of optimal control parameters. A large K leads to more di-
verse training samples, thereby bringing more variable esti-
mates of RMSE. On the other hand, a small K leads to a low
number of samples used, thereby increasing the bias due to
the particular way splits have been made. Additional works
have shown that this choice poorly influences the final re-
construction obtained (not shown) so that we decided to set
it to K = 5 for this study. It is set at K = 5 by default in Cli-
mIndRec but it can certainly be changed in order to produce
alternative reconstructions.

Once the model has been evaluated, it is launched over the
whole learning set {X(T ),Y } with a K-fold cross-validation
to optimize the control parameters such as done previously
for training samples.
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Figure 4. Scheme of the whole procedure for score calculation for a
given method M. Y is the index of the chosen mode of variability.
X(T ) is the proxy dataset restricted to the period where Y known.

{X(r)
(train),Y

(r)
(train)} is the rth training sample and {X(r)

(test),Y
(r)
(test)} is

the rth testing sample. θKF is the empirically optimal set of param-
eters obtained by applying the KFCV (Fig. 3; Sect. 2.3.3).

2.4 Data

The assessment of the proposed reconstruction techniques is
investigated for the NAO index, as it is probably the mode
of variability that has been observed for the longest time pe-
riod. This index is indeed relatively simple to calculate from
the SLP time series as it only requires two locations with
instrumental records: one within the centre of action of the
Azores anticyclone (typically Gibraltar) and one within the
Icelandic Low (typically Reykjavik). The reference NAO in-
dex is then calculated as the normalized SLP difference be-
tween these two locations. We here use the Jones et al. (1997)
index spanning the whole historical period since 1856.

In terms of proxies, we use the state-of-the-art PAGES 2k
database (PAGES 2K Consortium, 2017) in its latest 2017
version (hereafter P2k2017). Proxy records with resolutions
lower than annual were removed. Even if these proxy records
could be interpolated to a finer temporal scale and used for
the reconstruction, their use is not recommended as the inter-
polated time series will present high auto-correlation coeffi-
cients, which could inflate the correlations with the NAO and
thus their weight in the final reconstruction, potentially lead-
ing to spurious results (Hanhijarvi et al., 2013). We added 44
annually resolved proxy records used in Ortega et al. (2015)
and not present in P2k2017 (see Table S1). We end up with a

database of 554 well-verified and worldwide-distributed an-
nually resolved proxy records.

3 Results

3.1 Methodological sources of uncertainty in the
reconstruction

We apply ClimIndRec with the four methods presented above
to the reconstruction of the NAO. In the following, each re-
construction is obtained by averaging R individual recon-
structions performed for R training/testing splits. R depends
on the size of the testing samples relative to the size of the
learning period as we perform block-style splits of the data
to produce training and testing samples (Sect. 2.1 and 2.2).
Here, we set the relative length of the training splits as 80 %
of the learning period. NSCE scores are thus produced and
stored in a vector of R elements. This vector will thus be
used as a quality metric to characterize the methodological
uncertainty in the reconstruction. The following actions were
undertaken to minimize the reconstruction uncertainty iden-
tified in Sect. 2.1, and estimate its sensitivity:

1. pre-selecting the most relevant proxy records,

2. selecting the best learning period.

These two steps are described below, before assessing the
reconstruction itself.

3.1.1 Proxy pre-selection

Among the previous climate reconstruction studies, Ortega
et al. (2015) performed a proxy selection over the train-
ing periods at the 90 % confidence level using the corre-
lation test from McCarthy et al. (2015) while Cook et al.
(2002) and Wang et al. (2017) selected their proxies by fo-
cusing on the regions affected by the modes they respec-
tively reconstructed. Here we run four reconstructions of
R = 50 individual members for each method. These recon-
structions are respectively performed with different signifi-
cance levels for the proxy selection by correlation over the
training periods. These levels are 0 % (which means that
all the records are used at each training/testing split), 80 %,
90 % and 95 %. The reconstructions are performed for the re-
construction period T = [[1000,1970]] and the learning pe-
riod T = [[1856,1970]] encompassing 110 available proxy
records with n= 115.

Figure 5 shows that RF method, particularly useful for
larger datasets, is more efficient using the proxy records cor-
related at the 80 % confidence level with med(SNSCE)= 0.15
(med is the median function), even if using proxy records un-
correlated with the NAO or not located in regions affected by
NAO variations. On the other hand, the three other regres-
sion methods are more adapted when the finest proxy selec-
tion (95 %) is applied, as highlighted by Ortega et al. (2015)
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Figure 5. Boxplot of NSCE scores obtained for the four methods
and different groups of proxy records by reconstructing the NAO
index of the period 1000–1970 with R = 50 training/testing sam-
ples. Green boxplots are the NSCE scores obtained for the PCR
method. Yellow boxplots are the NSCE scores obtained for the PLS
method. Red boxplots are the NSCE scores obtained for the RF
method. Blue boxplots are the NSCE scores obtained for the Enet
method. The first cluster of boxplots is the NSCE scores obtained
by using all the available proxy records over the period (110 proxy
records). The second cluster of boxplots is the NSCE scores ob-
tained by using only proxy records significantly correlated with the
NAO index at the 80 % confidence level over the training periods.
The third cluster of boxplots is the NSCE scores obtained by us-
ing only proxy records significantly correlated with the NAO index
at the 90 % confidence level over the training periods. The fourth
cluster of boxplots is the NSCE scores obtained by using only proxy
records significantly correlated with the NAO index at the 95 % con-
fidence level over the training periods. Boxplots with blue edges are
the scores significantly positive at the 99 % confidence level. Box-
plots with red edges correspond to the scores associated with the
best reconstruction for each method.

for the PCR. Figure 5 also evidences that the widely used
PCR method and PLS have to be employed cautiously with
a statistically based proxy selection over the training periods
in further studies. Indeed the reconstructions performed with
these methods are only significantly robust at the 99 % con-
fidence level (see Sect. 2.3.2) by using any pre-selection of
proxies. Conversely, for the RF and Enet methods, the proxy
selection does not affect the statistical robustness of the re-
construction, with reconstructions significantly robust at the

99 % confidence level (see Sect. 2.3.2) for every choice of
proxy selection.

Overall, RF gives the best NSCE scores. Nevertheless, it
should be stressed that these results have been obtained for
a particular learning period (1856–1970). The sensitivity to
this is assessed in the next section.

3.1.2 Sensitivity to the learning period

In this section, we keep for each method the optimal selection
of proxy records over the training periods (see Sect. 3.1.1).
We explore the impact of the reconstruction period. This af-
fects the final reconstruction in two different ways, both re-
lated to the final proxy selection, as explained in Sect. 2.1.

We run the reconstruction for 31 periods T : from 1000–
1970 to 1000–2000, with an increment of 1 year. By doing
so, the number of available proxy records is not the same for
each of the periods (see Fig. 6). Figure 6a shows the NSCE
scores obtained for the different reconstruction/learning peri-
ods. Using the NSCE metric, we find that the best reconstruc-
tion time window is 1000–1972 for PLS and RF methods and
1000–1971 for Enet and PCR methods.

Following the optimal setup for each method from
Sect. 3.1.1, RF uses 47 records and the three others use
21 records (Fig. 6b). Among these four optimized recon-
structions, which are the final ones of this study, the RF
gives the highest NSCE scores with med(SNSCE)' 0.16 and
SNSCE ∈ [−0.4,0.4] (Fig. 6a).

Results show that the four methods are strongly affected
by the choice of the reconstruction period. Thus, we recom-
mend determining this period carefully with different simu-
lations in different time windows, following the approach we
presented here, easily performable using ClimIndRec. Over-
all, this study shows that for each optimization, PCR and PLS
are less reliable to reconstruct the NAO than RF and Enet
(Sect. 3.1.1 and this section).

3.2 Scientific results

We compare and investigate the reconstruction with highest
scores for each method following Sect. 3.1. The four opti-
mized reconstructions are obtained by using the full set of
proxy records for RF and only using the proxy records sig-
nificantly correlated at the 95 % confidence level with the
NAO index over the learning period for the other methods
(see Sect. 3.1.1). RF and Enet reconstructions are performed
for the period 1000–1972 while PCR and PLS reconstruc-
tions are performed for the period 1000–1970 (Sect. 3.1.2).

3.2.1 Comparison with previous work

Figure 7 shows the different reconstructions of the NAO, in-
cluding the Ortega et al. (2015) calibration-constrained re-
construction (only proxy-based), and Table 1 exhibits the
paired correlations between the five reconstructions. The
regression uncertainties (see Sect. S3) are also shown for
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Figure 6. (a) Reconstructions are performed using 31 reconstruction periods for the four methods: from 1000–1970 to 1000–2000 by moving
the most recent year by 1 with R = 50 training/testing samples. RF reconstructions are performed using the proxy records significantly
correlated at the 80 % confidence level with the NAO over the training periods (Sect. 3.1.1). PCR reconstructions are performed by selecting
the proxy records significantly correlated at the 95 % confidence level with the NAO over the training periods (Sect. 3.1.1). PLS and Enet
reconstructions are performed by selecting the proxy records significantly correlated at the 95 % confidence level with the NAO over the
training periods (Sect. 3.1.1). (a) Red boxplots are the NSCE scores obtained using the RF method. Blue boxplots are the NSCE scores
obtained using the Enet method. Red green are the NSCE scores obtained using the PCR method. Yellow boxplots are the NSCE scores
obtained using the PLS method. Boxplots with blue edges are the significantly positive scores at the 99 % confidence level. Boxplots with red
edges correspond to the scores associated with the best reconstruction for each method. (b) Proxy records available/used by reconstruction
period. The red area shows the number of records used for RF. The green area shows number of records used for Enet, PCR and PLS for
each reconstruction period.

the four reconstructions of this study in Fig. 7. The nor-
mality of the residuals for the four methods has been ver-
ified for both the models built over the training samples
and the final model as demonstrated in Fig. 9. Table 1
and Fig. 7 shows that the NAO reconstruction based on
RF is distinguishable from the four others including Or-
tega et al. (2015). Indeed its correlation with the other in-
dices ranges between 0.49 and 0.67 (Table 1) while the
paired correlations obtained between the others are greater
than 0.88. Additionally Fig. 8 shows that the RF reconstruc-
tion has a higher correlation with the Jones et al. (1997)
NAO index than the other indices: r = 0.98 (p < 0.01), while
the Ortega et al. (2015) reconstruction has a correlation of
0.45 (p < 0.01). The RF reconstruction that uses 46 proxy
records (22 common proxies with Ortega et al. (2015) pre-
sented in Fig. 10) has the best NSCE scores (med(SNSCE)=

0.16;SNSCE ∈ [−0.24,0.33]; Sect. 3.1.1) and its correla-
tion scores (med(Scor)' 0.43;Scor ∈ [0.06,0.63]) are sig-

nificantly higher at the 99 % confidence level than the
Ortega et al. (2015) calibration-constrained reconstruc-
tion (Scor ∈ [−0.14;0.58];med(Scor)' 0.24) and model-
constrained reconstruction (Scor ∈ [0.14;0.64];med(Scor)'

0.43). We thus statistically verified that the best reconstruc-
tion from this study is more robust and reliable than those
from Ortega et al. (2015). This improvement in performance
may arise from the inclusion of new relevant proxy records
into the reconstruction, but also from the use of a new statis-
tical regression method for climate index reconstruction: the
RF. Finally, it has to be stressed that the five reconstructions
presented in Fig. 7, including Ortega et al. (2015), do not
show a predominant positive NAO phase during the Medieval
Climate Anomaly, contrary to the hypothesis formulated by
Trouet et al. (2009).
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Figure 7. Red line: RF reconstruction for the period 1000–1972 (Sect. 3.1.2), using proxy records significantly correlated at the 80 %
confidence level with the NAO over the training periods (Sect. 3.1.1). Blue line: Enet reconstruction for the period 1000–1971 (Sect. 3.1.2)
by selecting the proxy records significantly correlated with the NAO index at the 95 % confidence level over the training periods (Sect. 3.1.1).
Green line: PCR reconstruction for the period 1000–1971 (Sect. 3.1.2) by selecting the proxy records significantly correlated with the
NAO index at the 95 % confidence level over the training periods (Sect. 3.1.1). Orange line: PLS reconstruction for the period 1000–1972
(Sect. 3.1.2) by selecting the proxy records significantly correlated with the NAO index at the 95 % confidence level over the training periods
(Sect. 3.1.1). Thin black line: calibration-constrained reconstruction (Ortega et al., 2015). Red area: regression uncertainties (see Sect. S3)
for the RF reconstruction. Blue area: regression uncertainties for the Enet reconstruction. Blue area: regression uncertainties for the PCR
reconstruction. Orange area: regression uncertainties for the PLS reconstruction. Thick black lines are the corresponding 11-year filtered
reconstructions for each method. Purple lines: superposed 11-year filtered NAO index from Jones et al. (1997).

3.2.2 Response to external forcing

No significant correlation is found between the NAO re-
construction based on RF method and the total solar irra-
diance (TSI) reconstruction from Vieira et al. (2011) (r '
−0.11;p > 0.18). The same is true for the best reconstruc-
tion of the other methods (not shown) and Ortega et al.
(2015). None of the reconstructions (including Ortega et al.,
2015) show clear negative phases during the Maunder and
the Spörer minima as suggested by some model simulations
(Shindell et al., 2004). In addition, no significant correlation
on the pre-industrial era has been found with the CO2 recon-
struction based on a Law Dome (East Antarctica) ice core
(Etheridge et al., 1996) (not shown), indicating that the NAO

is not linearly associated with CO2 variations over this time
frame.

Ortega et al. (2015) suggested that a positive NAO phase is
triggered 2 years after strong volcanic eruptions, a response
that is not reproduced over the last millennium by model sim-
ulations (Swingedouw et al., 2017). We use the 10 large vol-
canic eruptions selected in Ortega et al. (2015) and a second
selection (see Table S2) of the 11 largest volcanic eruptions
from the well-verified reconstruction of Sigl et al. (2015).
By using a superposed epoch analysis and the Rao et al.
(2019) Monte Carlo approach to calculate significance (see
Sect. S4), we find that using the same set of eruptions as Or-
tega et al. (2015) leads to the same result: a significant pos-
itive response of the NAO 2 years after the eruption. How-
ever, for RF this result is not significant with its p value of
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Figure 8. Comparison of reconstructions from this study with the original Jones et al. (1997) NAO index (purple line) over their common pe-
riod. (a) RF reconstruction. (b) Enet reconstruction. (c) PCR reconstruction. (d) PLS reconstruction. NSCE, RMSE and correlation statistics
are provided.

Figure 9. P values obtained from Shapiro–Wilk normality tests on the residuals from each reconstruction of Fig. 7. For panels (a) RF, (b)
Enet, (c) PCR and (d) PLS, the repartition of the 50 p values obtained for each training/testing split is presented. Red dashed lines indicate
the 90 % confidence level for non-normality. For 0≤ α ≤ 1, if the p value≤ α, it means that the residual distribution is significantly non-
Gaussian at the 1−α confidence level (see shapiro.test R documentation). Black dots indicate the p values of the residuals obtained for the
final models.
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Figure 10. Map of the 46 proxy records used for the reconstruction of the NAO index from Jones et al. (1997) over the time window
1000–1972 using the RF method. Points with a black dot are proxy records also used in Ortega et al. (2015).

Table 1. Table of correlations between five reconstructions: Or-
tega et al. (2015) reconstruction; RF reconstruction for the period
1000–1972 using the proxy records significantly correlated with the
NAO at the 80 % confidence level; Enet reconstruction for the pe-
riod 1000–1972 only using the proxy records significantly corre-
lated with the 95 % confidence level; PCR reconstruction for the
period 1000–1970 only using the proxy records significantly corre-
lated with the NAO at the 95 % confidence level; PLS reconstruction
for the period 1000–1970 only using the proxy records significantly
correlated with the NAO at the 95 % confidence level.

RF Enet PCR PLS Ortega

RF 1.00 0.7 0.65 0.54 0.55
Enet 0.7 1.00 0.92 0.88 0.65
PCR 0.65 0.92 1.00 0.8 0.48
PLS 0.54 0.88 0.8 1.00 0.68
Ortega 0.55 0.65 0.48 0.68 1.00

just under 0.1 (Fig. 11). Conversely, by using the 11 largest
volcanic eruptions from Sigl et al. (2015), we find a signifi-
cant response at the 90 % confidence level for PLS, but 1 year
after the eruption with a p value of under 0.05 (Fig. 11). For
RF, Enet and PCR, the positive NAO response is significant
1 to 3 years after the eruption (Fig. 11). Here again, the sig-
nificance for the RF composite is smaller than for the other
methods while this reconstruction is associated with the high-
est NSCE scores. Individual response analysis shows that for

the RF reconstruction, this result is particularly significant
for the two largest eruptions of the millennium (Samalas,
1257, Kuwae, 1458) and not so clear for the nine others (not
shown). This result suggests that the positive NAO response
might be mainly associated with volcanic eruptions with very
large and rare intensities such as the Samalas or Kuwae erup-
tions and less connected with eruptions of weaker intensities.
However, further studies might be useful to verify the statis-
tical robustness of this result, as this kind of event (eruption
at least as strong as Kuwae, 1453) is very rare, thus only pro-
viding two events for this study.

4 Discussion and conclusion

Discussion, caveats and outlooks

The results presented above regarding the NAO have all been
obtained using ClimIndRec. Indeed, they require advanced
programming and statistical knowledge to ensure a good es-
timation of the reliability of the reconstruction performed.
This is possible because ClimIndRec offers an integrated
package through which parameters and methods can be ef-
ficiently tested and compared, together with reliable valida-
tion metrics such as the NSCE. Nevertheless, the methodol-
ogy proposed in ClimIndRec could be further improved in
different ways.
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Figure 11. Superposed epoch analysis of the NAO response from 2 years (N−1) before to 5 years after (N+4) the largest volcanic eruptions
used by Ortega et al. (2015) (10 eruptions) and the 11 largest from Sigl et al. (2015). All of the composites are centred to their values at
the year of the volcanic eruption occurrence. (a) Red line: composite for RF reconstruction response to Sigl et al. (2015) volcanic eruptions.
Dashed red line: composite for RF reconstruction response to Ortega et al. (2015) volcanic eruptions. Dashed purple line: Monte Carlo 90 %
confidence level (Rao et al., 2019, Sect. S4). (b) Blue line: composite for Enet reconstruction response Sigl et al. (2015) volcanic eruptions.
Dashed blue line: composite for Enet reconstruction response to Ortega et al. (2015) volcanic eruptions. Dashed purple line: Monte Carlo
90 % confidence level (Rao et al., 2019, Sect. S4). (c) Green line: composite for PCR reconstruction response Sigl et al. (2015) volcanic
eruptions. Dashed green line: composite for PCR reconstruction response to Ortega et al. (2015) volcanic eruptions. Dashed purple line:
Monte Carlo 90 % confidence level (Rao et al., 2019, Sect. S4). (d) Orange line: composite for PLS reconstruction response Sigl et al. (2015)
volcanic eruptions. Dashed orange line: composite for PLS reconstruction response to Ortega et al. (2015) volcanic eruptions. Dashed purple
line: Monte Carlo 90 % confidence level (Rao et al., 2019, Sect. S4).

ClimIndRec does not deal with missing data in proxy
records. This implies selecting exclusively the proxy records
that entirely cover the reconstruction period, which thus ex-
cludes some existing proxy records. Also, proxy records with
gaps are not used in the present version of ClimIndRec as
their use in an interpolated version would artificially increase
their weight in the reconstruction and thus possibly induce
spectral artefacts in the reconstruction (Hanhijarvi et al.,
2013). The optimal way to develop a statistical model over
the instrumental period is to use as many proxies as possi-
ble and as many years of observations as possible. This leads
to a paradox since periods that are well covered by obser-
vation data are the most recent ones, which are generally
less well covered by proxies. However, future versions of
ClimIndRec will be dedicated to develop other probabilistic-
based reconstruction approaches to deal with missing data
such as Bayesian hierarchical models (Tingley and Huybers,
2010a, b, 2013; Tingley, 2012; Cahill et al., 2016) or regular-
ized expectation–maximization algorithms (Schneider, 2001;
Mann et al., 2008; Wang et al., 2015). Another point that lim-
its the capacities of ClimIndRec is that it is based on the as-
sumption that teleconnections of the reconstructed mode are
stationary in time, while they may depend on the state of the
climate system. This is a classical limit for statistical climate

reconstructions but it can be evaluated by use of pseudo-
proxy methods (e.g. Lehner et al., 2012; Ortega et al., 2015).
Regarding this aspect, more complex methods like data as-
similation can clearly overcome this weakness by combin-
ing model and data. The use of such approaches for the last
millennium remains nevertheless very complex primarily be-
cause of their computational cost and the lack of data. They
are however emerging (e.g. Hakim et al., 2016; Singh et al.,
2018). Data assimilation techniques can be very model de-
pendent as highlighted for the ocean over the recent period
(Karspeck et al., 2015) so that their reconstruction of a given
regional climatic modes can suffer from interference with re-
constructions of other aspect of the climate. Thus, dedicated
approaches like the ones developed here can be seen as very
complementary and may increase our confidence in the re-
constructions. Indeed, if different approaches provide very
similar results, this can be interpreted as a source of robust-
ness for a given result or reconstruction.

Another caveat concerns the fact that the present version
of ClimIndRec does not account for dating uncertainties in
proxy records. Future developments of ClimIndRec may al-
low one to take into account these uncertainties and to pro-
vide their estimation along time. For doing so, deeper inves-
tigations for each proxy record are needed as these sources of
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uncertainty are not exhaustively provided in P2k2017. Also,
we found that the reconstructions performed by ClimIndRec
provide a clear loss of variance over the learning period and
the reconstructed period (before 1856; see Table S4). The RF
method is the only one that reproduces adequately the NAO
amplitude only over the learning period but also provide sig-
nificant loss of variance over the reconstructed period. This
indicates that the loss of variance over the reconstruction pe-
riod could partly be due to the proxy records themselves and
not only to the statistical approach.

A key aspect that has been found within this study is the
sensitivity of the results to the validation metric used. Indeed,
we also used correlation as the main score for the test period.
It appears that this metric was mainly capturing the phas-
ing of the modes in their reconstruction (not shown; Guillot
et al., 2015). By using NSCE, we improved the strength of
our reconstruction since aspects other than the synchroniza-
tion were accounted for. This latter metric, which is more
classical in prediction evaluation, further highlights that the
RF method outperforms most of the others methods, notably
the PCR which is a classical method used in paleoclimatol-
ogy (Cook et al., 2002; Gray et al., 2004; Ortega et al., 2015;
Wang et al., 2017). Other metrics of prediction validation ex-
ist (e.g. continuous ranked probability score, Gneiting and
Raftery, 2007), so a more extensive analysis of the sensitivity
of the reconstruction to other metrics for the validation period
might be very useful. Thus, the development of other valida-
tion metrics in the next versions of ClimIndRec appears an
interesting avenue to explore.

5 Conclusions

We have proposed and described here four statistical meth-
ods for reconstructing modes of climate variability and have
compared them for a particular example: the reconstruction
of the NAO. By identifying and minimizing the sources of re-
construction uncertainty due to the method used (Sect. 3.1.1,
3.1.2), the time frame considered (Sect. 3.1.2) and the proxy
selection (Sect. 3.1.1), we found the optimal NAO recon-
struction. It was obtained for the RF method over the time
frame 1000–1972 using the 46 proxy records available for
this time frame (Sect. 3.2.1). This method has not been used
yet to our knowledge for climate index reconstructions; it
clearly outperforms the other methods (Sect. 3.1) and seems
thus promising. The reconstruction we obtained is distin-
guishable from the Ortega et al. (2015) reconstruction but
remains significantly correlated with it (r = 0.49; p < 0.01,
over the period 1073–1855).

We have shown that for Enet, PLS and particularly PCR,
which is frequently used in paleoclimatology, selecting proxy
records with a strong correlation with the index to be recon-
structed over the training periods is a good way to improve
the NSCE scores, and hence it allows more reliable recon-
structions (Sect. 3.1.1). Contrarily, RF gives more reliable

reconstructions using the proxy records significantly corre-
lated at the 80 % confidence level with the NAO (Sect. 3.1.1).
This may be due to the fact that it has been mainly developed
for large datasets (Breiman, 2001). For both cases, gathering
new proxy records to the 554 available proxy records col-
lected, may be a reliable source of reconstruction improve-
ment. The inclusion of new NAO-sensitive proxy records in
the future may thus lead to better reconstructions. ClimIn-
dRec should allow one to easily perform such new recon-
structions.
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