M. J. Alonso, D. Heine-suñer, M. Calvo, J. Rosell, J. Giménez et al., Spectrum of mutations in the CFTR gene in cystic fibrosis patients of Spanish ancestry, Ann. Hum. Genet, vol.71, pp.22132-22140, 2007.

I. Callebaut, B. Hoffmann, P. Lehn, and J. P. Mornon, Molecular modelling and molecular dynamics of CFTR, Cell. Mol. Life Sci, vol.74, pp.3-22, 2017.

I. Callebaut, B. Hoffmann, and J. P. Mornon, The implications of CFTR structural studies for cystic fibrosis drug development, Curr. Opin. Pharmacol, vol.34, pp.112-118, 2017.

S. H. Cheng, R. J. Gregory, J. Marshall, S. Paul, D. W. Souza et al., Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis, Cell, vol.63, pp.90148-90156, 1990.

J. Clain, J. Lehmann-che, I. Duguépéroux, N. Arous, E. Girodon et al., Misprocessing of the CFTR protein leads to mild cystic fibrosis phenotype, Hum. Mutat, vol.25, pp.360-371, 2005.

W. Dalemans, P. Barbry, G. Champigny, S. Jallat, K. Dott et al., Altered chloride ion channel kinetics associated with the delta F508 cystic fibrosis mutation, Nature, vol.354, pp.526-528, 1991.

T. Darden, D. York, and L. Pedersen, Particle mesh Ewald: an N · log(N) method for Ewald sums in large systems, J. Chem. Phys, vol.98, p.10089, 1993.

G. M. Denning, L. S. Ostedgaard, and M. J. Welsh, Abnormal localization of cystic fibrosis transmembrane conductance regulator in primary cultures of cystic fibrosis airway epithelia, J. Cell Biol, vol.118, pp.551-559, 1992.

Y. El-hiani and P. Linsdell, Functional architecture of the cytoplasmic entrance to the cystic fibrosis transmembrane conductance regulator chloride channel pore, J. Biol. Chem, vol.290, pp.15855-15865, 2015.

J. Esque, C. Oguey, and A. G. De-brevern, A novel evaluation of residue and protein volumes by means of laguerre tessellation, J. Chem. Inf. Model, vol.50, pp.947-960, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00473943

J. Esque, C. Oguey, and A. G. De-brevern, Comparative analysis of threshold and tessellation methods for determining protein contacts, J. Chem. Inf. Model, vol.51, pp.493-507, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00568174

L. Froux, A. Billet, and F. Becq, Modulating the cystic fibrosis transmembrane regulator and the development of new precision drugs, Expert. Rev. Precis. Med. Drug Dev, vol.3, pp.357-370, 2018.

K. Hart, N. Foloppe, C. M. Baker, E. J. Denning, L. Nilsson et al., Optimization of the CHARMM additive force field for DNA: improved treatment of the BI/BII conformational equilibrium, J. Chem. Theory Comput, vol.8, pp.348-362, 2012.

B. Hoffmann, A. Elbahnsi, P. Lehn, J. Décout, F. Pietrucci et al., Combining theoretical and experimental data to decipher CFTR 3D structures and functions, Cell. Mol. Life Sci, vol.75, pp.3829-3855, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02173807

K. M. Hudock and J. P. Clancy, An update on new and emerging therapies for cystic fibrosis, Expert. Opin. Emerg. Drugs, vol.22, pp.331-346, 2017.

R. P. Hudson, J. E. Dawson, P. A. Chong, Z. Yang, L. Millen et al., Direct binding of the corrector VX-809 to human CFTR NBD1: evidence of an allosteric coupling between the binding site and the NBD1:CL4 Interface, Mol. Pharmacol, vol.92, pp.124-135, 2017.

B. Illek, H. Fischer, G. F. Santos, J. H. Widdicombe, T. E. Machen et al., cAMP-independent activation of CFTR Cl channels by the tyrosine kinase inhibitor genistein, Am. J. Physiol. Cell Physiol, vol.268, issue.4, pp.886-893, 1995.

S. Jo, T. Kim, V. G. Iyer, and W. Im, CHARMM-GUI: a web-based graphical user interface for CHARMM, J. Comput. Chem, vol.29, pp.1859-1865, 2008.

E. Kanavakis, M. Tzetis, T. Antoniadi, J. Traeger-synodinos, S. Doudounakis et al., Mutation analysis of ten exons of the CFTR gene in Greek cystic fibrosis patients: characterization of 74.5% of CF alleles including one novel mutation, Hum. Genet, vol.96, pp.364-366, 1995.

E. Kerem, Mutation specific therapy in CF, Paediatr. Respir. Rev, vol.7, pp.166-169, 2006.

K. V. Krasnov, M. Tzetis, J. Cheng, W. B. Guggino, and G. R. Cutting, Localization studies of rare missense mutations in cystic fibrosis transmembrane conductance regulator (CFTR) facilitate interpretation of genotype-phenotype relationships, Hum. Mutat, vol.29, pp.1364-1372, 2008.

O. Laselva, S. Molinski, V. Casavola, and C. E. Bear, Correctors of the major cystic fibrosis mutant interact through membrane-spanning domains S, Mol. Pharmacol, vol.93, pp.612-618, 2018.

J. Lee, X. Cheng, J. M. Swails, M. S. Yeom, P. K. Eastman et al., CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 additive force field, J. Chem. Theory Comput, vol.12, pp.405-413, 2016.

F. Liu, Z. Zhang, L. Csanády, D. C. Gadsby, C. et al., Molecular structure of the human CFTR Ion channel, Cell, vol.169, pp.85-92, 2017.

G. L. Lukacs, X. B. Chang, C. Bear, N. Kartner, A. Mohamed et al., The delta F508 mutation decreases the stability of cystic fibrosis transmembrane conductance regulator in the plasma membrane. Determination of functional half-lives on transfected cells, J. Biol. Chem, vol.268, pp.21592-21598, 1993.

T. Ma, J. R. Thiagarajah, H. Yang, N. D. Sonawane, C. Folli et al., Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin -induced intestinal fluid secretion, J. Clin. Invest, vol.110, pp.1651-1658, 2002.

S. V. Molinski, V. M. Shahani, A. S. Subramanian, S. S. Mackinnon, G. Woollard et al., Comprehensive mapping of cystic fibrosis mutations to CFTR protein identifies mutation clusters and molecular docking predicts corrector binding site, Proteins Struct. Funct. Bioinforma, vol.86, pp.833-843, 2018.

J. P. Mornon, B. Hoffmann, S. Jonic, P. Lehn, and I. Callebaut, Fullopen and closed CFTR channels, with lateral tunnels from the cytoplasm and an alternative position of the F508 region, as revealed by molecular dynamics, Cell. Mol. Life Sci, vol.72, pp.1377-1403, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01134215

B. D. Moyer, J. Loffing, E. M. Schwiebert, D. Loffing-cueni, P. A. Halpin et al., Membrane trafficking of the cystic fibrosis gene product, cystic fibrosis transmembrane conductance regulator, tagged with green fluorescent protein in madin-darby canine kidney cells, J. Biol. Chem, vol.273, pp.21759-21768, 1998.

T. Okiyoneda, H. Barrière, M. Bagdány, W. M. Rabeh, K. Du et al., Peripheral protein quality control removes unfolded CFTR from the plasma membrane, Science, vol.329, pp.805-810, 2010.

T. Okiyoneda, G. Veit, J. F. Dekkers, M. Bagdany, N. Soya et al., Mechanism-based corrector combination restores (F508-CFTR folding and function, Nat. Chem. Biol, vol.9, pp.444-454, 2013.

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt et al., UCSF Chimera -A visualization system for exploratory research and analysis, J. Comput. Chem, vol.25, pp.1605-1612, 2004.

J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid et al., Scalable molecular dynamics with NAMD, J. Comput. Chem, vol.26, pp.1781-1802, 2005.

H. Y. Ren, D. E. Grove, O. De-la-rosa, S. A. Houck, P. Sopha et al., VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator protein through action on membrane-spanning domain 1, Mol. Biol. Cell, vol.24, pp.3016-3024, 2013.

S. M. Rowe, S. Miller, and E. J. Sorscher, Cystic Fibrosis, N. Engl. J. Med, vol.352, 1992.

C. M. Sabusap, W. Wang, C. M. Mcnicholas, W. J. Chung, L. Fu et al., Analysis of cystic fibrosis-associated P67L CFTR illustrates barriers to personalized therapeutics for orphan diseases, JCI Insight, vol.1, p.86581, 2016.

K. M. Sanchez, G. Kang, B. Wu, and J. E. Kim, Tryptophan-lipid interactions in membrane protein folding probed by ultraviolet resonance Raman and fluorescence spectroscopy, Biophys. J, vol.100, pp.2121-2130, 2011.

H. Sharma, M. Souchet, I. Callebaut, R. Prasad, and F. Becq, Function, pharmacological correction and maturation of new Indian CFTR gene mutations, J. Cyst. Fibros, vol.14, pp.34-41, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01099879

B. Strandvik, E. Björck, M. Fallström, E. Gronowitz, J. Thountzouris et al., Spectrum of mutations in the CFTR Gene of patients with classical and atypical forms of cystic fibrosis from southwestern sweden: identification of 12 novel mutations, Genet. Test, vol.5, pp.235-242, 2001.

A. G. Therien, F. E. Grant, and C. M. Deber, Interhelical hydrogen bonds in the CFTR membrane domain, Nat. Struct. Biol, vol.8, pp.597-601, 2001.

F. Van-goor, H. Yu, B. Burton, and B. J. Hoffman, Effect of ivacaftor on CFTR forms with missense mutations associated with defects in protein processing or function, J. Cyst. Fibros, vol.13, pp.29-36, 2014.

A. Vankeerberghen, L. Wei, M. Jaspers, J. J. Cassiman, B. Nilius et al., Characterization of 19 disease-associated missense mutations in the regulatory domain of the cystic fibrosis transmembrane conductance regulator, Hum. Mol. Genet, vol.7, pp.1761-1769, 1998.

G. Veit, R. G. Avramescu, A. N. Chiang, S. A. Houck, Z. Cai et al., From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations, Mol. Biol. Cell, vol.27, pp.424-433, 2016.

E. L. Wu, X. Cheng, S. Jo, H. Rui, K. C. Song et al., CHARMM-GUI membrane builder toward realistic biological membrane simulations, J. Comput. Chem, vol.35, 1997.

W. M. Yau, W. C. Wimley, K. Gawrisch, and S. H. White, The preference of tryptophan for membrane interfaces, Biochemistry, vol.37, pp.14713-14718, 1998.

Z. Zhang, C. , and J. , Atomic structure of the cystic fibrosis transmembrane conductance regulator, Cell, vol.167, 2016.

Z. Zhang, F. Liu, C. , and J. , Conformational changes of CFTR upon phosphorylation and ATP binding, Cell, vol.170, 2017.

Z. Zhang, F. Liu, C. , and J. , Molecular structure of the ATP-bound, phosphorylated human CFTR, Proc. Natl. Acad. Sci. U.S.A, vol.115, pp.12757-12762, 2018.