
HAL Id: hal-02557113
https://hal.sorbonne-universite.fr/hal-02557113v1

Preprint submitted on 28 Apr 2020 (v1), last revised 8 Feb 2021 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interpretable Random Forests via Rule Extraction
Clément Bénard, Gérard Biau, Sébastien da Veiga, Erwan Scornet

To cite this version:
Clément Bénard, Gérard Biau, Sébastien da Veiga, Erwan Scornet. Interpretable Random Forests via
Rule Extraction. 2020. �hal-02557113v1�

https://hal.sorbonne-universite.fr/hal-02557113v1
https://hal.archives-ouvertes.fr

Interpretable Random Forests via Rule Extraction

Bénard, Clément 1 2 Biau, Gérard 2 Da Veiga, Sébastien 1 Scornet, Erwan 3

Abstract
We introduce SIRUS (Stable and Interpretable
RUle Set) for regression, a stable rule learning
algorithm which takes the form of a short and
simple list of rules. State-of-the-art learning algo-
rithms are often referred to as “black boxes” be-
cause of the high number of operations involved
in their prediction process. Despite their power-
ful predictivity, this lack of interpretability may
be highly restrictive for applications with criti-
cal decisions at stake. On the other hand, algo-
rithms with a simple structure—typically decision
trees, rule algorithms, or sparse linear models—
are well known for their instability. This unde-
sirable feature makes the conclusions of the data
analysis unreliable and turns out to be a strong op-
erational limitation. This motivates the design of
SIRUS, which combines a simple structure with
a remarkable stable behavior when data is per-
turbed. The algorithm is based on random forests,
the predictive accuracy of which is preserved. We
demonstrate the efficiency of the method both
empirically (through experiments) and theoreti-
cally (with the proof of its asymptotic stability).
Our R/C++ software implementation sirus is
available from CRAN.

1. Introduction
State-of-the-art learning algorithms, such as random forests
or neural networks, are often criticized for their “black-box”
nature. This criticism essentially results from the high num-
ber of operations involved in their prediction mechanism,
as it prevents to grasp how inputs are combined to generate
predictions. Interpretability of machine learning algorithms
is receiving an increasing amount of attention since the lack
of transparency is a strong limitation for many applications,
in particular those involving critical decisions. The analysis
of production processes in the manufacturing industry typi-

1Safran Tech 2Sorbonne Université 3Ecole Poly-
technique. Correspondence to: Bénard, Clément
<clement.benard@safrangroup.com>.

cally falls into this category. Indeed, such processes involve
complex physical and chemical phenomena that can often
be successfully modeled by black-box learning algorithms.
However, any modification of a production process has deep
and long-term consequences, and therefore cannot simply
result from a blind stochastic modelling. In this domain,
algorithms have to be interpretable, i.e., provide a sound
understanding of the relation between inputs and outputs,
in order to leverage insights to guide physical analysis and
improve efficiency of the production.

Although there is no agreement in the machine learning
litterature about a precise definition of interpretability (Lip-
ton, 2016; Murdoch et al., 2019), it is yet possible to define
simplicity, stability, and predictivity as minimum require-
ments for interpretable models (Bénard et al., 2019; Yu &
Kumbier, 2019). Simplicity of the model structure can be
assessed by the number of operations performed in the pre-
diction mechanism. In particular, Murdoch et al. (2019)
introduce the notion of simulatable models when a human is
able to reproduce the prediction process by hand. Secondly,
Yu (2013) argues that “interpretability needs stability”, as
the conclusions of a statistical analysis have to be robust to
small data perturbations to be meaningful. Instability is the
symptom of a partial and arbitrary modelling of the data,
also known as the Rashomon effect (Breiman, 2001b). Fi-
nally, as also explained in Breiman (2001b), if the decrease
of predictive accuracy is significant compared to a state-of-
the-art black-box algorithm, the interpretable model misses
some patterns in the data and is therefore misleading.

Decision trees (Breiman et al., 1984) can model nonlinear
patterns while having a simple structure. They are therefore
often presented as interpretable. However, the structure of
trees is highly sensitive to small data perturbation (Breiman,
2001b), which violates the stability principle and is thus a
strong limitation to their practical use. Rule algorithms are
another type of nonlinear methods with a simple structure,
defined as a collection of elementary rules. An elementary
rule is a set of constraints on input variables, which forms
a hyperrectangle in the input space and on which the asso-
ciated prediction is constant. As an example, such a rule
typically takes the following simple form:

If
{

X(1) < 1.12
& X(3) ≥ 0.74

then Ŷ = 0.18 else Ŷ = 4.1 .

Interpretable Random Forests via Rule Extraction

A large number of rule algorithms have been developed,
among which the most influential Decision List (Rivest,
1987), CN2 (Clark & Niblett, 1989), C4.5 (Quinlan, 1992),
IREP (Incremental Reduced Error Pruning, Fürnkranz &
Widmer, 1994), RIPPER (Repeated Incremental Pruning
to Produce Error Reduction, Cohen, 1995), PART (Partial
Decision Trees, Frank & Witten, 1998), SLIPPER (Simple
Learner with Iterative Pruning to Produce Error Reduction,
Cohen & Singer, 1999), LRI (Leightweight Rule Induction,
Weiss & Indurkhya, 2000), RuleFit (Friedman & Popescu,
2008), Node harvest (Meinshausen, 2010), ENDER (En-
semble of Decision Rules, Dembczyński et al., 2010), BRL
(Bayesian Rule Lists, Letham et al., 2015), RIPE (Rule In-
duction Partitioning Estimator, Margot et al., 2018; 2019),
and Wei et al. (2019, Generalized Linear Rule Models). It
turns out, however, that among the hundreds of existing rule
algorithms, most of them are designed for supervised classi-
fication and very few have the ability to handle regression
problems, with the notable exception of RuleFit and Node
harvest. Yet, despite their powerful predictive skills, these
two methods tend to produce long, complex, and unstable
list of rules (typically of the order of 50), which makes their
interpretability questionable.

The purpose of this article is to propose a new stable rule
algorithm for regression, SIRUS (Stable and Interpretable
RUle Set), and therefore demonstrate that rule methods
can address regression problems efficiently while produc-
ing compact and stable list of rules. To this aim, we build
on Bénard et al. (2019), who have introduced SIRUS for
classification problems. Our algorithm is based on random
forests (Breiman, 2001a), and its general principle is as fol-
lows: since each node of each tree of a random forest can
be turned into an elementary rule, the core idea is to extract
rules from a tree ensemble based on their frequency of ap-
pearance. The most frequent rules, which represent robust
and strong patterns in the data, are ultimately linearly com-
bined to form predictions. Just as a preliminary illustration,
Table 1 shows that SIRUS outperforms its main competi-
tors, Rulefit and Node harvest, in terms of stability, with
a comparable predictive accuracy as we will see. The sta-
bility measure is designed using a 10-fold cross-validation
to simulate data perturbation (the metric is the average pro-
portion of rules shared by two models of two distinct folds
of the cross-validation). Besides, our algorithm inherits the
computational complexity of random forests.

We present SIRUS algorithm in Section 2. In Section 3, ex-
periments illustrate the good performance of our algorithm
in various settings. Section 4 is devoted to studying the the-
oretical properties of the method, with, in particular, a proof
of its asymptotic stability. Finally, Section 5 summarizes
the main results and discusses research directions for future
work. Additional details are gathered in the Supplementary
Material.

Dataset RuleFit Node Harvest SIRUS
Ozone 0.22 0.30 0.62
Mpg 0.25 0.43 0.83

Prostate 0.32 0.23 0.48
Housing 0.19 0.40 0.80
Diabetes 0.18 0.39 0.66
Machine 0.23 0.29 0.88
Galaxy 0.40 0.39 0.77

Abalone 0.31 0.38 0.82
Bones 0.59 0.52 0.89

Table 1. Mean stability over a 10-fold cross-validation for various
public datasets.

2. SIRUS
We consider a standard regression setting where we observe
an i.i.d. sample Dn = {(Xi, Yi), i = 1, . . . , n}, with each
(Xi, Yi) distributed as a generic pair (X, Y) independent
of Dn. The p-tuple X = (X(1), . . . , X(p)) is a random
vector taking values in Rp, and Y ∈ R is the response.
Our objective is to estimate the regression function m(x) =
E(Y |X = x) with a small and stable set of rules.

2.1. Algorithm

Rule generation The first step of SIRUS is to grow a
random forest with a large number M of trees based on the
available sample Dn. Two critical features of our approach
to stabilize the forest structure are (i) to restrict node splits
to the q-empirical quantiles of the marginalsX(1), . . . , X(p)

(with, typically, q = 10), and (ii) to grow shallow trees of
depth 2. As the experiments will show, these modifications
to Breiman’s original algorithm are harmless for predictive
accuracy. Next, the obtained forest is broken down in a large
collection of rules in the following process. First, observe
that each node of each tree of the resulting ensemble defines
a hyperrectangle in the input space Rp. Such a node can
therefore be turned into an elementary regression rule, by
defining a piecewise constant estimate whose value only de-
pends on whether the query point falls in the hyperrectangle
or not. Formally, a tree node is represented by a path, say
P , which describes how to reach the node from the root of
the tree. In the sequel, we denote by Π the finite list of all
possible paths, and insist that each path P ∈ Π defines a
regression rule. Based on this principle, in the first step of
the algorithm, both internal and external nodes are extracted
from the trees of depth 2 of the random forest to generate a
large collection of rules, typically 104.

Rule selection The second step of SIRUS is to select the
relevant rules from this large collection. Despite the tree
randomization in the forest construction, there are some
redundancy in the extracted rules. Indeed those with a

Interpretable Random Forests via Rule Extraction

high frequency of appearance represent strong and robust
patterns in the data, and are therefore good candidates to be
included in a compact, stable, and predictive rule ensemble.
This occurrence frequency is denoted by p̂M,n(P) for each
possible path P ∈ Π. Then a threshold p0 ∈ (0, 1) is
simply used to select the relevant rules, that is

P̂M,n,p0 = {P ∈ Π : p̂M,n(P) > p0}.

The threshold p0 is a tuning parameter, whose influence is
illustrated later in the experiments in Figures 2 and 3. In a
word, SIRUS uses the principle of randomized bagging, but
aggregates the forest structure itself instead of predictions
in order to stabilize the rule selection.

Rule set post-treatment The rules associated with the set
of distinct paths P̂M,n,p0 are dependent by definition of the
path extraction mechanism. In particular, let us consider the
6 rules extracted from a random tree of depth 2. Since the
tree structure is recursive, 2 rules are made of one split and
4 rules of two splits. Those 6 rules are linearly dependent
because their associated hyperrectangles overlap. Conse-
quently, to properly settle a linear aggregation of the rules,
the third step of SIRUS filters P̂M,n,p0 with the following
post-treatment procedure: if the rule induced by the path
P ∈ P̂M,n,p0 is a linear combination of rules associated
with paths with a higher frequency of appearance, then P
is simply removed from P̂M,n,p0 .

Rule aggregation By following the previous steps, we
finally obtain a small set of regression rules. As such, a
rule ĝn,P associated with a path P is a piecewise constant
estimate: if a query point x falls into the corresponding
hyperrectangle HP ⊂ Rp, the rule returns the average of
the Yi’s for the training points Xi’s that belong to HP ;
symmetrically, if x falls outside of HP , the average of the
Yi’s for training points outside of HP is returned. A non-
negative weight is assigned to each of the selected rule, in
order to combine them into a single estimate ofm(x). These
weights are defined as the ridge regression solution, where
each predictor is a rule ĝn,P for P ∈ P̂M,n,p0 and weights
are constrained to be non-negative. Thus, the aggregated
estimate m̂M,n,p0(x) of m(x) computed in the fourth step
of SIRUS has the form

m̂M,n,p0(x) = β̂0 +
∑

P∈P̂M,n,p0

β̂n,P ĝn,P(x), (2.1)

where β̂0 and β̂n,P are the solutions of the ridge regression
problem. More precisely, denoting by β̂n,p0 the column
vector whose components are the coefficients β̂n,P for P ∈
P̂M,n,p0 , and letting Y = (Y1, . . . , Yn)T and Γn,p0 the
matrix whose rows are the rule values ĝn,P(Xi) for i ∈

{1, . . . , n}, we have

(β̂n,p0 , β̂0) = argmin
β≥0,β0

1

n
||Y − β01n − Γn,p0β||22

+ λ||β||22,

where 1n = (1, . . . , 1)T is the n-vector with all com-
ponents equal to 1, and λ is a positive parameter tuned
by cross-validation that controls the penalization severity.
The mininum is taken over β0 ∈ R and all the vectors
β = {β1, . . . , βcn} ∈ R

cn
+ where cn = |P̂M,n,p0 | is the

number of selected rules.

Since rules are correlated by construction, a simple optimal
least square solution leads to negative values for some of the
coefficients β̂n,P . Such behavior drastically undermines
the interpretability of the algorithm. This is why, as in
Node harvest (Meinshausen, 2010), the constraint β ≥ 0
is added to ensure that all coefficients are non-negative.
In this correlated setting, the constraint β ≥ 0 enforces
sparsity and then instability. For this reason a ridge penalty
is added to the loss function to stabilize the estimate β̂n,p0
and mitigate sparsity.

2.2. Interpretability

As stated in the introduction, despite the lack of a precise
definition of interpretable models, there are three minimum
requirements to be taken into account: simplicity, stability,
and predictivity. These notions need to be formally defined
and quantified to enable comparison between algorithms.

Simplicity Simplicity refers to the model complexity, in
particular the number of operations involved in the predic-
tion mechanism. In the case of rule algorithms, a measure
of simplicity is naturally given by the number of rules.

Stability Intuitively, a rule algorithm is stable when two
independent estimations based on two independent samples
return similar lists of rules. Formally, let P̂ ′

M,n,p0
be the

list of rules output by SIRUS fit on an independent sample
D ′n. Then the proportion of rules shared by P̂M,n,p0 and
P̂ ′
M,n,p0

gives a stability measure. Such a metric is known
as the Dice-Sorensen index, and is often used to assess
variable selection procedures (Chao et al., 2006; Zucknick
et al., 2008; Boulesteix & Slawski, 2009; He & Yu, 2010;
Alelyani et al., 2011). In our case, the Dice-Sorensen index
is then defined as

ŜM,n,p0 =
2
∣∣P̂M,n,p0 ∩ P̂ ′

M,n,p0

∣∣∣∣P̂M,n,p0

∣∣+
∣∣P̂ ′

M,n,p0

∣∣ .
However, in practice one rarely has access to an additional
sample D ′n. Therefore, to circumvent this problem, we use
a 10-fold cross-validation to simulate data perturbation. The

Interpretable Random Forests via Rule Extraction

stability metric is thus empirically defined as the average
proportion of rules shared by two models of two distinct
folds of the cross-validation. A stability of 1 means that the
exact same list of rules is selected over the 10 folds, whereas
a stability of 0 means that all rules are distinct between any
2 folds.

Predictivity For regression problems, the proportion of
unexplained variance is a natural measure of the predic-
tion error. The estimation is performed by 10-fold cross-
validation.

3. Experiments
Experiments are run over 9 diverse public datasets to demon-
strate the improvement of SIRUS over state-of-the-art meth-
ods. Table 1 in Section 2 of the Supplementary Material
provides details about the datasets.

SIRUS rule set Our algorithm is illustrated on the “LA
Ozone” dataset from Friedman et al. (2001), which records
the level of atmospheric ozone concentration from eight
daily meteorological measurements made in Los Angeles in
1976: wind speed (“wind”), humidity (“humidity”), temper-
ature (“temp”), inversion base height (“ibh”), daggot pres-
sure gradient (“dpg”), inversion base temperature (“ibt”),
visibility (“vis”), and day of the year (“doy”). The response
“Ozone” is the log of the daily maximum of ozone concen-
tration.

The list of rules output for this dataset is presented in Ta-
ble 2. The column “Frequency” refers to p̂M,n(P), the
occurrence frequency of each rule in the forest, used for
rule selection. It enables to grasp how weather conditions
impact the ozone concentration. In particular, a tempera-
ture larger than 65°F or a high inversion base temperature
result in high ozone concentrations. The third rule tells us
that the interaction of a high temperature with a visibility
lower than 150 miles generates even higher levels of ozone
concentration. Interestingly, according to the ninth rule,
especially low ozone concentrations are reached when a low
temperature and and a low inversion base temperature are
combined.

Recall that to generate a prediction for a given query point
x, for each rule the corresponding ozone concentration is
retrieved depending on whether x satisfies the rule condi-
tions. Then all rule outputs for x are multiplied by their
associated weight and added together. One can observe that
rule importances and weights are not related. For example,
the third rule has a higher weight than the most two impor-
tant ones. It is clear that rule 3 has multiple constraints and
is therefore more sensitive to data perturbation—hence a
smaller frequency of appearance in the forest. On the other
hand, its associated variance decrease in CART is more

Figure 1. Pareto front of stability versus error (unexplained vari-
ance) when p0 varies, with the optimal value in green for the
“Ozone” dataset. The optimal point is the closest one to the ideal
point (0, 0.1) of 0 unexplained variance and 90% stability.

important than for the first two rules, leading to a higher
weight in the linear combination. Since rules 5 and 6 are
strongly correlated, their weights are diluted.

Tuning SIRUS has two hyperparameters: the number of
trees M and the threshold p0 to select the most frequent
rules in the forest. Clearly, the stability, predictivity, and
computation time increase with the number of trees. Thus a
stopping criterion is designed to grow the minimum number
of trees that ensure stability and predictivity to be close to
their maximum—see Section 3 of the Supplementary Mate-
rial for a detailed definition of this criterion. On the other
hand, p0 is tuned by cross-validation to maximize both sta-
bility and predictivity. To find a tradeoff between these two
properties, we follow a standard bi-objective optimization
procedure illustrated in Figure 1: the optimal value of p0

is defined as the p0 associated to stability and predictivity
values that minimize the Euclidean distance to the ideal
point of 0 unexplained variance and 90% stability. This
ideal point is chosen for its empirical efficiency: stability
never reaches values higher than 90%, whereas unexplained
variance can be arbitrarily close to 0, depending on the
data. Additionally, we consider that long lists of rules are
not interpretable and set an arbitrary limit of 25 rules. Be-
sides, we set mtry = bp3c, q = 10 quantiles, and transform
categorical variables into multiple binary variables.

Performance We compare SIRUS with its two main com-
petitors RuleFit (with rule predictors only) and Node harvest.
Both methods also extract large collection of rules from
tree ensembles: RuleFit uses Importance Sampled Learn-
ing Ensemble (ISLE, Friedman & Popescu, 2003) whereas

Interpretable Random Forests via Rule Extraction

Average Ozone = 12 Intercept = −7.8

Frequency Rule Weight
0.29 if temp < 65 then Ozone = 7 else Ozone = 19 0.12
0.17 if ibt < 189 then Ozone = 7 else Ozone = 18 0.07

0.063 if
{

temp ≥ 65
& vis < 150

then Ozone = 20 else Ozone = 7 0.31

0.061 if vh < 5840 then Ozone = 10 else Ozone = 20 0.072
0.060 if ibh < 2110 then Ozone = 16 else Ozone = 7 0.14
0.058 if ibh < 2960 then Ozone = 15 else Ozone = 6 0.10

0.051 if
{

temp ≥ 65
& ibh < 2110

then Ozone = 21 else Ozone = 8 0.16

0.048 if vis < 150 then Ozone = 14 else Ozone = 7 0.18

0.043 if
{

temp < 65
& ibt < 120

then Ozone = 5 else Ozone = 15 0.15

0.040 if temp < 70 then Ozone = 8 else Ozone = 20 0.14
0.039 if ibt < 227 then Ozone = 9 else Ozone = 22 0.21

Table 2. SIRUS rule list for the “LA Ozone” dataset.

Node harvest is based on random forests. Rule selection
is performed by a sparse linear aggregation, respectively
the Lasso (Tibshirani, 1996) for Rulefit and a constrained
quadratic program for Node harvest. For predictive accu-
racy, we ran random forests and (pruned) CART to provide
the baseline. To enable stability comparison, data is binned
using 10 quantiles to fit Rulefit and Node harvest. Our
R/C++ package sirus is adapted from ranger, a fast
random forests implementation (Wright & Ziegler, 2017).
We also use available R implementations pre (Fokkema,
2017, RuleFit) and nodeharvest (Meinshausen, 2015).

While the predictive accuracy of SIRUS is comparable to
Node harvest and slightly below RuleFit, the stability is
considerably improved with much smaller rule lists. Experi-
mental results are gathered in Table 3 for model sizes, Table
1 for stability, and Table 4 for predictive accuracy. All re-
sults are averaged over 10 repetitions of the cross-validation
procedure. Since standard deviations are negligible, they
are not displayed to increase readability.

To illustrate the typical behavior of our method, we com-
ment the results for two specific datasets: “Diabetes” (Efron
et al., 2004) and “Machine” (Dua & Graff, 2017). The “Di-
abetes” data contains n = 442 diabetic patients and the
response of interest Y is a measure of disease progression
over one year. A total of 10 variables are collected for each
patient: age, sex, body mass index, average blood pressure,
and six blood serum measurements s1, s2, . . . , s6. For this
dataset, SIRUS is as predictive as a random forest, with only
12 rules when the forest performs about 104 operations: the
unexplained variance is 0.56 for SIRUS and 0.55 for ran-
dom forest. Notice that CART performs considerably worse

Dataset RuleFit Node Harvest SIRUS
Ozone 21 46 11
Mpg 40 43 9

Prostate 14 41 23
Housing 54 40 6
Diabetes 25 42 12
Machine 44 42 9
Galaxy 34 36 4

Abalone 58 35 6
Bones 5 13 1

Table 3. Mean model size over a 10-fold cross-validation for vari-
ous public datasets.

with 0.67 unexplained variance. For the second dataset,
“Machine”, the output Y of interest is the CPU performance
of computer hardware. For n = 209 machines, 7 variables
are collected about the machine characteristics. For this
dataset, SIRUS, RuleFit and Node harvest have a similar
predictivity, in-between CART and random forests. Our
algorithm achieves such performance with a readable list
of only 9 rules stable at 88%, while RuleFit and Node har-
vest incorporate respectively 44 and 42 rules with stability
levels of 23% and 29%. Stability and predictivity are repre-
sented as p0 varies for “Diabetes” and “Machine” datasets
in Figures 2 and 3, respectively.

Remark 1. In the above experiments, the parameter p0

controlling the number of rules in the final model is tuned
to achieve a tradeoff between stability and accuracy, which
often leads to small rule lists, typically of the order of 10. If
we drop the tuning of p0 and set its value to extract, say, 100

Interpretable Random Forests via Rule Extraction

Dataset Random
Forest CART RuleFit Node

Harvest SIRUS SIRUS
100 Rules

SIRUS
d=3

Ozone 0.25 0.36 0.27 0.31 0.32 0.26 0.28
Mpg 0.13 0.20 0.15 0.20 0.21 0.15 0.14

Prostate 0.48 0.60 0.53 0.52 0.48 0.55 0.59
Housing 0.12 0.28 0.16 0.24 0.31 0.21 0.20
Diabetes 0.55 0.67 0.55 0.58 0.56 0.54 0.55
Machine 0.12 0.39 0.26 0.29 0.29 0.27 0.26
Galaxy 0.027 0.089 0.031 0.066 0.20 0.042 0.040

Abalone 0.44 0.56 0.46 0.61 0.66 0.64 0.63
Bones 0.64 0.67 0.70 0.70 0.74 0.72 0.71

Table 4. Proportion of unexplained variance estimated over a 10-fold cross-validation for various public datasets. For rule algorithms only,
i.e., RuleFit, Node harvest, and SIRUS, maximum values are displayed in bold, as well as values within 10% of the maximum for each
dataset.

rules from the forest, SIRUS predictivity overcomes Node
harvest and is similar to RuleFit as shown in the column

“SIRUS 100 Rules” of Table 4. On the other hand, stability
drops to around 50% (70 − 80% when p0 is tuned). Also
notice that the final number of rules is around 50 because
of the additional selection performed in the final rule ag-
gregation: the model size is then comparable to Rulefit and
Node harvest. We also observe that increasing the depth of
trees to 3 (with 100 extracted rules) does not significantly
improve predictivity—see the last column “SIRUS d=3” of
Table 4.

4. Theoretical Analysis
Among the three minimum requirements for interpretable
models, stability is the critical one. In SIRUS, simplicity
is explicitly controlled by the hyperparameter p0 and the
limit of 25 rules. The wide literature on rule learning pro-
vides many experiments to show that rule algorithms have
an accuracy comparable to tree ensembles. On the other
hand, designing a stable rule procedure is more challenging
(Letham et al., 2015; Murdoch et al., 2019). For this reason,
we therefore focus our theoretical analysis on the asymptotic
stability of SIRUS.

To get started, we need a rigorous definition of the rule
extraction procedure. To this aim, we introduce a symbolic
representation of a path in a tree, which describes how to
reach a given node from the root. We insist that such path
encoding can be used in both the empirical and theoretical
algorithms to define rules. A path P is defined as

P = {(jk, rk, sk), k = 1, . . . , d},

where, for k ∈ {1, . . . , d} (d ∈ {1, 2}), the triplet
(jk, rk, sk) describes how to move from level (k − 1) to
level k, with a split using the coordinate jk ∈ {1, . . . , p},
the index rk ∈ {1, . . . , q − 1} of the corresponding quan-
tile, and a side sk = L if we go to the left and sk = R

if we go to the right. The set of all possible such paths is
denoted by Π. An example is given in Figure 4. Each tree
of the forest is randomized in two ways: (i) the sample Dn

is bootstrapped prior to the construction of the tree, and
(ii) a subset of coordinates is randomly selected to find the
best split at each node. This randomization mechanism is
governed by a random variable that we call Θ. We define
T (Θ,Dn), a random subset of Π, as the collection of the 6
extracted paths from the random tree of depth d = 2 built
with Θ and Dn. Now, let Θ1, . . . ,Θ`, . . . ,ΘM be the inde-
pendent randomizations of the M trees of the forest. With
this notation, the empirical frequency of occurrence of a
path P ∈ Π in the forest takes the form

p̂M,n(P) =
1

M

M∑
`=1

1P∈T (Θ`,Dn),

which is simply the proportion of trees that contain P . By
definition, p̂M,n(P) is the Monte Carlo estimate of the
probability pn(P) that a Θ-random tree contains a particu-
lar path P ∈ Π, that is,

pn(P) = P(P ∈ T (Θ,Dn)|Dn).

Next, we introduce all theoretical counterparts of the em-
pirical quantities involved in SIRUS, which do not depend
on the sample Dn but only on the unknown distribution of
(X, Y). We let T ?(Θ) be the list of all 6 paths contained in
the theoretical tree built with randomness Θ, in which splits
are chosen to maximize the theoretical CART-splitting cri-
terion instead of the empirical one. The probability p?(P)
that a given path P belongs to a theoretical randomized
tree (the theoretical counterpart of pn(P)) is

p?(P) = P(P ∈ T ?(Θ)).

We finally define the theoretical set of selected paths P?
p0 =

{P ∈ Π : p?(P) > p0} (with the same post-treatment as

Interpretable Random Forests via Rule Extraction

Figure 2. For the dataset “Diabetes”, unexplained variance (top
panel) and stability (bottom panel) versus the number of rules
when p0 varies, estimated via 10-fold cross-validation (results are
averaged over 10 repetitions).

Figure 3. For the dataset “Machine”, unexplained variance (top
panel) and stability (bottom panel) versus the number of rules
when p0 varies, estimated via 10-fold cross-validation (results are
averaged over 10 repetitions).

Interpretable Random Forests via Rule Extraction

x(1)

x(2)

q̂
(1)
n,7q̂

(1)
n,5

q̂
(2)
n,4

P5 = {(2, 4, R),
(1, 7, L)}

P6 = {(2, 4, R),
(1, 7, R)}

P3 = {(2, 4, L),
(1, 5, L)}

P4 = {(2, 4, L),
(1, 5, R)}

X
(2)
i < q̂

(2)
n,4 X

(2)
i ≥ q̂(2)

n,4

P1 P2

X
(1)
i < q̂

(1)
n,7

X
(1)
i ≥ q̂(1)

n,7

P5 P6

X
(1)
i < q̂

(1)
n,5

X
(1)
i ≥ q̂(1)

n,5

P3 P4

Figure 4. Example of a root node R2 partitioned by a randomized tree of depth 2: the tree on the right, the associated paths and
hyperrectangles of length d = 2 on the left.

for the data-based procedure—see Section 2—to remove lin-
ear dependence between rules, and keeping only paths with
a strictly positive coefficient in the final linear aggregation
of the rules).

As it is often the case in the theoretical analysis of random
forests, e.g. Scornet et al. (2015); Mentch & Hooker (2016),
we assume throughout this section that the subsampling of
an observations prior to each tree construction is done with-
out replacement to alleviate the mathematical analysis. Our
stability result holds under the following mild assumptions:

(A1) The subsampling rate an satisfies lim
n→∞

an = ∞ and

lim
n→∞

an
n = 0.

(A2) The number of trees Mn satisfies lim
n→∞

Mn =∞.

(A3) The random variable X has a strictly positive density f
with respect to the Lebesgue measure on Rp. Further-
more, for all j ∈ {1, . . . , p}, the marginal density f (j)

of X(j) is continuous, bounded, and strictly positive.
Finally, the random variable Y is bounded.

We recall that stability is assessed by the Dice-Sorensen
index as

ŜM,n,p0 =
2
∣∣P̂M,n,p0 ∩ P̂ ′

M,n,p0

∣∣∣∣P̂M,n,p0

∣∣+
∣∣P̂ ′

M,n,p0

∣∣ ,
where P̂ ′

M,n,p0
stands for the list of rules output by SIRUS

fit with an independent sample D ′n and where the random
forest is parameterized by independent copies Θ′1, . . . ,Θ

′
M .

The following theorem states that SIRUS is asymptotically
stable, i.e., provided that the sample size is large enough, the
same list of rules is systematically output across several fit

on independent samples. The proof can be found in Section
1 of the Supplementary Material.

Theorem 1. Assume that Assumptions (A1)-(A3) are sat-
isfied, and let U? = {p?(P) : P ∈ Π} be the set of all
theoretical probabilities of appearance for each path P .
Then, provided p0 ∈ [0, 1] \ U? and λ > 0, we have

lim
n→∞

ŜMn,n,p0 = 1 in probability.

5. Conclusion
Interpretability of machine learning algorithms is required
whenever the targeted applications involve critical decisions.
This is in particular the case for the analysis of production
processes in the manufacturing industry. Although inter-
pretability does not have a precise definition, we argued
that simplicity, stability, and predictivity are minimum re-
quirements for interpretable models. In this context, rule
algorithms are well known for their good predictivity and
simple structures. On the other hand these methods are also
often highly unstable and almost exclusively dedicated to
supervised classification.

Therefore we proposed a new regression rule algorithm
called SIRUS (Stable and Interpretable RUle Set), whose
general principle is to extract rules from random forests.
Our algorithm exhibits an accuracy comparable to state-
of-the-art rule algorithms, in particular RuleFit and Node
harvest, while producing much more stable and shorter list
of rules. This remarkably stable behavior is theoretically
understood since the rule selection is consistent. A R/C++
software sirus is available as an R package from CRAN.

Interpretable Random Forests via Rule Extraction

References
Alelyani, S., Zhao, Z., and Liu, H. A dilemma in assessing

stability of feature selection algorithms. In 13th IEEE
International Conference on High Performance Comput-
ing & Communication, pp. 701–707, Piscataway, 2011.
IEEE.

Bénard, C., Biau, G., Da Veiga, S., and Scornet, E. SIRUS:
Making random forests interpretable. arXiv:1908.06852,
2019.

Boulesteix, A.-L. and Slawski, M. Stability and aggregation
of ranked gene lists. Briefings in Bioinformatics, 10:
556–568, 2009.

Breiman, L. Random forests. Machine Learning, 45:5–32,
2001a.

Breiman, L. Statistical modeling: The two cultures (with
comments and a rejoinder by the author). Statistical
Science, 16:199–231, 2001b.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. Clas-
sification and Regression Trees. Chapman & Hall/CRC,
Boca Raton, 1984.

Chao, A., Chazdon, R., Colwell, R., and Shen, T.-J.
Abundance-based similarity indices and their estimation
when there are unseen species in samples. Biometrics, 62:
361–371, 2006.

Clark, P. and Niblett, T. The CN2 induction algorithm.
Machine Learning, 3:261–283, 1989.

Cohen, W. Fast effective rule induction. In Proceedings of
the 12th International Conference on Machine Learning,
pp. 115–123. Morgan Kaufmann Publishers Inc., San
Francisco, 1995.

Cohen, W. and Singer, Y. A simple, fast, and effective rule
learner. In Proceedings of the 16th National Conference
on Artificial Intelligence and 11th Conference on Innova-
tive Applications of Artificial Intelligence, pp. 335–342,
Palo Alto, 1999. AAAI Press.

Dembczyński, K., Kotłowski, W., and Słowiński, R. EN-
DER: A statistical framework for boosting decision rules.
Data Mining and Knowledge Discovery, 21:52–90, 2010.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. Least
angle regression. The Annals of statistics, 32:407–499,
2004.

Fokkema, M. PRE: An R package for fitting prediction rule
ensembles. arXiv:1707.07149, 2017.

Frank, E. and Witten, I. H. Generating accurate rule sets
without global optimization. In Proceedings of the 15th
International Conference on Machine Learning, pp. 144–
151, San Francisco, 1998. Morgan Kaufmann Publishers
Inc.

Friedman, J. and Popescu, B. Importance sampled learn-
ing ensembles. Journal of Machine Learning Research,
94305:1–32, 2003.

Friedman, J. and Popescu, B. Predictive learning via rule
ensembles. The Annals of Applied Statistics, 2:916–954,
2008.

Friedman, J., Hastie, T., and Tibshirani, R. The Elements
of Statistical Learning, volume 1. Springer, New York,
2001.

Fürnkranz, J. and Widmer, G. Incremental reduced error
pruning. In Proceedings of the 11th International Con-
ference on Machine Learning, pp. 70–77, San Francisco,
1994. Morgan Kaufmann Publishers Inc.

He, Z. and Yu, W. Stable feature selection for biomarker
discovery. Computational Biology and Chemistry, 34:
215–225, 2010.

Letham, B., Rudin, C., McCormick, T., and Madigan, D.
Interpretable classifiers using rules and Bayesian analysis:
Building a better stroke prediction model. The Annals of
Applied Statistics, 9:1350–1371, 2015.

Lipton, Z. The mythos of model interpretability.
arXiv:1606.03490, 2016.

Margot, V., Baudry, J.-P., Guilloux, F., and Wintenberger, O.
Rule induction partitioning estimator, 2018.

Margot, V., Baudry, J.-P., Guilloux, F., and Wintenberger,
O. Consistent regression using data-dependent coverings.
arXiv:1907.02306, 2019.

Meinshausen, N. Node harvest. The Annals of Applied
Statistics, 4:2049–2072, 2010.

Meinshausen, N. Package nodeharvest, 2015.
URL https://cran.r-project.org/web/
packages/nodeHarvest/.

Mentch, L. and Hooker, G. Quantifying uncertainty in
random forests via confidence intervals and hypothesis
tests. Journal of Machine Learning Research, 17:841–
881, 2016.

Murdoch, W., Singh, C., Kumbier, K., Abbasi-Asl, R., and
Yu, B. Interpretable machine learning: Definitions, meth-
ods, and applications. arXiv:1901.04592, 2019.

http://archive.ics.uci.edu/ml
https://cran.r-project.org/web/packages/nodeHarvest/
https://cran.r-project.org/web/packages/nodeHarvest/

Interpretable Random Forests via Rule Extraction

Quinlan, J. C4.5: Programs for Machine Learning. Morgan
Kaufmann, San Mateo, 1992.

Rivest, R. Learning decision lists. Machine Learning, 2:
229–246, 1987.

Scornet, E., Biau, G., and Vert, J.-P. Consistency of random
forests. The Annals of Statistics, 43(4):1716–1741, 2015.

Tibshirani, R. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society. Series B,
pp. 267–288, 1996.

Van der Vaart, A. W. Asymptotic statistics, volume 3. Cam-
bridge university press, 2000.

Wei, D., Dash, S., Gao, T., and Günlük, O. Generalized
linear rule models. arXiv preprint arXiv:1906.01761,
2019.

Weiss, S. and Indurkhya, N. Lightweight rule induction.
In Proceedings of the 17th International Conference on
Machine Learning, pp. 1135–1142, San Francisco, 2000.
Morgan Kaufmann Publishers Inc.

Wright, M. N. and Ziegler, A. ranger: A fast implementation
of random forests for high dimensional data in C++ and
R. Journal of Statistical Software, 77:1–17, 2017.

Yu, B. Stability. Bernoulli, 19:1484–1500, 2013.

Yu, B. and Kumbier, K. Three principles of data sci-
ence: Predictability, computability, and stability (PCS).
arXiv:1901.08152, 2019.

Zucknick, M., Richardson, S., and Stronach, E. Comparing
the characteristics of gene expression profiles derived by
univariate and multivariate classification methods. Statis-
tical Applications in Genetics and Molecular Biology, 7:
1–34, 2008.

Supplementary Material For: Interpretable Random Forests via Rule
Extraction

1. Proof of Theorem 1

Proof of Theorem 1. We consider p0 ∈ [0, 1] \ U? and λ >
0. There are two sources of randomness in the estimation
of the final set of selected paths: (i) the path extraction
from the random forest based on p̂M,n(P) for P ∈ Π, and
(ii) the final sparse linear aggregation of the rules through
the estimate β̂n,p0 . To show that the stability converges
to 1, these estimates have to converge towards theoretical
quantities that are independent of Dn.

Note that, throughout the paper, the final set of selected
paths is denoted P̂Mn,n,p0 . Here, for the sake of clarity,
P̂Mn,n,p0 is now the post-treated set of paths extracted from
the random forest, and P̂Mn,n,p0,λ the final set of selected
paths in the ridge regression.

(i) Path extraction The first step of the proof is to show
that the post-treated path extraction from the forest is con-
sistent, i.e., in probability

lim
n→∞

P(P̂Mn,n,p0 = P?
p0) = 1. (1.1)

Using the continuous mapping theorem, it is easy to see that
this result is a consequence of the consistency of p̂M,n(P),
i.e.,

lim
n→∞

p̂Mn,n(P) = p?(P) in probability.

Since the output Y is bounded (by Assumption (A3)), the
consistency of p̂M,n(P) can be easily adapted from Theo-
rem 1 of Bénard et al. (2019).

Finally, the result still holds for the post-treated rule set
because the post-treatment is a deterministic procedure.

(ii) Sparse linear aggregation Recall that the estimate
(β̂n,p0 , β̂0) is defined as

(β̂n,p0 , β̂0) = argmin
β≥0,β0

`n(β, β0), (1.2)

where `n(β, β0) = 1
n ||Y − β01n − Γn,p0β||22 + λ||β||22.

The dimension of β is stochastic since it is equal to the
number of extracted rules. To get rid of this technical issue
in the following of the proof, we rewrite `n(β, β0) to have

β a parameter of fixed dimension |Π|, the total number of
possible rules:

`n(β, β0) =
1

n

n∑
i=1

(
Yi − β0−∑

P∈Π

βPgn,P(Xi)1P∈P̂Mn,n,p0

)2
+ λ||β||22.

By the law of large numbers and the previous result (1.1),
we have in probability

lim
n→∞

`n(β, β0)

= E
[(
Y − β0 −

∑
P∈P?

p0

βPg?P(X)
)2]

+ λ||β||22

def
= `?(β, β0), (1.3)

where g?P is the theoretical rule based on the path P and
the theoretical quantiles.

Since Y is bounded, it is easy to see that each component
of β̂n,p0 is bounded from the following inequalities:

λ||β̂n,p0 ||
2
2 ≤`n(β̂n,p0 , β̂0)

≤`n(0, 0) ≤ ||Y ||
2
2

n
≤ max

i
Y 2
i .

Consequently, the optimization problem (1.2) can be equiv-
alently written with (β, β0) constrained to belong to a com-
pact and convex set K. Since `n is convex and converges
pointwise to `? according to (1.3), the uniform convergence
over the compact set K also holds, i.e., in probability

lim
n→∞

sup
(β,β0)∈K

|`n(β, β0)− `?(β, β0)| = 0. (1.4)

Additionnally, since `? is a quadratic convex function and
the constraint domain K is convex, `? has a unique mini-
mum that we denote β?p0,λ.

Finally, since the maximum of `? is unique and `n uniformly
converges to `?, we can apply theorem 5.7 from Van der
Vaart (2000, page 45) to deduce that (β̂n,p0 , β̂0) is a consis-
tent estimate of β?p0,λ.

We can conclude that, in probability,

lim
n→∞

P
(
P̂Mn,n,p0,λ = {P ∈P?

p0 : β?P,p0,λ > 0}
)

= 1,

Interpretable Random Forests via Rule Extraction

and the final stability result follows from the continuous
mapping theorem.

2. Dataset Descriptions

Dataset Sample Size Total Number
of Variables

Number of
Categorical
Variables

Ozone 203 12 0
Mpg 392 7 0

Prostate 97 8 0
Housing 506 13 0
Diabetes 442 10 0
Machine 209 7 1
Galaxy 323 4 0
Abalone 4177 8 1
Bones 485 3 2

Table 5. Description of datasets

3. Number of Trees
The stability, predictivity, and computation time of SIRUS
increase with the number of trees. Thus a stopping criterion
is designed to grow the minimum number of trees that en-
sures stability and predictivity to be close to their maximum.
It happens in practice that stabilizing the rule list is com-
putationally more demanding in the number of trees than
reaching a high predictivity. Therefore the stopping crite-
rion is only based on stability, and defined as the minimum
number of trees such that when SIRUS is fit twice on the
same given dataset, 95% of the rules are shared by the two
models in average.

To this aim, we introduce 1 − εM,n,p0 , an estimate of the
mean stability E[ŜMn,n,p0 |Dn] when SIRUS is fit twice on
the same dataset Dn. εM,n,p0 is defined by

εM,n,p0 =

∑
P∈Π zM,n,p0(P)(1− zM,n,p0(P))∑

P∈Π(1− zM,n,p0(P))
,

where zM,n,p0(P) = Φ(Mp0,M, pn(P)), the cdf
of a binomial distribution with parameter pn(P) =
E[p̂Mn,n(P)|Dn], M trials, evaluated at Mp0. It happens
that εM,n,p0 is quite insensitive to p0. Consequently it is
simply averaged over a grid V̂M,n of many possible values
of p0. Therefore, the number of trees is set, for α = 0.05,
by

argmin
M

{ 1

|V̂M,n|

∑
p0∈V̂M,n

εM,n,p0 < α
}
,

to ensure that 95% of the rules are shared by the two models
in average. See Section 4 from Bénard et al. (2019) for a
thorough explanation of this stopping criterion.

