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Abstract

We introduce SIRUS (Stable and
Interpretable RUle Set) for regression,
a stable rule learning algorithm, which takes
the form of a short and simple list of rules.
State-of-the-art learning algorithms are often
referred to as “black boxes” because of the
high number of operations involved in their
prediction process. Despite their powerful
predictivity, this lack of interpretability may
be highly restrictive for applications with
critical decisions at stake. On the other hand,
algorithms with a simple structure—typically
decision trees, rule algorithms, or sparse
linear models—are well known for their
instability. This undesirable feature makes
the conclusions of the data analysis unreliable
and turns out to be a strong operational
limitation. This motivates the design of
SIRUS, based on random forests, which
combines a simple structure, a remarkable
stable behavior when data is perturbed, and
an accuracy comparable to its competitors.
We demonstrate the efficiency of the method
both empirically (through experiments) and
theoretically (with the proof of its asymptotic
stability). A R/C++ software implementation
sirus is available from CRAN.

1 Introduction

State-of-the-art learning algorithms, such as random
forests or neural networks, are often criticized for their
“black-box" nature. This criticism essentially results
from the high number of operations involved in their

prediction mechanism, as it prevents to grasp how
inputs are combined to generate predictions. Inter-
pretability of machine learning algorithms is receiving
an increasing amount of attention since the lack of
transparency is a strong limitation for many applica-
tions, in particular those involving critical decisions.
The analysis of production processes in the manufactur-
ing industry typically falls into this category. Indeed,
such processes involve complex physical and chemical
phenomena that can often be successfully modeled by
black-box learning algorithms. However, any modifica-
tion of a production process has deep and long-term
consequences, and therefore cannot simply result from a
blind stochastic modelling. In this domain, algorithms
have to be interpretable, i.e., provide a sound under-
standing of the relation between inputs and outputs,
in order to leverage insights to guide physical analysis
and improve efficiency of the production.

Although there is no agreement in the machine learning
litterature about a precise definition of interpretability
(Lipton, 2016; Murdoch et al., 2019), it is yet possible
to define simplicity, stability, and predictivity as min-
imum requirements for interpretable models (Bénard
et al., 2021; Yu and Kumbier, 2019). Simplicity of
the model structure can be assessed by the number
of operations performed in the prediction mechanism.
In particular, Murdoch et al. (2019) introduce the no-
tion of simulatable models when a human is able to
reproduce the prediction process by hand. Secondly,
Yu (2013) argues that “interpretability needs stability”,
as the conclusions of a statistical analysis have to be
robust to small data perturbations to be meaningful.
Instability is the symptom of a partial and arbitrary
modelling of the data, also known as the Rashomon
effect (Breiman, 2001b). Finally, as also explained in
Breiman (2001b), if the decrease of predictive accuracy
is significant compared to a state-of-the-art black-box
algorithm, the interpretable model misses some pat-
terns in the data and is therefore misleading.

Decision trees (Breiman et al., 1984) can model non-
linear patterns while having a simple structure. They
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are therefore often presented as interpretable. How-
ever, the structure of trees is highly sensitive to small
data perturbation (Breiman, 2001b), which violates
the stability principle and is thus a strong limitation to
their practical use. Rule algorithms are another type
of nonlinear methods with a simple structure, defined
as a collection of elementary rules. An elementary rule
is a set of constraints on input variables, which forms
a hyperrectangle in the input space and on which the
associated prediction is constant. As an example, such
a rule typically takes the following simple form:

If
{
X(1) < 1.12
& X(3) ≥ 0.7

then Ŷ = 0.18 else Ŷ = 4.1 .

A large number of rule algorithms have been devel-
oped, among which the most influential are Decision
List (Rivest, 1987), CN2 (Clark and Niblett, 1989),
C4.5 (Quinlan, 1992), IREP (Incremental Reduced Er-
ror Pruning, Fürnkranz and Widmer, 1994), RIPPER
(Repeated Incremental Pruning to Produce Error Re-
duction, Cohen, 1995), PART (Partial Decision Trees,
Frank and Witten, 1998), SLIPPER (Simple Learner
with Iterative Pruning to Produce Error Reduction, Co-
hen and Singer, 1999), LRI (Leightweight Rule Induc-
tion, Weiss and Indurkhya, 2000), RuleFit (Friedman
and Popescu, 2008), Node harvest (Meinshausen, 2010),
ENDER (Ensemble of Decision Rules, Dembczyński
et al., 2010), BRL (Bayesian Rule Lists, Letham et al.,
2015), RIPE (Rule Induction Partitioning Estimator,
Margot et al., 2018, 2019), and Wei et al. (2019, Gener-
alized Linear Rule Models). It turns out, however, that
despite their simplicity and high predictivity (close
to the accuracy of tree ensembles), rule learning al-
gorithms share the same limitation as decision trees:
instability. Furthermore, among the hundreds of ex-
isting rule algorithms, most of them are designed for
supervised classification and few have the ability to
handle regression problems.

The purpose of this article is to propose a new sta-
ble rule algorithm for regression, SIRUS (Stable and
Interpretable RUle Set), and therefore demonstrate
that rule methods can address regression problems effi-
ciently while producing compact and stable list of rules.
To this aim, we build on Bénard et al. (2021), who have
introduced SIRUS for classification problems. Our al-
gorithm is based on random forests (Breiman, 2001a),
and its general principle is as follows: since each node
of each tree of a random forest can be turned into an
elementary rule, the core idea is to extract rules from a
tree ensemble based on their frequency of appearance.
The most frequent rules, which represent robust and
strong patterns in the data, are ultimately linearly com-
bined to form predictions. The main competitors of
SIRUS are RuleFit (Friedman and Popescu, 2008) and

Node harvest (Meinshausen, 2010). Both methods also
extract large collection of rules from tree ensembles:
RuleFit uses a boosted tree ensemble (ISLE, Friedman
and Popescu, 2003) whereas Node harvest is based on
random forests. The rule selection is performed by a
sparse linear aggregation, respectively the Lasso (Tib-
shirani, 1996) for RuleFit and a constrained quadratic
program for Node harvest. Yet, despite their powerful
predictive skills, these two methods tend to produce
long, complex, and unstable lists of rules (typically of
the order of 30−50), which makes their interpretability
questionable. Because of the randomness in the tree
ensemble, running these algorithms multiple times on
the same dataset outputs different rule lists. As we will
see, SIRUS considerably improves stability and simplic-
ity over its competitors, while preserving a comparable
predictive accuracy and computational complexity—
see Section 2 of the Supplementary Material for the
complexity analysis.

We present SIRUS algorithm in Section 2. In Section
3, experiments illustrate the good performance of our
algorithm in various settings. Section 4 is devoted to
studying the theoretical properties of the method, with,
in particular, a proof of its asymptotic stability. Finally,
Section 5 summarizes the main results and discusses
research directions for future work. Additional details
are gathered in the Supplementary Material.

2 SIRUS Algorithm

We consider a standard regression setting where we
observe an i.i.d. sample Dn = {(Xi, Yi), i = 1, . . . , n},
with each (Xi, Yi) distributed as a generic pair (X, Y )
independent of Dn. The p-tuple X = (X(1), . . . , X(p))
is a random vector taking values in Rp, and Y ∈ R is
the response. Our objective is to estimate the regression
function m(x) = E[Y |X = x] with a small and stable
set of rules.

Rule generation. The first step of SIRUS is to
grow a random forest with a large number M of trees
based on the available sample Dn. The critical feature
of our approach to stabilize the forest structure is to
restrict node splits to the q-empirical quantiles of the
marginals X(1), . . . , X(p), with typically q = 10. This
modification to Breiman’s original algorithm has a
small impact on predictive accuracy, but is essential
for stability, as it is extensively discussed in Section
3 of the Supplementary Material. Next, the obtained
forest is broken down in a large collection of rules in the
following process. First, observe that each node of each
tree of the resulting ensemble defines a hyperrectangle
in the input space Rp. Such a node can therefore be
turned into an elementary regression rule, by defining a
piecewise constant estimate whose value only depends
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on whether the query point falls in the hyperrectangle
or not. Formally, a (inner or terminal) node of the tree
is represented by a path, say P, which describes the
sequence of splits to reach the node from the root of
the tree. In the sequel, we denote by Π the finite list
of all possible paths, and insist that each path P ∈ Π
defines a regression rule. Based on this principle, in the
first step of the algorithm, both internal and external
nodes are extracted from the trees of the random forest
to generate a large collection of rules, typically 104.

Rule selection. The second step of SIRUS is to
select the relevant rules from this large collection. De-
spite the tree randomization in the forest construction,
there are some redundancy in the extracted rules. In-
deed those with a high frequency of appearance repre-
sent strong and robust patterns in the data, and are
therefore good candidates to be included in a compact,
stable, and predictive rule ensemble. This occurrence
frequency is denoted by p̂M,n(P) for each possible path
P ∈ Π. Then a threshold p0 ∈ (0, 1) is simply used to
select the relevant rules, that is

P̂M,n,p0 = {P ∈ Π : p̂M,n(P) > p0}.

The threshold p0 is a tuning parameter, whose influence
and optimal setting are discussed and illustrated later
in the experiments (Figures 2 and 3). Optimal p0

values essentially select rules made of one or two splits.
Indeed, rules with a higher number of splits are more
sensitive to data perturbation, and thus associated to
smaller values of p̂M,n(P). Therefore, SIRUS grows
shallow trees to reduce the computational cost while
leaving the rule selection untouched—see Section 3 of
the Supplementary Material. In a word, SIRUS uses
the principle of randomized bagging, but aggregates
the forest structure itself instead of predictions in order
to stabilize the rule selection.

Rule set post-treatment. The rules associated
with the set of distinct paths P̂M,n,p0 are dependent
by definition of the path extraction mechanism. As
an example, let us consider the 6 rules extracted from
a random tree of depth 2. Since the tree structure
is recursive, 2 rules are made of one split and 4 rules
of two splits. Those 6 rules are linearly dependent
because their associated hyperrectangles overlap. Con-
sequently, to properly settle a linear aggregation of the
rules, the third step of SIRUS filters P̂M,n,p0 with the
following post-treatment procedure: if the rule induced
by the path P ∈ P̂M,n,p0 is a linear combination of
rules associated with paths with a higher frequency of
appearance, then P is simply removed from P̂M,n,p0 .
We refer to Section 4 of the Supplementary Material for
a detailed illustration of the post-treatment procedure
on real data.

Rule aggregation. By following the previous steps,
we finally obtain a small set of regression rules. As such,
a rule ĝn,P associated with a path P is a piecewise
constant estimate: if a query point x falls into the cor-
responding hyperrectangle HP ⊂ Rp, the rule returns
the average of the Yi’s for the training points Xi’s that
belong to HP ; symmetrically, if x falls outside of HP ,
the average of the Yi’s for training points outside of
HP is returned. Next, a non-negative weight is as-
signed to each of the selected rule, in order to combine
them into a single estimate of m(x). These weights are
defined as the ridge regression solution, where each pre-
dictor is a rule ĝn,P for P ∈ P̂M,n,p0 and weights are
constrained to be non-negative. Thus, the aggregated
estimate m̂M,n,p0(x) of m(x) computed in the fourth
step of SIRUS has the form

m̂M,n,p0(x) = β̂0 +
∑

P∈P̂M,n,p0

β̂n,P ĝn,P(x), (2.1)

where β̂0 and β̂n,P are the solutions of the ridge regres-
sion problem. More precisely, denoting by β̂n,p0 the
column vector whose components are the coefficients
β̂n,P for P ∈ P̂M,n,p0 , and letting Y = (Y1, . . . , Yn)T

and Γn,p0 the matrix whose rows are the rule values
ĝn,P(Xi) for i ∈ {1, . . . , n}, we have

(β̂n,p0 , β̂0) = argmin
β≥0,β0

1

n
||Y − β01n − Γn,p0β||22
+ λ||β||22,

where 1n = (1, . . . , 1)T is the n-vector with all compo-
nents equal to 1, and λ is a positive parameter tuned by
cross-validation that controls the penalization severity.
The mininum is taken over β0 ∈ R and all the vectors
β = {β1, . . . , βcn} ∈ R

cn
+ where cn = |P̂M,n,p0 | is the

number of selected rules. Besides, notice that the rule
format with an else clause differs from the standard
format in the rule learning literature. This modification
provides good properties of stability and modularity
(investigation of the rules one by one (Murdoch et al.,
2019)) to SIRUS—see Section 5 of the Supplementary
Material.

This linear rule aggregation is a critical step and de-
serves additional comments. Indeed, in RuleFit, the
rules are also extracted from a tree ensemble, but ag-
gregated using the Lasso. However, the extracted rules
are strongly correlated by construction, and the Lasso
selection is known to be highly unstable in such corre-
lated setting. This is the main reason of the instability
of RuleFit, as the experiments will show. On the other
hand, the sparsity of SIRUS is controlled by the pa-
rameter p0, and the ridge regression enables a stable
aggregation of the rules. Furthermore, the constraint
β ≥ 0 is added to ensure that all coefficients are non-
negative, as in Node harvest (Meinshausen, 2010). Also
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because of the rule correlation, an unconstrained re-
gression would lead to negative values for some of the
coefficients β̂n,P , and such behavior drastically under-
mines the interpretability of the algorithm.

Interpretability. As stated in the introduction, de-
spite the lack of a precise definition of interpretable
models, there are three minimum requirements to be
taken into account: simplicity, stability, and predic-
tivity. These notions need to be formally defined and
quantified to enable comparison between algorithms.
Simplicity refers to the model complexity, in particu-
lar the number of operations involved in the prediction
mechanism. In the case of rule algorithms, a measure
of simplicity is naturally given by the number of rules.
Intuitively, a rule algorithm is stable when two inde-
pendent estimations based on two independent samples
return similar lists of rules. Formally, let P̂ ′

M,n,p0
be

the list of rules output by SIRUS fit on an independent
sample D ′n. Then the proportion of rules shared by
P̂M,n,p0 and P̂ ′

M,n,p0
gives a stability measure. Such

a metric is known as the Dice-Sorensen index, and
is often used to assess variable selection procedures
(Chao et al., 2006; Zucknick et al., 2008; Boulesteix
and Slawski, 2009; He and Yu, 2010; Alelyani et al.,
2011). In our case, the Dice-Sorensen index is then
defined as

ŜM,n,p0 =
2
∣∣P̂M,n,p0 ∩ P̂ ′

M,n,p0

∣∣∣∣P̂M,n,p0

∣∣+
∣∣P̂ ′

M,n,p0

∣∣ .
However, in practice one rarely has access to an addi-
tional sample D ′n. Therefore, to circumvent this prob-
lem, we use a 10-fold cross-validation to simulate data
perturbation. The stability metric is thus empirically
defined as the average proportion of rules shared by
two models of two distinct folds of the cross-validation.
A stability of 1 means that the exact same list of rules
is selected over the 10 folds, whereas a stability of 0
means that all rules are distinct between any 2 folds.
For predictivity in regression problems, the propor-
tion of unexplained variance is a natural measure of
the prediction error. The estimation is performed by
10-fold cross-validation.

3 Experiments

Experiments are run over 8 diverse public datasets to
demonstrate the improvement of SIRUS over state-of-
the-art methods. Table 1 in Section 6 of the Supple-
mentary Material provides dataset details.

SIRUS rule set. Our algorithm is illustrated on the
“LA Ozone” dataset from Friedman et al. (2001), which
records the level of atmospheric ozone concentration

from eight daily meteorological measurements made
in Los Angeles in 1976: wind speed (“wind”), humid-
ity (“humidity”), temperature (“temp”), inversion base
height (“ibh”), daggot pressure gradient (“dpg”), inver-
sion base temperature (“ibt”), visibility (“vis”), and day
of the year (“doy”). The response “Ozone” is the log of
the daily maximum of ozone concentration. The list
of rules output for this dataset is presented in Table
1. The column “Frequency” refers to p̂M,n(P), the
occurrence frequency of each rule in the forest, used for
rule selection. It enables to grasp how weather condi-
tions impact the ozone concentration. In particular, a
temperature larger than 65°F or a high inversion base
temperature result in high ozone concentrations. The
third rule tells us that the interaction of a high temper-
ature with a visibility lower than 150 miles generates
even higher levels of ozone concentration. Interestingly,
according to the ninth rule, especially low ozone con-
centrations are reached when a low temperature and
and a low inversion base temperature are combined.
Recall that to generate a prediction for a given query
point x, for each rule the corresponding ozone concen-
tration is retrieved depending on whether x satisfies
the rule conditions. Then all rule outputs for x are
multiplied by their associated weight and added to-
gether. One can observe that rule importances and
weights are not related. For example, the third rule
has a higher weight than the most two important ones.
It is clear that rule 3 has multiple constraints and is
therefore more sensitive to data perturbation—hence a
smaller frequency of appearance in the forest. On the
other hand, its associated variance decrease in CART
is more important than for the first two rules, leading
to a higher weight in the linear combination. Since
rules 5 and 6 are strongly correlated, their weights are
diluted.

Tuning. SIRUS has only one hyperparameter which
requires fine tuning: the threshold p0 to control the
model size by selecting the most frequent rules in the
forest. First, the range of possible values of p0 is set so
that the model size varies between 1 and 25 rules. This
arbitrary upper bound is a safeguard to avoid long and
complex list of rules that are difficult to interpret. In
practice, this limit of 25 rules is rarely hit, since the
following tuning of p0 naturally leads to compact rule
lists. Thus, p0 is tuned within that range by cross-
validation to maximize both stability and predictivity.
To find a tradeoff between these two properties, we
follow a standard bi-objective optimization procedure
as illustrated in Figure 5, and described in Section 2 of
the Supplementary Material: p0 is chosen to be as close
as possible to the ideal case of 0 unexplained variance
and 90% stability. This tuning procedure is computa-
tionally fast: the cost of about 10 fits of SIRUS. For a
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Average Ozone = 12 Intercept = −7.8

Frequency Rule Weight
0.29 if temp < 65 then Ozone = 7 else Ozone = 19 0.12
0.17 if ibt < 189 then Ozone = 7 else Ozone = 18 0.07

0.063 if
{

temp ≥ 65
& vis < 150

then Ozone = 20 else Ozone = 7 0.31

0.061 if vh < 5840 then Ozone = 10 else Ozone = 20 0.072
0.060 if ibh < 2110 then Ozone = 16 else Ozone = 7 0.14
0.058 if ibh < 2960 then Ozone = 15 else Ozone = 6 0.10

0.051 if
{

temp ≥ 65
& ibh < 2110

then Ozone = 21 else Ozone = 8 0.16

0.048 if vis < 150 then Ozone = 14 else Ozone = 7 0.18

0.043 if
{

temp < 65
& ibt < 120

then Ozone = 5 else Ozone = 15 0.15

0.040 if temp < 70 then Ozone = 8 else Ozone = 20 0.14
0.039 if ibt < 227 then Ozone = 9 else Ozone = 22 0.21

Table 1: SIRUS rule list for the “LA Ozone” dataset (about 9000 trees are grown to reach convergence).

Figure 1: Pareto front of stability versus error when p0

varies for the “Ozone” dataset (optimal value in green).

robust estimation of p0, the cross-validation is repeated
10 times and the median p0 value is selected. Besides,
the optimal number of trees M is set automatically by
SIRUS: as stability, predictivity, and computation time
increase with the number of trees, no fine tuning is
required for M . Thus, a stopping criterion is designed
to grow the minimum number of trees which enforces
that stability and predictivity are greater than 95% of
their maximum values (reached when M → ∞)—see
Section 7 of the Supplementary Material for a detailed
definition of this criterion. Finally, we use the stan-
dard settings of random forests (well-known for their
excellent performance, in particular mtry is bp/3c and
at least 2), and set q = 10 quantiles, while categorical
variables are handled as natively defined in trees.

Performance. We compare SIRUS with its two main
competitors RuleFit (with rule predictors only) and

Node harvest. For predictive accuracy, we ran random
forests and (pruned) CART to provide the baseline.
Only to compute stability metrics, data is binned using
10 quantiles to fit Rulefit and Node harvest. Our R/C++
package sirus (available from CRAN) is adapted from
ranger, a fast random forests implementation (Wright
and Ziegler, 2017). We also use available R implementa-
tions pre (Fokkema, 2017, RuleFit) and nodeharvest
(Meinshausen, 2015). While the predictive accuracy
of SIRUS is comparable to Node harvest and slightly
below RuleFit, the stability is considerably improved
with much smaller rule lists. Experimental results are
gathered in Table 2a for model sizes, Table 2b for sta-
bility, and Table 3 for predictive accuracy. All results
are averaged over 10 repetitions of the cross-validation
procedure. Since standard deviations are negligible,
they are not displayed to increase readability. Besides,
in the last column of Table 3, p0 is set to increase the
number of rules in SIRUS to reach RuleFit and Node
harvest model size (about 50 rules): predictivity is then
as good as RuleFit. Finally, the column “SIRUS sparse”
of Tables 2 and 3 shows the excellent behavior of SIRUS
in a sparse setting: for each dataset, 3 randomly per-
muted copies of each variable are added to the data,
leaving SIRUS performance almost untouched.

To illustrate the typical behavior of our method, we
comment the results for two specific datasets: “Dia-
betes” (Efron et al., 2004) and “Machine” (Dua and
Graff, 2017). The “Diabetes” data contains n = 442
diabetic patients and the response of interest Y is a
measure of disease progression over one year. A total
of 10 variables are collected for each patient: age, sex,
body mass index, average blood pressure, and six blood
serum measurements s1, s2, . . . , s6. For this dataset,
SIRUS is as predictive as a random forest, with only 12
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(a) Model Size

Dataset CARTRuleFit Node
harvest SIRUS SIRUS

sparse
Ozone 15 21 46 11 10
Mpg 15 40 43 10 10

Prostate 11 14 41 9 12
Housing 15 54 40 6 6
Diabetes 12 25 42 12 15
Machine 8 44 42 9 7
Abalone 20 58 35 8 13
Bones 17 5 13 1 1

(b) Stability

Dataset RuleFit Node harvest SIRUS SIRUS
sparse

Ozone 0.22 0.30 0.62 0.63
Mpg 0.25 0.43 0.77 0.76

Prostate 0.32 0.23 0.58 0.59
Housing 0.19 0.40 0.82 0.82
Diabetes 0.18 0.39 0.69 0.65
Machine 0.23 0.29 0.86 0.84
Abalone 0.31 0.38 0.75 0.74
Bones 0.59 0.52 0.96 0.78

Table 2: Mean model size and stability over a 10-fold cross-
validation for various public datasets. Minimum size and
maximum stability are in bold (“SIRUS sparse” put aside).

rules when the forest performs about 104 operations:
the unexplained variance is 0.56 for SIRUS and 0.55
for random forest. Notice that CART performs con-
siderably worse with 0.67 unexplained variance. For
the second dataset, “Machine”, the output Y of inter-
est is the CPU performance of computer hardware.
For n = 209 machines, 6 variables are collected about
the machine characteristics. For this dataset, SIRUS,
RuleFit, and Node harvest have a similar predictivity,
in-between CART and random forests. Our algorithm
achieves such performance with a readable list of only
9 rules stable at 86%, while RuleFit and Node harvest
incorporate respectively 44 and 42 rules with stability
levels of 23% and 29%. Stability and predictivity are
represented as p0 varies for “Diabetes” and “Machine”
datasets in Figures 2 and 3, respectively.

4 Theoretical Analysis

Among the three minimum requirements for inter-
pretable models, stability is the critical one. In SIRUS,
simplicity is explicitly controlled by the hyperparame-
ter p0. The wide literature on rule learning provides
many experiments to show that rule algorithms have an
accuracy comparable to tree ensembles. On the other
hand, designing a stable rule procedure is more chal-
lenging (Letham et al., 2015; Murdoch et al., 2019). For

Figure 2: For the dataset “Diabetes”, unexplained vari-
ance (top panel) and stability (bottom panel) versus the
number of rules when p0 varies, estimated via 10-fold cross-
validation (results are averaged over 10 repetitions).
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Dataset Random
Forest CART RuleFit Node

harvest SIRUS SIRUS
sparse

SIRUS
50 rules

Ozone 0.25 0.36 0.27 0.31 0.32 0.32 0.26
Mpg 0.13 0.20 0.15 0.20 0.20 0.20 0.15

Prostate 0.48 0.60 0.53 0.52 0.55 0.51 0.54
Housing 0.13 0.28 0.16 0.24 0.30 0.31 0.20
Diabetes 0.55 0.67 0.55 0.58 0.56 0.56 0.55
Machine 0.13 0.39 0.26 0.29 0.29 0.32 0.27
Abalone 0.44 0.56 0.46 0.61 0.66 0.64 0.64
Bones 0.67 0.67 0.70 0.70 0.73 0.77 0.73

Table 3: Proportion of unexplained variance estimated over a 10-fold cross-validation for various public datasets. For rule
algorithms only, i.e., RuleFit, Node harvest, and SIRUS, minimum values are displayed in bold, as well as values within
10% of the minimum for each dataset (“SIRUS sparse” put aside).

Figure 3: For the dataset “Machine”, unexplained vari-
ance (top panel) and stability (bottom panel) versus the
number of rules when p0 varies, estimated via 10-fold cross-
validation (results are averaged over 10 repetitions).

this reason, we therefore focus our theoretical analysis
on the asymptotic stability of SIRUS.

To get started, we need a rigorous definition of the
rule extraction procedure. To this aim, we introduce
a symbolic representation of a path in a tree, which
describes the sequence of splits to reach a given (inner
or terminal) node from the root. We insist that such
path encoding can be used in both the empirical and
theoretical algorithms to define rules. A path P is
defined as

P = {(jk, rk, sk), k = 1, . . . , d},

where d is the tree depth, and for k ∈ {1, . . . , d}, the
triplet (jk, rk, sk) describes how to move from level
(k − 1) to level k, with a split using the coordinate
jk ∈ {1, . . . , p}, the index rk ∈ {1, . . . , q − 1} of the
corresponding quantile, and a side sk = L if we go to the
left and sk = R if we go to the right—see Figure 4. The
set of all possible such paths is denoted by Π. Each tree
of the forest is randomized in two ways: (i) the sample
Dn is bootstrapped prior to the construction of the tree,
and (ii) a subset of coordinates is randomly selected to
find the best split at each node. This randomization
mechanism is governed by a random variable that we
call Θ. We define T (Θ,Dn), a random subset of Π, as
the collection of the extracted paths from the random
tree built with Θ and Dn. Now, let Θ1, . . . ,Θ`, . . . ,ΘM

be the independent randomizations of the M trees of
the forest. With this notation, the empirical frequency
of occurrence of a path P ∈ Π in the forest takes the
form

p̂M,n(P) =
1

M

M∑
`=1

1P∈T (Θ`,Dn),

which is simply the proportion of trees that contain P.
By definition, p̂M,n(P) is the Monte Carlo estimate of
the probability pn(P) that a Θ-random tree contains
a particular path P ∈ Π, that is,

pn(P) = P(P ∈ T (Θ,Dn)|Dn).
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Figure 4: Example of a root node R2 partitioned by a randomized tree of depth 2: the tree on the right, the associated
paths and hyperrectangles of length d = 2 on the left.

Next, we introduce all theoretical counterparts of the
empirical quantities involved in SIRUS, which do not
depend on the sample Dn but only on the unknown
distribution of (X, Y ). We let T ?(Θ) be the list of
all paths contained in the theoretical tree built with
randomness Θ, in which splits are chosen to maximize
the theoretical CART-splitting criterion instead of the
empirical one. The probability p?(P) that a given
path P belongs to a theoretical randomized tree (the
theoretical counterpart of pn(P)) is

p?(P) = P(P ∈ T ?(Θ)).

We finally define the theoretical set of selected paths
P?
p0 = {P ∈ Π : p?(P) > p0} (with the same post-

treatment as for the data-based procedure—see Section
2—to remove linear dependence between rules, and dis-
carding paths with a null coefficient in the rule aggrega-
tion). As it is often the case in the theoretical analysis
of random forests, (Scornet et al., 2015; Mentch and
Hooker, 2016), we assume throughout this section that
the subsampling of an observations prior to each tree
construction is done without replacement to alleviate
the mathematical analysis. Our stability result holds
under the following mild assumptions:

(A1) The subsampling rate an satisfies lim
n→∞

an = ∞
and lim

n→∞
an
n = 0, and the number of trees Mn

satisfies lim
n→∞

Mn =∞.

(A2) The random variable X has a strictly positive den-
sity f with respect to the Lebesgue measure on Rp.
Furthermore, for all j ∈ {1, . . . , p}, the marginal
density f (j) of X(j) is continuous, bounded, and
strictly positive. Finally, the random variable Y
is bounded.

Theorem 1. Assume that Assumptions (A1) and (A2)
are satisfied, and let U? = {p?(P) : P ∈ Π} be the

set of all theoretical probabilities of appearance for each
path P. Then, provided p0 ∈ [0, 1] \ U? and λ > 0, we
have

lim
n→∞

ŜMn,n,p0 = 1 in probability.

Theorem 1 states that SIRUS is stable: provided that
the sample size is large enough, the same list of rules
is systematically output across several fits on indepen-
dent samples. The analysis conducted in the proof—
Section 1 of the Supplementary Material—highlights
that the cut discretization (performed at quantile val-
ues only), as well as considering random forests (instead
of boosted tree ensembles as in RuleFit) are the cor-
nerstones to stabilize rule models extracted from tree
ensembles. Furthermore, the experiments in Section
3 show the high empirical stability of SIRUS in finite-
sample regimes.

5 Conclusion

Interpretability of machine learning algorithms is re-
quired whenever the targeted applications involve criti-
cal decisions. Although interpretability does not have
a precise definition, we argued that simplicity, stability,
and predictivity are minimum requirements for inter-
pretable models. In this context, rule algorithms are
well known for their good predictivity and simple struc-
tures, but also to be often highly unstable. Therefore,
we proposed a new regression rule algorithm called
SIRUS, whose general principle is to extract rules from
random forests. Our algorithm exhibits an accuracy
comparable to state-of-the-art rule algorithms, while
producing much more stable and shorter lists of rules.
This remarkably stable behavior is theoretically under-
stood since the rule selection is consistent. A R/C++
software sirus is available from CRAN.
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Supplementary Material For: Interpretable Random
Forests via Rule Extraction

1 Proof of Theorem 1: Asymptotic Stability

Proof of Theorem 1. We recall that stability is assessed by the Dice-Sorensen index as

ŜM,n,p0 =
2
∣∣P̂M,n,p0 ∩ P̂ ′

M,n,p0

∣∣∣∣P̂M,n,p0

∣∣+
∣∣P̂ ′

M,n,p0

∣∣ ,
where P̂ ′

M,n,p0
stands for the list of rules output by SIRUS fit with an independent sample D ′n and where the

random forest is parameterized by independent copies Θ′1, . . . ,Θ
′
M .

We consider p0 ∈ [0, 1] \ U? and λ > 0. There are two sources of randomness in the estimation of the final set of
selected paths: (i) the path extraction from the random forest based on p̂M,n(P) for P ∈ Π, and (ii) the final
sparse linear aggregation of the rules through the estimate β̂n,p0 . To show that the stability converges to 1, these
estimates have to converge towards theoretical quantities that are independent of Dn. Note that, throughout
the paper, the final set of selected paths is denoted P̂Mn,n,p0 . Here, for the sake of clarity, P̂Mn,n,p0 is now the
post-treated set of paths extracted from the random forest, and P̂Mn,n,p0,λ the final set of selected paths in the
ridge regression.

(i) Path extraction. The first step of the proof is to show that the post-treated path extraction from the
forest is consistent, i.e., in probability

lim
n→∞

P(P̂Mn,n,p0 = P?
p0) = 1. (1.1)

Using the continuous mapping theorem, it is easy to see that this result is a consequence of the consistency of
p̂M,n(P), i.e.,

lim
n→∞

p̂Mn,n(P) = p?(P) in probability.

Since the output Y is bounded (by Assumption (A2)), the consistency of p̂M,n(P) can be easily adapted from
Theorem 1 of Bénard et al. (2021) using Assumptions (A1) and (A2). Finally, the result still holds for the
post-treated rule set because the post-treatment is a deterministic procedure.

(ii) Sparse linear aggregation. Recall that the estimate (β̂n,p0 , β̂0) is defined as

(β̂n,p0 , β̂0) = argmin
β≥0,β0

`n(β, β0), (1.2)

where `n(β, β0) = 1
n ||Y − β01n − Γn,p0β||22 + λ||β||22. The dimension of β is stochastic since it is equal to the

number of extracted rules. To get rid of this technical issue in the following of the proof, we rewrite `n(β, β0) to
have β a parameter of fixed dimension |Π|, the total number of possible rules:

`n(β, β0) =
1

n

n∑
i=1

(
Yi − β0 −

∑
P∈Π

βPgn,P(Xi)1P∈P̂Mn,n,p0

)2
+ λ||β||22.

By the law of large numbers and the previous result (1.1), we have in probability

lim
n→∞

`n(β, β0) =E
[(
Y − β0 −

∑
P∈P?

p0

βPg?P(X)
)2]

+ λ||β||22
def
= `?(β, β0),

11
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where g?P is the theoretical rule based on the path P and the theoretical quantiles. Since Y is bounded, it is
easy to see that each component of β̂n,p0 is bounded from the following inequalities:

λ||β̂n,p0 ||
2
2 ≤ `n(β̂n,p0 , β̂0) ≤ `n(0, 0) ≤ ||Y ||

2
2

n
≤ max

i
Y 2
i .

Consequently, the optimization problem (1.2) can be equivalently written with (β, β0) constrained to belong to
a compact and convex set K. Since `n is convex and converges pointwise to `? according to (1.3), the uniform
convergence over the compact set K also holds, i.e., in probability

lim
n→∞

sup
(β,β0)∈K

|`n(β, β0)− `?(β, β0)| = 0. (1.3)

Additionnally, since `? is a quadratic convex function and the constraint domain K is convex, `? has a unique
minimum that we denote β?p0,λ. Finally, since the maximum of `? is unique and `n uniformly converges to `?, we
can apply theorem 5.7 from Van der Vaart (2000, page 45) to deduce that (β̂n,p0 , β̂0) is a consistent estimate of
β?p0,λ. We can conclude that, in probability,

lim
n→∞

P
(
P̂Mn,n,p0,λ = {P ∈P?

p0 : β?P,p0,λ > 0}
)

= 1,

and the final stability result follows from the continuous mapping theorem.

2 Computational Complexity

The computational cost to fit SIRUS is similar to standard random forests, and its competitors: RuleFit, and
Node harvest. The full tuning procedure costs about 10 SIRUS fits.

SIRUS. SIRUS algorithm has several steps in its construction phase. We derive the computational complexity
of each of them. Recall that M is the number of trees, p the number of input variables, and n the sample size.

1. Forest growing: O(Mpnlog(n))

The forest growing is the most expensive step of SIRUS. The average computational complexity of a standard
forest fit is O(Mpnlog(n)2) (Louppe, 2014). Since the depth of trees is fixed in SIRUS—see Section 3, it
reduces to O(Mpnlog(n)).
A standard forest is grown so that its accuracy cannot be significantly improved with additional trees, which
typically results in about 500 trees. In SIRUS, the stopping criterion of the number of trees enforces that
95% of the rules are identical over multiple runs with the same dataset (see Section 7). This is critical to
have the forest structure converged and stabilize the final rule list. This leads to forests with a large number
of trees, typically 10 times the number for standard forests. On the other hand, shallow trees are grown and
the computational complexity is proportional to the tree depth, which is about log(n) for fully grown forests.
Overall, the modified forest used in SIRUS is about the same computational cost as a standard forest, and
has a slightly better computational complexity thanks to the fixed tree depth.

2. Rule extraction: O(M)

Extracting the rules in a tree requires a number of operations proportional to the number of nodes, i.e. O(1)
since tree depth is fixed. With the appropriate data structure (a map), updating the forest count of the
number of occurrences of the rules of a tree is also O(1). Overall, the rule extraction is proportional to the
number of trees in the forest, i.e., O(M).

3. Rule post-treatment: O(1)

The post-treatment algorithm is only based on the rules and not on the sample. Since the number of extracted
rules is bounded by a fixed limit of 25, this step has a computational complexity of O(1).

4. Rule aggregation: O(n)

Efficient algorithms (Friedman et al., 2010) enable to fit a ridge regression and find the optimal penalization
λ with a linear complexity in the sample size n. In SIRUS, the predictors are the rules, whose number is
upper bounded by 25, and then the complexity of the rule aggregation is independent of p. Therefore the
computational complexity of this step is O(n).
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Overall, the computational complexity of SIRUS is O(Mpnlog(n)), which is slightly better than standard random
forests thanks to the use of shallow trees. Because of the large number of trees and the final ridge regression, the
computational cost of SIRUS is comparable to standard forests in practice.

RuleFit/Node harvest Comparison. In both RuleFit and Node harvest, the first two steps of the procedure
are also to grow a tree ensemble with limited tree depth and extract all possible rules. The complexity of this
first phase is then similar to SIRUS: O(Mpnlog(n)). However, in the last step of the linear rule aggregation, all
rules are combined in a sparse linear model, which is of linear complexity with n, but grows at faster rate than
linear with the number of rules, i.e., the number of trees M (Friedman et al., 2010).

As the tree ensemble growing is the computational costly step, SIRUS, RuleFit and Node harvest have a very
comparable complexity. On one hand, SIRUS requires to grow more trees than its competitors. On the other
hand, the final linear rule aggregation is done with few predictors in SIRUS, while it includes thousands of rules
in RuleFit and Node harvest, which has a complexity faster than linear with M .

Tuning Procedure. The only parameter of SIRUS which requires fine tuning is p0, which controls model
sparsity. The optimal value is estimated by 10-fold cross validation using a standard bi-objective optimization
procedure to maximize both stability and predictivity. For a fine grid of p0 values, the unexplained variance and
stability metric are computed for the associated SIRUS model through a cross-validation. Recall that the bounds
of the p0 grid are set to get the model size between 1 and 25 rules. Next, we obtain a Pareto front, as illustrated
in Figure 5, where each point corresponds to a p0 value of the tuning grid. To find the optimal p0, we compute
the euclidean distance between each point and the ideal point of 0 unexplained variance and 90% stability. Notice
that this ideal point is chosen for its empirical efficiency: the unexplained variance can be arbitrary close to 0
depending on the data, whereas we do not observe a stability (with respect to data perturbation) higher than
90% accross many datasets. Finally, the optimal p0 is the one minimizing the euclidean distance distance to the
ideal point. Thus, the two objectives, stability and predictivity, are equally weighted. For a robust estimation of
p0, the cross-validation is repeated 10 times and the median p0 value is selected.

Figure 5: Pareto front of stability versus error (unexplained variance) when p0 varies, with the optimal value in
green for the “Ozone” dataset. The optimal point is the closest one to the ideal point (0, 0.1) of 0 unexplained
variance and 90% stability.

Tuning Complexity. The optimal p0 value is estimated by a 10-fold cross validation. The costly computational
step of SIRUS is the forest growing. However, this step has to be done only once per fold. Then, p0 can vary
along a fine grid to extract more or less rules from each forest, and thus, get the accuracy associated to each p0 at
a total cost of about 10 SIRUS fits.
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Dataset Breiman Random
Forest

Random Forest
10-Quantile Cuts

Ozone 0.25 (0.007) 0.25 (0.006)
Mpg 0.13 (0.003) 0.13 (0.003)

Prostate 0.46 (0.01) 0.47 (0.02)
Housing 0.13 (0.006) 0.16 (0.004)
Diabetes 0.55 (0.006) 0.55 (0.007)
Machine 0.13 (0.03) 0.24 (0.02)
Abalone 0.44 (0.002) 0.49 (0.003)
Bones 0.67 (0.01) 0.68 (0.01)

Table 4: Proportion of unexplained variance (estimated over a 10-fold cross-validation) for various public datasets
to compare two algorithms: Breiman’s random forest and the forest where split values are limited to the 10-
empirical quantiles. Standard deviations are computed over multiple repetitions of the cross-validation and
displayed in brackets.

3 Random Forest Modifications

As explained in Section 1 of the article, SIRUS uses random forests at its core. In order to stabilize the forest
structure, we slightly modify the original algorithm from Breiman (Breiman, 2001a): cut values at each tree
node are limited to the 10-empirical quantiles. In the first paragraph, we show how this restriction have a small
impact on predictive accuracy, but is critical to stabilize the rule extraction. On the other hand, the rule selection
mechanism naturally only keeps rules with one or two splits. Therefore, tree depth is fixed to 2 to optimize the
computational efficiency. In the second paragraph, this phenomenon is thoroughly explained.

Quantile discretization. In a typical setting where the number of predictors is p = 100, limiting cut values
to the 10-quantiles splits the input space in a fine grid of 10100 hyperrectangles. Therefore, restricting cuts to
quantiles still leaves a high flexibility to the forest and enables to identify local patterns (it is still true in small
dimension). To illustrate this, we run the following experiment: for each of the 8 datasets, we compute the
unexplained variance of respectively the standard forest and the forest where cuts are limited to the 10-quantiles.
Results are presented in Table 4, and we see that there is almost no decrease of accuracy except for one dataset.
Besides, notice that setting q = n is equivalent as using original forests.

On the other hand, such discretization is critical for the stability of the rule selection. Recall that the importance
of each rule p̂M,n(P) is defined as the proportion of trees which contain its associated path P, and that the rule
selection is based on p̂M,n(P) > p0. In the forest growing, data is bootstrapped prior to the construction of each
tree. Without the quantile discretization, this data perturbation results in small variation between the cut values
across different nodes, and then the dilution of p̂M,n(P) between highly similar rules. Thus, the rule selection
procedure becomes inefficient. More formally, p̂M,n(P) is defined by

p̂M,n(P) =
1

M

M∑
`=1

1P∈T (Θ`,Dn),

where T (Θ`,Dn) is the list of paths extracted from the `-th tree of the forest. The expected value of the importance
of a given rule is

E[p̂M,n(P)] =
1

M

M∑
`=1

E[1P∈T (Θ`,Dn)] = P(P ∈ T (Θ,Dn)).

Without the discretization, T (Θ,Dn) is a random set that takes value in an uncountable space, and consequently

E[p̂M,n(P)] = P(P ∈ T (Θ`,Dn)) = 0,

and all rules are equally not important in average. In practice, since Dn is of finite size and the random forest cuts
at mid distance between two points, it is still possible to compute p̂M,n(P) and select rules for a given dataset.
However, such procedure is highly unstable with respect to data perturbation since we have E[p̂M,n(P)] = 0 for
all possible paths.
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Dataset Random
Forest CART RuleFit Node

harvest SIRUS SIRUS
sparse

SIRUS
50 rules

SIRUS
50 rules & d=3

Ozone 0.25 0.36 0.27 0.31 0.32 0.32 0.26 0.27
Mpg 0.13 0.20 0.15 0.20 0.20 0.20 0.15 0.15

Prostate 0.48 0.60 0.53 0.52 0.55 0.51 0.54 0.55
Housing 0.13 0.28 0.16 0.24 0.30 0.31 0.20 0.21
Diabetes 0.55 0.67 0.55 0.58 0.56 0.56 0.55 0.55
Machine 0.13 0.39 0.26 0.29 0.29 0.32 0.27 0.26
Abalone 0.44 0.56 0.46 0.61 0.66 0.64 0.64 0.65
Bones 0.67 0.67 0.70 0.70 0.73 0.77 0.73 0.75

Table 3: Proportion of unexplained variance estimated over a 10-fold cross-validation for various public datasets.
For rule algorithms only, i.e., RuleFit, Node harvest, and SIRUS, minimum values are displayed in bold, as well
as values within 10% of the minimum for each dataset (“SIRUS sparse” put aside).

Tree depth. When SIRUS is fit using fully grown trees, the final set of rules P̂M,n,p0 contains almost exclusively
rules made of one or two splits, and very rarely of three splits. Although this may appear surprising at first
glance, this phenomenon is in fact expected. Indeed, rules made of multiple splits are extracted from deeper tree
levels and are thus more sensitive to data perturbation by construction. This results in much smaller values of
p̂M,n(P) for rules with a high number of splits, and then deletion from the final set of path through the threshold
p0: P̂M,n,p0 = {P ∈ Π : p̂M,n(P) > p0}. To illustrate this, let us consider the following typical example with
p = 100 input variables and q = 10 quantiles. There are 2qp = 2× 100× 10 = 2× 103 distinct rules of one split,
about (2qp)2 ≈ 106 distinct rules of two splits, and about (2qp)3 ≈ 1010 distinct rules of three splits. Using only
rules of one split is too restrictive since it generates a small model class (a thousand rules for 100 input variables)
and does not handle variable interactions. On the other hand, rules of two splits are numerous (a million) and
thus provide a large flexibility to SIRUS. More importantly, since there are 10 billion rules of three splits, a stable
selection of a few of them is clearly an impossible task, and such complex rules are naturally discarded by SIRUS.

In SIRUS, tree depth is set to 2 to reduce the computational cost while leaving the output list of rules untouched
as previously explained. We augment the experiments of Section 3 of the article with an additional column
in Table 3: “SIRUS 50 rules & d= 3”. Recall that, in the column “SIRUS 50 rules”, p0 is set manually to
extract 100 rules from the forest leading to final lists of about 50 rules (similar size as RuleFit and Node harvest
models), an improved accuracy (reaching RuleFit performance), while stability drops to around 50% (70− 80%
when p0 is tuned). In the last column, tree depth is set to 3 with the same augmented model size. We observe no
accuracy improvement over a tree depth of 2.

This analysis of tree depth is not new. Indeed, both RuleFit (Friedman and Popescu, 2008) and Node harvest
(Meinshausen, 2010) articles discuss the optimal tree depth for the rule extraction from a tree ensemble in their
experiments. They both conclude that the optimal depth is 2. Hence, the same hard limit of 2 is used in Node
harvest. RuleFit is slightly less restrictive: for each tree, its depth is randomly sampled with an exponential
distribution concentrated on 2, but allowing few trees of depth 1, 3 and 4. We insist that they both reach such
conclusion without considering stability issues, but only focusing on accuracy.

4 Post-treatment Illustration

We illustrate the post-treatment procedure with the “Machine” dataset. Table 6 provides the initial raw list of 17
rules on the left, and the final post-treated 9-rule list on the right, using p0 = 0.072. The rules removed from the
raw list are highlighted in red and orange. Red rules have one constraint and are identical to a previous rule with
the constraint sign reversed. Notice that two such rules (e.g. rules 1 and 2) correspond to the left and right child
nodes at the first level of a tree. Thus, they belong to the same trees of the forest and their associated occurrence
frequencies p̂(P) are equal. We always keep the rule with the sign “<”: this choice is somewhat arbitrary and of
minor importance since the two rules are identical. Orange rules have two constraints and are linearly dependent
on other previous rules. For example for rule 12, there exist 3 real numbers α1, α5, and α7 such that, for all
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1 if MMAX < 32000 then Ŷ = 61 else Ŷ = 408

2 if MMAX ≥ 32000 then Ŷ = 408 else Ŷ = 61

3 if MMIN < 8000 then Ŷ = 62 else Ŷ = 386

4 if MMIN ≥ 8000 then Ŷ = 386 else Ŷ = 62

5 if CACH < 64 then Ŷ = 56 else Ŷ = 334

6 if CACH ≥ 64 then Ŷ = 334 else Ŷ = 56

7 if
{
MMAX ≥ 32000
& CACH ≥ 64

then Ŷ = 517 else Ŷ = 67

8 if CHMIN < 8 then Ŷ = 50 else Ŷ = 312

9 if CHMIN ≥ 8 then Ŷ = 312 else Ŷ = 50

10 if MYCT < 50 then Ŷ = 335 else Ŷ = 58

11 if MYCT ≥ 50 then Ŷ = 58 else Ŷ = 335

12 if
{
MMAX ≥ 32000
& CACH < 64

then Ŷ = 192 else Ŷ = 102

13 if
{
MMAX < 32000
& CHMIN ≥ 8

then Ŷ = 157 else Ŷ = 100

14 if
{
MMAX < 32000
& CHMIN ≥ 12

then Ŷ = 554 else Ŷ = 73

15 if
{
MMAX ≥ 32000
& CHMIN < 12

then Ŷ = 252 else Ŷ = 96

16 if
{

MMIN ≥ 8000
& CHMIN ≥ 12

then Ŷ = 586 else Ŷ = 76

17 if
{

MMIN ≥ 8000
& CHMIN < 12

then Ŷ = 236 else Ŷ = 94

1 if MMAX < 32000 then Ŷ = 61 else Ŷ = 408

3 if MMIN < 8000 then Ŷ = 62 else Ŷ = 386

5 if CACH < 64 then Ŷ = 56 else Ŷ = 334

7 if
{
MMAX ≥ 32000
& CACH ≥ 64

then Ŷ = 517 else Ŷ = 67

8 if CHMIN < 8 then Ŷ = 50 else Ŷ = 312

10 if MYCT < 50 then Ŷ = 335 else Ŷ = 58

13 if
{
MMAX < 32000
& CHMIN ≥ 8

then Ŷ = 157 else Ŷ = 100

14 if
{
MMAX < 32000
& CHMIN ≥ 12

then Ŷ = 554 else Ŷ = 73

16 if
{

MMIN ≥ 8000
& CHMIN ≥ 12

then Ŷ = 586 else Ŷ = 76

Table 6: SIRUS post-treatment of the extracted raw list of rules for the “Machine” dataset: the raw list of rules on the
left, and the final post-treated rule list on the right (removed rules are highlighted in red for one constraint rules and in
orange for two constraint rules).

x ∈ Rp

gP12
(x) = α1gP1

(x) + α5gP5
(x) + α7gP7

(x).

Observe that rules 12 and 7 involve the same variables and thresholds, but one of the sign constraints is
reversed. The estimated rule outputs Ŷ are of course different between rules 12 and 7 because they identify
two different quarters of the input space. The outputs of rule 7 have a wider gap than the ones of rule 12, and
consequently the CART-splitting criterion of rule 12 is smaller, which also implies a smaller occurrence frequency,
i.e., p̂(P12) < p̂(P7). Therefore rule 12 is removed rather than rule 7. The same reasoning applies to rules 15
and 17.

5 Rule Format

The format of the rules with an else clause for the uncovered data points differs from the standard format in
the rule learning literature. Indeed, in classical algorithms, a prediction is generated for a given query point by
aggregating the outputs of the rules satisfied by the point. A default rule usually provides predictions for all
query points which satisfy no rule. First, observe that the intercept in the final linear aggregation of rules in
SIRUS can play the role of a default rule. Secondly, removing the else clause of the rules selected by SIRUS
results in an equivalent formulation of the linear regression problem up to the intercept. More importantly, the
format with an else clause is required for the stability and modularity (Murdoch et al., 2019) properties of SIRUS.
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Equivalent Formulation. Rules are originally defined in SIRUS as

ĝn,P(x) =

{
Ȳ

(1)
P if x ∈P

Ȳ
(0)
P otherwise,

where if x ∈P indicates whether the query point x satisfies the rule associated with path P or not, Ȳ (1)
P is the

output average of the training points which satisfy the rule, and symmetrically Ȳ (0)
P is the output average of the

training point not covered by the rule. The original linear aggregation of the rules is

m̂M,n,p0(x) = β̂0 +
∑

P∈P̂M,n,p0

β̂n,P ĝn,P(x).

Now we define the rules without the else clause by ĥn,P(x) = (Ȳ
(1)
P − Ȳ (0)

P )1x∈P , and we can rewrite SIRUS
estimate as

m̂M,n,p0(x) =
(
β̂0 +

∑
P∈P̂M,n,p0

β̂n,P Ȳ
(0)
P

)
+

∑
P∈P̂M,n,p0

β̂n,P ĥn,P(x)

=β̃0 +
∑

P∈P̂M,n,p0

β̂n,P ĥn,P(x).

Therefore the two models with or without the else clause are equivalent up to the intercept.

Stability. The problem of defining rules without the else clause lies in the rule selection. Indeed, rules associated
with left (L) and right (R) nodes at the first level of a tree are identical:

ĝn,L(x) = ĝn,R(x) = ȲL1x∈L + ȲR1x∈R.

Without the else clause, these two rules become different estimates:

ĥn,L(x) = (ȲL − ȲR)1x∈L,

ĥn,R(x) = (ȲR − ȲL)1x∈R.

However, ĥn,L and ĥn,R are linearly dependent, since ĥn,L(x)− ĥn,R(x) = ȲL − ȲR, which does not depend on
the query point x. This linear dependence between predictors makes the linear aggregation of the rules ill-defined.
One of two rule could be removed randomly, but this would strongly hurt stability.

Modularity. Murdoch et al. (2019) specify different properties to assess model simplicity: sparsity, simulatability,
and modularity. A model is sparse when it uses only a small fraction of the input variables, e.g. the lasso. A
model is simulatable if it is possible for humans to perform predictions by hands, e.g. shallow decision trees.
A model is modular when it is possible to analyze a meaningful portion of it alone. Typically, rule models are
modular since one can analyze the rules one by one. In that case, the average of the output values for instances
not covered by the rule is an interesting insight.
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6 Dataset Descriptions

Dataset Sample Size Total Number
of Variables

Number of
Categorical
Variables

Ozone 330 9 0
Mpg 398 7 0

Prostate 97 8 0
Housing 506 13 0
Diabetes 442 10 0
Machine 209 6 0
Abalone 4177 8 1
Bones 485 3 2

Table 7: Description of datasets

7 Number of Trees

The stability, predictivity, and computation time of SIRUS increase with the number of trees. Thus a stopping
criterion is designed to grow the minimum number of trees that ensures stability and predictivity to be close to
their maximum. It happens in practice that stabilizing the rule list is computationally more demanding in the
number of trees than reaching a high predictivity. Therefore the stopping criterion is only based on stability, and
defined as the minimum number of trees such that when SIRUS is fit twice on the same given dataset, 95% of the
rules are shared by the two models in average.

To this aim, we introduce 1− εM,n,p0 , an estimate of the mean stability E[ŜMn,n,p0 |Dn] when SIRUS is fit twice
on the same dataset Dn. εM,n,p0 is defined by

εM,n,p0 =

∑
P∈Π zM,n,p0(P)(1− zM,n,p0(P))∑

P∈Π(1− zM,n,p0(P))
,

where zM,n,p0(P) = Φ(Mp0,M, pn(P)), the cdf of a binomial distribution with parameter pn(P) =
E[p̂Mn,n(P)|Dn], M trials, evaluated at Mp0. It happens that εM,n,p0 is quite insensitive to p0. Consequently
it is simply averaged over a grid V̂M,n of many possible values of p0. Therefore, the number of trees is set, for
α = 0.05, by

argmin
M

{ 1

|V̂M,n|

∑
p0∈V̂M,n

εM,n,p0 < α
}
,

to ensure that 95% of the rules are shared by the two models in average. See Section 4 from Bénard et al. (2021)
for a thorough explanation of this stopping criterion.
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