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Abstract: We discuss the possibility that inflation is driven by supersymmetry breaking with the
scalar component of the goldstino superfield (sgoldstino) playing the role of the inflaton and charged
under a gauged U(1) R-symmetry. Imposing a linear superpotential allows us to satisfy easily the
slow-roll conditions, avoiding the so-called η-problem, and leads to an interesting class of small
field inflation models, characterised by an inflationary plateau around the maximum of the scalar
potential near the origin, where R-symmetry is restored with the inflaton rolling down to a minimum
describing the present phase of the Universe. Inflation can be driven by either an F- or a D-term,
while the minimum has a positive tuneable vacuum energy. The models agree with cosmological
observations and in the simplest case predict a rather small tensor-to-scalar ratio of primordial
perturbations. We propose a generalisation of Fayet-Iliopoulos model as a microscopic model leading
to this class of inflation models at low energy.

Keywords: supersymmetry; supergravity; inflation

1. Introduction

“A fundamental theory of Nature, such as string theory, should be able to explain at the same
time particle physics and cosmology, which are phenomena that involve very different scales from
the smallest microscopic four-dimensional (4d) quantum gravity length of 10−33 cm to the largest
macroscopic distances of the size of the observable Universe ∼ 1028 cm, spanned a region of about
60 orders of magnitude. In particular, besides the 4d Planck mass, there are three very different scales
with very different physics corresponding to the electroweak scale, dark energy and inflation” [1].
An interesting possibility is that these scales are related by the dynamics of an underlying fundamental
theory, such as string theory. A first step towards this goal is to study possible connections between the
electroweak scale of the Standard Model or its possible extension (such as the supersymmetry breaking
scale) with that of inflation. An additional constraint would be to impose at the electroweak vacuum
the presence of a tiny tuneable cosmological constant in order to accommodate the observed dark
energy, without necessarily trying to explain it. Indeed, despite the absence of evidence of low-energy
supersymmetry at colliders, it is theoretically likely that supersymmetry plays a role at some more
fundamental level. On the other hand, inflation is an attractive paradigm for cosmology but the
associated models provide a phenomenological description leaving several unanswered questions,
such as the origin of the inflaton field, its fundamental or composite nature and its connection to the
rest of particle physics.
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“Inflationary models in supergravity (For reviews on supersymmetric models of inflation, see
for example [2].) suffer in general from several problems, such as fine-tuning to satisfy the slow-roll
conditions, large field initial conditions that break the validity of the effective field theory, and
stabilisation of the (pseudo) scalar companion of the inflaton arising from the fact that bosonic
components of superfields are always even. The simplest argument to see the fine tuning of the
potential is that a canonically normalised kinetic term of a complex scalar field X corresponds to
a quadratic Kähler potential K = XX̄ that brings one unit contribution to the slow-roll parameter
η = V′′/V, arising from the eK proportionality factor in the expression of the scalar potential V.
This problem can be avoided in models with no-scale structure where cancellations arise naturally
due to non-canonical kinetic terms leading to potentials with flat directions (at the classical level).
However, such models require often trans-Planckian initial conditions that invalidate the effective
supergravity description during inflation. A concrete example where all these problems appear is the
Starobinsky model of inflation [3], despite its phenomenological success” [4].

In [4], we proposed a class of models that avoids all three problems above in which the inflaton
is identified with the superpartner of goldstino (See [5–8] for earlier works relating supersymmetry
and inflation), in the presence of a gauged R-symmetry. Indeed, the superpotential in this case is linear
and cancels exactly the big contribution to η described above. Since inflation takes place at a plateau
around the maximum of the scalar potential (hill-top) no large field initial conditions are needed.
The pseudo-scalar companion of the inflaton is eaten by the R-gauge field that becomes massive,
leaving the inflaton as a single scalar degree of freedom present in the low-energy spectrum. As we
will show below, this model provides therefore a minimal realisation of natural small-field inflation in
supergravity, compatible with present observations. Moreover, it allows a realistic minimum describing
our present Universe with an infinitesimal positive vacuum energy arising due to a cancellation
between an F- and D-term contributions to the scalar potential, without affecting the properties of the
inflationary plateau, along the lines of Refs. [9–11].

In the model we discussed above, the D-term has a constant FI contribution but plays no role
during inflation and can be neglected, while the pseudoscalar partner of the inflaton is absorbed
by the U(1)R gauge field that becomes massive away from the origin. Recently, a new FI term was
proposed [12] that has three important properties: (1) it is manifestly gauge invariant already at
the Lagrangian level; (2) it is associated to a U(1) that should not gauge an R-symmetry and (3)
supersymmetry is broken by (at least) a D-auxiliary expectation value and the extra bosonic part
of the action is reduced in the unitary gauge to a constant FI contribution leading to a positive
shift of the scalar potential, in the absence of matter fields. In the presence of matter fields, the FI
contribution to the D-term acquires a special field dependence e2K/3 that violates invariance under
Kähler transformations.

In a recent work [13], we studied the properties of the new FI term and explored its consequences
to the class of inflation models we introduced in [4]. (The new FI term was also studied in [14] to
remove an instability from inflation in Polonyi-Starobinsky supergravity.) We first showed that matter
fields charged under the U(1) gauge symmetry can consistently be added in the presence of the new
FI term, as well as a non-trivial gauge kinetic function. We then observed that the new FI term is not
invariant under Kähler transformations. On the other hand, a gauged R-symmetry in ordinary Kähler
invariant supergravity can always be reduced to an ordinary (non-R) U(1) by a Kähler transformation.
By then going to such a frame, we find that the two FI contributions to the U(1) D-term can coexist,
leading to a novel contribution to the scalar potential.

The resulting D-term scalar potential provides an alternative realisation of inflation from
supersymmetry breaking, driven by a D- instead of an F-term (See [15,16] for earlier works on
D-term inflation). The inflaton is still a superpartner of the goldstino which is now a gaugino within a
massive vector multiplet, where again the pseudoscalar partner is absorbed by the gauge field away
from the origin. For a particular choice of the inflaton charge, the scalar potential has a maximum
at the origin where inflation occurs and a supersymmetric minimum at zero energy, in the limit of
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negligible F-term contribution (such as in the absence of superpotential). The slow roll conditions are
automatically satisfied near the point where the new FI term cancels the charge of the inflaton, leading
to higher than quadratic contributions due to its non trivial field dependence.

The Kähler potential can be canonical, modulo the Kähler transformation that takes it to the non
R-symmetry frame. In the presence of a small superpotential, the inflation is practically unchanged
and driven by the D-term, as before. The maximum is still at the origin but the minimum has a small
non-vanishing positive cosmological constant, where supersymmetry is broken by both F- and D-auxiliary
expectation values of the same order of magnitude. In general, the model predicts small primordial
gravitational waves with a tensor-to-scaler ration r well below the observability limit. However, when
higher order terms are included in the Kähler potential, r can be increased to large values r ' 0.015 [17].

In the following, we will present the main features of these models. A brief review of the proposed
single field model for inflation from supersymmetry breaking where the goldstino superpartner plays
the role of the inflaton is given in Section 2. Assuming that inflation arises near the maximum of the
scalar potential where R-symmetry is restored, supersymmetry breaking is driven predominantly
either by an F-term or by a D-term. In Section 3, we introduce an example of the microscopic origin
for the effective field theory of the inflation model described above. In Section 4, we discuss the new
FI-term and analyse its consequences in the models of inflation driven by supersymmetry breaking.

2. Inflation from Supersymmetry Breaking

The Set Up

Let us consider D = 4, N = 1 supergravity with gauged R-symmetry [18]. The theory contains
one chiral multiplet and a corresponding vector multiplet. The chiral multiplet X transforms as:

X → e−iqΛX, (1)

where q and Λ denote the charge of X and the gauge parameter respectively. The Kähler potential is
a function of XX̄ while we choose the linear superpotential

K = K(XX̄), W = κ−3 f X, (2)

where f is a constant parameter. Note that X is dimensionless and the reduced Planck mass κ−1 =

2.4× 1018 GeV. Without loss of generality, we choose the gauge kinetic function to be 1. The scalar
potential is given by

V = VF + VD, (3)

where the F and D-term potential are

VF = eκ2K
(
−3κ2WW̄ +∇XWgXX̄∇̄X̄W̄

)
, VD =

1
2
P2. (4)

The Kähler covariant derivative is defined by

∇XW = ∂XW(z) + κ2(∂XK)W . (5)

The moment map P is defined by

P = i(kX∂XK− r̃). (6)

kX denotes the Killing vector for X under the U(1) R-symmetry, and r̃ ≡ −κ−2kXWX/W ; in the
present setup, they become kX = −iqX, r̃ = iκ−2q. As usual, subscripts stand for partial derivatives:
WX := ∂XW .
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We assume the inflaton starts rolling around a local maximum of the potential near the origin
X = 0, where R-symmetry is preserved. Let us expand the Kähler potential up to quadratic order
in XX̄:

κ2K = XX̄ + A(XX̄)2 + ... . (7)

With this, the F-term potential becomes

κ4VF = f 2eXX̄(1+AXX̄)

[
−3XX̄ +

(
1 + XX̄ + 2A(XX̄)2)

)2

1 + 4AXX̄

]
, (8)

and the D-term potential is

κ4VD =
q2

2

[
1 + XX̄ + 2A(XX̄)2

]2
. (9)

By making the change of field variables

X = ρeiθ , X̄ = ρe−iθ , (ρ ≥ 0), (10)

the scalar potential becomes

κ4V = f 2eρ2+Aρ4
[
− 3ρ2 +

(
1 + ρ2 + 2Aρ4)2

1 + 4Aρ2

]
+

q2

2

(
1 + ρ2 + 2Aρ4

)2
. (11)

Note that the phase θ get absorbed by the U(1)R gauge field in the standard Brout-Englert-Higgs
mechanism [19–21]. Thus, the scalar potential is only a function of the modulus ρ.

We now indentify the field ρ as the inflaton. However, in order to calculate the slow-roll
parameters, we introduce the canonically normalised field χ satisfying

dχ

dρ
=
√

2KXX̄ . (12)

The slow-roll parameters can be defined in terms of the canonical field χ as:

ε =
1

2κ2

(
dV/dχ

V

)2
, η =

1
κ2

d2V/dχ2

V . (13)

Since inflation arises near the maximum ρ = 0, we expand

ε = 4
(
−4A + y2

2 + y2

)2

ρ2 +O(ρ4),

η = 2
(
−4A + y2

2 + y2

)
+O(ρ2), (14)

where we defined y = q/ f . The above equation implies ε ' η2ρ2 � η. For simplicity, we focus on the
special case y→ 0 where F-term contribution to the scalar potential is dominant. By considering the
behaviour near the origin, we can put some constraints on the coefficient A of the quadratic term of the
Kähler potential defined on the right-hand side of (7). We can easily show that A > 0 is required for
having a local maximum of the scalar potential at ρ = 0. Furthermore, the slow-roll condition |η| � 1
sets an upper bound A� 0.25. Taking these requirements into account, the constraint on A is

0 < A� 0.25. (15)
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We can choose A ∼ 0.005 to obtain η ∼ −0.02 which is in agreement with CMB observational data. In
the following sections we introduce a microscopic model that can generate the coefficient A satisfying
the constraint in (15).

3. Microscopic Model

In this section, we introduce an example of the microscopic origin for the effective field theory
of the inflation model described in the previous section. It is a “generalisation” version of the
Fayet-Iliopoulos (FI) model [22]. The model has a vacuum configuration that spontaneously breaks
both gauge symmetry and supersymmetry, leaving (in the decoupling limit) the goldstino as the only
light degree of freedom in this sector.

3.1. The Generalised Fayet-Iliopoulos Model

Let us consider a supergravity model with two chiral multiplets Φ± and one vector multiplet.
As we will show shortly, this theory has a vacuum in which only Φ+ is lighter than the other degrees
of freedom. After integrating out all other heavy degrees of freedom, we will obtain an effective
supergravity action for Φ+. The UV supergravity action formulated in Poincaré superspace as in [18]
is given by

S =
1
4

∫
d4xd2θ EF (Φ−)WαWα + h.c.

+ κ−3m
∫

d4xd2θ EΦ+Φ− + h.c.

− 3κ−2
∫

d4xd4θ Ee−κ2K0/3−(q+−q−)V/3. (16)

In the following, we will mostly work in supergravity mass units κ = 1, for notational simplicity.
This theory is invariant under a gauged U(1) transformation which acts only on matter superfields,
which we call U(1)m transformation. Under U(1)m, the chiral superfields Φ± and the vector superfield
V transform as, (strictly speaking, this includes a local rotation of the fermionic coordinates and the
overall phase rotation because the superpotential also transforms under U(1)m. Hence, U(1)m is
a gauged R-transformation)

Φ± 7→ e∓iq±ΛΦ±, V 7→ V + i(Λ− Λ̄). (17)

where Λ is chiral. The function K0 is the U(1)m-invariant Kähler potential,

κ2K0 = Φ̄+eq+V Φ+ + Φ̄−e−q−V Φ−. (18)

The gaugino superfield Wα is defined with the super-Poincaré covariant derivatives Dα, D̄α̇ as

Wα = −1
4
D̄2DαV . (19)

The gauge kinetic function F (Φ−) is given by

F (Φ−) = 1 + b ln Φ−, b =
(x− 1)3q2

−
24π2 , x = q+/q−. (20)

The logarithmic term cancles the chiral anomaly of U(1)m through Green-Schwarz mechanism.
For more details see [4,23]
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The scalar potential in the microscopic model considered in (16) is given by

κ4VUV =
1
4

q2
−

(
x|ϕ+|2 − |ϕ−|2 + x− 1

)2

2(1 + b ln v)

+ m2e|ϕ+ |2+|ϕ− |2(|ϕ+|2 + |ϕ−|2 − |ϕ+|2|ϕ−|2
)
, (21)

where ϕ± = Φ±| is the lowest component of Φ±. Note that the first term is the D-term contribution
and x− 1 is the Fayet-Iliopoulos parameter. Below, it is natural to introduce the parameter ∆ as

∆ := x− 1− v2. (22)

The vacuum which spontaneously breaks U(1)m and supersymmetry is of the form

〈ϕ+〉 = 0, 〈ϕ−〉 = v. (23)

Around this vacuum, the fields of V , Φ− are heavier than those of Φ+, in the limit of small SUSY
breaking scale. The extremisation condition with respect to ϕ− reads

−1
4

q2
−v2 ∆

1 + b ln v
− 1

16
bq2
−

(
∆

1 + b ln v

)2
+ m2v2(1 + v2)ev2

= 0. (24)

This provides us a constraint among the parameters ∆, v, x and q− which we will use in Section 3.4.
Let us consider the approximation b = 0 where Equation (24) has a unique solution

∆ =
4m2

q2
−

(1 + v2)ev2
. (25)

We can easily see that Im ϕ− plays the role of the massless R-Goldstone boson while Re ϕ− gets
a correction to its mass-squared compared to the global SUSY case q2

−v2 by 4m2v2(2 + v2)ev2
.

The mass-squared of ϕ+ also changes to m2(1 + x + xv2)ev2
. If this mass is much smaller than

the other masses the integrating out condition is satisfied.
For b 6= 0 Equation (24) gives two solutions ∆ = ∆±, where

∆± :=
2v2(1 + b ln v)

b

(
− 1±

√
1 +

4bm2(1 + v2)ev2

q2
−v2

)
. (26)

The mass2 of the vector field Aµ is q2
−v2 and the mass matrices of ϕ± are given by

VUV
ϕ∗+ϕ∗+

|vac = 0, (27)

VUV
ϕ∗+ϕ+

|vac = m2ev2
+

1
4

xq2
−

∆
1 + b ln v

, (28)

VUV
ϕ∗−ϕ∗−

|vac = m2ev2
v2(2 + v2) +

1
4

q2
−

v2

1 + b ln v
+

1
16

bq2
−

∆2

v2(1 + b ln v)2

+
1
4

bq2
−

∆
(1 + b ln v)2 +

1
16

b2q2
−

∆2

v2(1 + b ln v)3 , (29)

VUV
ϕ∗−ϕ− |vac = m2ev2

(1 + 3v2 + v4) +
1
4

q2
−

v2

1 + b ln v
− 1

4
q2
−

∆
1 + b ln v

+
1
4

bq2
−

∆
(1 + b ln v)2 +

1
16

b2q2
−

∆2

v2(1 + b ln v)3 . (30)

In the following, we assume that the integrating out condition is satisfied, which will be shown
explicitly in Section 3.4 with the analysis of the parameter space leading to models of realistic inflation.
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3.2. Integrating Out Heavy Fields

The UV action in conformal superspace takes exactly the same form as in the case with the
super-Weyl compensators [24]:

S =
1
4

∫
d4xd2θ EF (Φ−)WαWα + h.c.

+ κ−3m
∫

d4xd2θ EC3Φ+Φ− + h.c.

− 3κ−2
∫

d4xd4θ ECCe−κ2K0/3−(q+−q−)V/3. (31)

After fixing the conformal compensators as C = C = 1, it becomes the action (16). Let us briefly
explain the notation. In conformal superspace, there are two important classes of superfields namely
chiral and primary superfield. A chiral superfield Φ is defined by

∇̄α̇Φ = 0, (32)

where ∇̄α̇ is the superconformally covariant spinor derivative. A primary superfield Φ of charges
(δ, w̃) (conformal and chiral weights) is defined by

D̂Φ = δΦ, ÂΦ = iw̃Φ, K̂AΦ = 0, (33)

where D̂, Â, K̂A are the generators for the dilatation, chiral U(1) rotation, and special conformal
transformations respectively [25] (The local Lorentz index A in K̂A stands for the vector and the
undotted and dotted spinor indices (a, α, α̇). Therefore K̂A denotes the generators (K̂a, Ŝα, ˆ̄Sα̇), with Ŝα,
ˆ̄Sα̇ the generators of the S-supersymmetry).

We now explain the notation. For details, see [26]. An action integral with
∫

d4xd4θ in the third line
of (31) is called the D-type action. In order to be invariant under gauge transformation, its integrand
must be real primary of charge (0, 0). On the other hand, action integrals with

∫
d4xd2θ in the first and

second lines of (31) are called the F-type action. Their integrands are required to be chiral primary
of charge (0, 0) for gauge invariance. The determinant E of the vierbein superfield is real primary of
charges (−2, 0), while the chiral density E is chiral primary of charges (−3,−2).

The chiral superfields Φ± are primaries of charges (0, 0). They transform under the matter U(1)m

as Φ± 7→ e∓iq±ΛΦ±, where Λ is chiral primary of charges (0, 0). The vector superfield V is primary of
charges (0, 0). It transforms under U(1)m as V 7→ V + i(Λ−Λ).

“The compensators C, C are chiral primaries of charges (1, 2/3), and anti-chiral primary of charges
(1,−2/3), respectively. To guarantee gauge invariance, we assign U(1)m charges to the compensators
as” [26]

C 7→ ei(q+−q−)Λ/3C, C 7→ e−i(q+−q−)Λ/3C. (34)

K0 is the gauge-invariant Kähler potential defined in (18) and Wα is the chiral primary gaugino
superfield of charges (3/2, 1), defined here with the superconformally covariant derivatives ∇α, ∇̄α̇

as (Note that ∇α has charges (1/2,−1) and ∇̄α̇ has charges (1/2, 1).)

Wα = −1
4
∇̄2∇αV . (35)



Symmetry 2020, 12, 468 8 of 22

Let us proceed to integrating out the heavy degrees of freedom. In the unitary gauge Φ− = v,
the action reads

S =
1
4

∫
d4xd2θ EWαWα + h.c.

+ κ−3mv
∫

d4xd2θ EC3Φ+ + h.c.

− 3κ−2
∫

d4xd4θ ECCe−κ2K/3, (36)

where the vector superfield V is rescaled to absorb the factor 1 + b ln v, and K is the gauge-fixed
Kähler potential,

κ2K = Φ+exq−V Φ+ + v2e−q−V + (x− 1)q−V . (37)

Recall that x = q+/q−.
To integrate out V at tree level, we will solve the equation of motion of V around its vacuum

where higher derivative contributions are neglected. The equation of motion of V reads

−κ2∇αWα + CCe−κ2K/3q−
(

xΦ+exq−V Φ+ − v2e−q−V + x− 1
)
= 0. (38)

After making the shift in ∇αWα| to remove the tadpole [27], and then neglecting the derivative term,
we obtain the following low-energy effective equation of motion

CCe−κ2K/3q−
(

xΦ+exq−V Φ+ − v2e−q−V + x− 1
)
− q−∆ ' 0. (39)

We now integrate out V in the following way:

1
4

∫
d4xd2θ EWαWα + h.c. = −1

2

∫
d4xd4θ EV∇αWα, (40)

and then eliminate ∇αWα by substituting the exact equation of motion (38). The first and third terms
of the action (36) then become∫

d4xd4θ E
(
−1

2
V∇αWα − 3κ−2CCe−κ2K/3

)
= κ−2

∫
d4xd4θ ECCe−κ2K/3

×
[
− 1

2
q−V

(
xΦ+exq−V Φ+ − v2e−q−V + x− 1

)
− 3
]
. (41)

Next, we combine the (low-energy) equation of motion (39) with the second line of (41). This gives us
the low-energy effective action,

Seff[C; Φ+] = κ−3mv
∫

d4xd2θ EC3Φ+ + h.c.

+ κ−2
∫

d4xd4θ E
(
− 1

2
∆q−V − 3CCe−κ2K/3

)
, (42)

where V is understood as a function of Φ+, determined by the (low-energy) equation of motion (39).

3.3. Effective K ähler Potential and Superpotential

We will fix the compensators in such the way that the gauge fixing

C = C = eκ2Keff/6 (43)
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makes the effective action (42) into the integral in the Kähler superspace characterised by the effective
Kähler potential Keff. This is easy to be realised by

κ2Keff = κ2K+ 3 ln
(

1− 1
6

∆q−V
)

, κ3Weff = mvΦ+, (44)

where the second term is the supergravity modification. The gauge fixing (43) simplifies the effective
equation of motion (39) into(

1− 1
6

∆q−V
)(

xΦ+exq−V Φ+ − v2e−q−V + x− 1
)
− ∆ = 0. (45)

This gives us an analytic solution for Φ+Φ+ as a function of V ,

Φ+Φ+ = x−1e−xq−V
(

v2e−q−V − x + 1 +
∆

1− 1
6 ∆q−V

)
= x−1e−xq−V

(
v2e−q−V − v2 +

1
6 ∆2q−V

1− 1
6 ∆q−V

)
. (46)

“Since, the low-energy effective theory obtained in the this section does not have a gauged R
symmetry, we need to add another gauged R symmetry to the low-energy theory by hand. Let us
denote this additional gauge by U(1)′. The simplest way to achieve this is by extending the symmetry
of the UV theory from U(1)m to U(1)m ×U(1)′ and assuming that the additional U(1)′ does not take
part in the integrating out process and survives as the gauged R-symmetry of the low-energy theory.
As we summarize in Table 1, Φ+ transforms under U(1)m ×U(1)′ with charge (q+, q) while Φ− is
singlet under U(1)′” [26].

Table 1. The chiral multiplet Φ+ and Φ− are charged under U(1)m ×U(1)′. Note that U(1)′ becomes
the R-symmetry in the low-energy theory and does not play any role during the integrating out process.

U(1)m U(1)′

Φ+ +q+ q
Φ− −q− 0

In the next section, we will identify the parameter regions in which the scalar potential has a local
maximum at the origin by analysing the behaviour of the effective Kähler potential near the origin.

3.4. Inflation from the Effective Low-Energy Theory

For simplicity, we absorb q− into the vector multiplet. To explore the behaviour near the origin,
we first assume the solution V of Equation (45) can be written perturbatively in the form

V = V0 + V1Φ̄+Φ+ + V2(Φ̄+Φ+)
2 + ... . (47)

Substituting this into Equation (45) we can show that

V0 = 0, V1 =
6x

∆2 − 6v2 ,

V2 =
6x2

(∆2 − 6v2)
3

(
− ∆3 + 6∆2x− 18v2(2x + 1)

)
. (48)
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After substituting the perturbative solution of V in (47) into the effective Kähler potential (44),
the effective Kähler potential around the local maximum can be written as

κ2Keff = v2 + K1Φ̄+Φ+ + K2(Φ̄+Φ+)
2 + ... , (49)

where the first two coefficients are

K1 =
∆2 + 3∆x− 6v2

∆2 − 6v2 , (50)

K2 = −
3x2 (−∆4 − 12∆3x + 30∆2v2 + 36∆v2(2x + 1)− 72v4)

2 (∆2 − 6v2)
3 . (51)

Then we define the canonically normalized chiral superfield Φ as

Φ :=
√

K1 Φ+. (52)

We can absorbe the constant term v2 in (49) by a Kähler transformation. Around the origin, the effective
Kähler potential becomes

κ2Keff = ΦΦ + A2(ΦΦ)2 + ... , (53)

where the first nontrivial coefficients A2 read

A2 =
3x2 (∆4 + 12∆3x− 30∆2v2 − 36∆v2(2x + 1) + 72v4)

2 (∆2 − 6v2) (∆2 + 3∆x− 6v2)
2 . (54)

In order to having a local maximum at the origin, we need to satisfy the constraint A2 >

0. According to the signs of ∆ and of the scalar component c, we can divide the domain in
two-dimensional parameter space (v, x) in which A2 is positive into four regions [26]:

• Region I: with ∆ > 0, c > 0,
• Region II: with ∆ > 0, c 6 0,
• Region III: with ∆ < 0, c 6 0,
• Region IV: with ∆ < 0, c > 0.

These four regions are shown in Figure 1a. It turns out that a Minkowski minimum is allowed in
Region I and III, while the scalarpotential with parameters in Region II and IV have only de Sitter
minimum with a large cosmological constant. We can also show that Region I does not satisfy the
integrating out condition. Therefore, we conclude that Region III is the only possible domain that
allows for slow-roll inflation with a nearby minimum having a small and tuneable vacuum energy.
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(a) (b)
Figure 1. (a) Allowed parameter space (v, x) with 0 < v < 2.0 and 0 < x < 2.0. The colored regions
in which A2 > 0 can be divided into 4 parts, namely I, II, III and IV. (b) Region I and part of Region
II are in the excluded area where v2 − 1

4 x(x− 1− v2) < 0 where the integrating out condition is not
satisfied.

3.5. The Effective Scalar Potential and Slow-Roll Parameters

“We are now exploring the global minimum of the scalar potential and comparing our predictions
for inflation with the observational data. To do these, we need the exact expression of the scalar
potential which can be achieved by the following way. Using the analytic solution (46) for Φ+Φ+ as
a function of V , we obtain the scalar potential as a function of c = V | instead of ϕ+ = Φ+|” [26].

Let us combine (44) with (46), the effective Kähler potential can be expressed as a function of the
vector multiplet V ,

κ2Keff(V) =
1
x

[
v2(1 + x)e−V +

∆
1− 1

6 ∆V
− x + 1

]
+ (x− 1)V

+ 3 ln
[
1− 1

6
∆V
]
, (55)

where V is a function of Φ+Φ+. The effective superpotential is

κ3Weff = mvΦ+. (56)

We find the effective D-term potential in terms of c| given by

κ4VD =
y2e−2cm2v2

8x2

[
ρv2(x + 1− xec)c′ − 2ecx

− ecρc′
x∆(3− c∆)

6− c∆
− 6ecρc′∆2

(6− c∆)2

]2
, (57)

where a new parameter y := q/mv. The inflaton field ρ is defined as ρ := (ϕ∗+ϕ+)1/2 and it can be
written in terms of c with the help of (46) as

ρ2 =
e−xc

x

[
v2e−c − x + 1 +

∆
1− 1

6 ∆c

]
. (58)
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For any given value of the parameters v and x, the “physical domain” of c is defined in such a way
that ρ2 > 0. We also define c′ = dc/dρ, c′′ = d2c/dρ2 in terms of c with the help of (58) as

c′ =
2ρx(6− c∆)ec(x+1)

ec∆2 − v2 (6− (c + ec − 1)∆)− ρ2xec(x+1)(6x− c∆x− ∆)
, (59)

c′′ = − v2(6− c∆ + 2∆) (c′)2

ec∆2 − v2 (6− (c + ec − 1)∆)− ρ2xec(x+1)(6x− c∆x− ∆)

+
xec(x+1) (ρc′ (ρxc′(x(6− c∆)− 2∆) + 4(x(6− c∆)− ∆)) + 2(6− c∆))

ec∆2 − v2 (6− (c + ec − 1)∆)− ρ2xec(x+1)(6x− c∆x− ∆)
. (60)

On the other hand, the F-term contribution to effective potential is written as

κ4VF = m2v2eκ2Keff(c)
(
− 3ρ2 +

4A2(c)
B(c)

)
, (61)

where the functions A(c) and B(c) are

A(c) = 1 +
ρc′

2x(6− c∆)2 e−c
[
6ecv4 + ecξ

(
x
(

c2∆2 − 9c∆ + 18
)
+ 6ξ

)
+ v2

(
−c2∆2 + 12c∆− 12ecξ + x(6− c∆) (c∆ + 3ec − 6)− 36

) ]
, (62)

B(c) = − 3∆ (ρc′′ + c′)
ρ(6− c∆)

+
ξ (ρc′′ + c′)

ρ
+

(ρc′′ + c′)
(

6∆2

(6−c∆)2 − e−cv2(x + 1)
)

xρ

+
(c′)2

x

(
e−cv2(x + 1) +

12∆3

(6− c∆)3

)
− 3∆2 (c′)2

(6− c∆)2 . (63)

To define the slow-roll parameters, we introduce the canonically normalised inflaton field χ

defined through χ′ := dχ
dρ =

√
2gΦ̄+Φ+

. It can be written in terms of c as

χ′ = κ

√(
c′

2ρ
+

c′′

2

)
d
dc
Keff(c) +

(c′)2

2ρ

d2

dc2Keff(c). (64)

The slow-roll parameters ε and η can be written in terms of c as

ε =
1

2κ2

(
dV/dχ

V

)2
=

1
2κ2

(
dV/dc
V

c′

χ′

)2

, (65)

η =
1
κ2

d2V/dχ2

V ,

=
1
κ2

(
d2V/dc2

V

(
c′

χ′

)2

+
dV/dc
V

c′′

χ′
− dV/dc

V
dχ′/dc

χ′

(
c′

χ′

)2
)

. (66)

The number of e-folds N during inflation period can be obtained by

N =
∫ χend

χ∗

V
∂χV

dχ =
∫ ρend

ρ∗

V
∂ρV

(χ′)2dρ =
∫ c∗

cend

V
∂cV

(
χ′

c′

)2

dc, (67)
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where |η(cend)| = 1 and c∗ is the value of c at the horizon exit. In the following, we will compare
our theoretical predictions to the CMB observational data. The amplitude of density fluctuations As,
the spectral index ns and the tensor-to-scalar ratio r can be written in terms of the slow-roll parameters:

As =
κ4V∗

24π2ε∗
, (68)

ns = 1 + 2η∗ − 6ε∗ ' 1 + 2η∗, (69)

r = 16ε∗, (70)

evaluated at the horizon exit.
Let us consider for example

v = 1.86945, x = 0.08435, y = 4.07, m = 3.77× 10−8. (71)

The scalar potential for this set of parameters is plotted in Figure 2a,b as a function of c and ρ

respectively. Figure 2c shows the relation between c and ρ coordinates where the physical domain is
c < 0. We also plot the slow-roll parameters in ρ coordinates in Figure 2d.

(a) (b)

(c) (d)
Figure 2. The scalar potential in Region III of Figure 1 is plotted as a function of the coordinate c in (a)
and ρ in (b) with parameters (71) . The inflaton ρ as a function of c is shown in (c). Finally (d) shows
the slow-roll parameters ε and η.

As it was shown in [26], we can choose the initial condition c∗ = −0.00017 and cend = −0.01192
(or equivalently, by using (58), ρ∗ = 0.0225 and ρend = 0.1869) to obtain N = 59.48, ns = 0.9597,
r = 4.15× 10−6 and As = 2.2× 10−9, which are within the 2σ-region of Planck’18 data [28].
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Note that the constraint (24) gives us q− ≈ 31.5413. From (28)–(30), we can show that the mass
ratios indeed satisfy the integrating out condition,

m2
Aµ

VUV
ϕ∗+ϕ+

∣∣∣∣∣∣
vac

≈ 38.2253,
VUV

ϕ∗−ϕ−

VUV
ϕ∗+ϕ+

∣∣∣∣∣∣
vac

≈ 21.9463,
VUV

ϕ∗−ϕ∗−

VUV
ϕ∗+ϕ+

∣∣∣∣∣∣
vac

≈ 9.8853. (72)

4. Fayet-Iliopoulos (Fi) D-Terms in Supergravity

In this section, we follow the notation in [25]. The chiral weight w′ in this section is related to the
chiral weight w̃ of the previous section by w̃ = 2

3 w′.

4.1. Review

In [12] (see also in [29]), a new (constant) FI term was proposed of the form LFI = ξ2 D+ fermions,
that can be coupled to supergravity without gauging the R-symmetry. It is non-singular when
the D-auxiliary filed has a non vanishing vacuum expectation value (VEV), and the corresponding
supergravity Lagrangian is:

LFI = ξ2

[
S0S̄0

w2w̄2

T̄(w2)T(w̄2)
(V)D

]
D

, (73)

where ξ2 is a constant parameter. In the superconformal formalism, the chiral compensator field
S0, with Weyl and chiral weights (δ, w′) = (1, 1), has components S0 = (s0, PLΩ0, F0). The vector
multiplet has weights (0, 0), and its components are given by V =

(
v, ζ,H, vµ, λ, D

)
. We will use the

Wess-Zumino gauge in which the first components v = ζ = H = 0. The multiplet w2 is of weights
(1, 1), and given by

w2 =
λ̄PLλ

S2
0

, w̄2 =
λPRλ̄

S̄2
0

. (74)

The components of λ̄PLλ can be written as

λ̄PLλ =
(

λ̄PLλ ;
√

2PL
(
− 1

2
γ · F̂ + iD

)
λ ; 2λ̄PL /Dλ + F̂− · F̂− − D2

)
. (75)

The corresponding kinetic terms in supergravity Lagrangian for the gauge multiplet are

Lkin = −1
4
[
λ̄PLλ

]
F + h.c. . (76)

The operator T (T̄) in (73) is defined in [30,31], and can be used to define a chiral (antichiral) multiplet.
For example, the chiral multiplet T(w̄2) has weights (2, 2). In global supersymmetry, this corresponds
to the usual chiral projection operator D̄2. Note that we will drop the notation of h.c. and implicitly
assume its presence for every [ ]F term in the Lagrangian. Finally, the multiplet (V)D is a (2, 0) linear
multiplet. Its components are given by

(V)D =
(

D, /Dλ, 0,Db F̂ab,−/D/Dλ,−�CD
)

. (77)
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The component /Dλ and the covariant field strength F̂ab are defined in Equation (17.1) of [25]. In our
case, they can be written as

F̂ab = e µ
a e ν

b

(
2∂[µ Aν] + ψ̄[µγν]λ

)
Dµλ =

(
∂µ −

3
2

bµ +
1
4

wab
µ γab −

3
2

iγ∗Aµ

)
λ−

(
1
4

γab F̂ab +
1
2

iγ∗D
)

ψµ. (78)

Here e µ
a is the vierbein, with frame indices a, b and coordinate indices µ, ν. The gauge fields wab

µ ,
bµ, and Aµ correspond to Lorentz transformations, dilatations, and TR symmetry of the conformal
algebra respectively, while ψµ denotes the gravitino. We define the conformal d’Alembertian by
�C ≡ ηabDaDb.

Let us consider first the case of pure supergravity coupled to a U(1) gauge multiplet with the FI
term in (73). The supergravity Lagrangian can be written as

L = −3 [S0S̄0]D +
[
S3

0W0

]
F
− 1

4
[
λ̄PLλ

]
F + LFI. (79)

Supersymmetry is broken via a non-vanishing VEV of the D-auxiliary component of the vector
multiplet driven by the linear term in D, with the Goldstino being the U(1) gaugino. After fixing the
compensator S0 = 1, integrating out the auxiliary fields, and choosing the unitary gauge where the
Goldstino vanishes, the Lagarangian in component form is [12]:

e−1L =
1
2
(

R− ψ̄µγµνρDνψρ + m3/2ψ̄µγµνψν

)
− 1

4
FµνFµν −

(
−3m2

3/2 +
1
2

ξ2
2

)
, (80)

with a constant superpotential m3/2 = W0. In the absence of matter, any non-vanishing value of ξ2

uplifts the vacuum energy by a constant term VFI = ξ2
2/2 and supersymetry is broken. It is important

to note that the FI term in Equation (73) breaks the Kähler invariance and does not require the gauging
of an R-symmetry.

Let us now couple the FI-term given by Equation (73) to additional matter fields charged under
the U(1). For simplicity, we focus on a single chiral multiplet X. The Lagrangian is given by

L = −3
[
S0S̄0e−

1
3 K(X,X̄)

]
D
+
[
S3

0W(X)
]

F
− 1

4
[

f (X)λ̄PLλ
]

F + LFI. (81)

Here K(X, X̄), W(X) and f (X) are a Kähler potential, a superpotential and a gauge kinetic function
respectively. The first three terms in Equation (81) are the usual supergravity Lagrangian [25].
Assuming that the multiplet X transforms under the U(1) as

V → V + iΛ− iΛ̄,

X → Xe−iqΛ, (82)

where Λ is a gauge multiplet parameter. In the case we consider, the superpotential does not transform
under the gauge symmetry therefore the U(1) is not an R-symmetry. For a model with a single chiral
multiplet, the superpotential must be constant

W(X) = F. (83)

To ensure gauge invariance of the supergravity action, the Kähler potential must be a function of
XeqV X̄. However, for notational simplicity, in the following we drop the eqV factors.
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Indeed, in this case we can consistently add the FI-term LFI to the theory, similar to [12], and the
resulting D-term potential acquires an extra term proportional to ξ2

VD =
1
2

Re ( f (X))−1
(

ikX∂XK + ξ2e
1
3 K
)2

, (84)

where the Killing vector is kX = −iqX. For a constant superpotential (83), the F-term potential
reduces to

VF = |F|2eK(X,X̄)
(
−3 + gXX̄∂XK∂X̄K

)
. (85)

“From Equation (84) it is easy to see that if the Kähler potential has a term proportional to ξ1 log(XX̄),
the D-term contribution to the scalar potential obtains another constant contribution. For example, if

K(X, X̄) = XX̄ + ξ1 ln(XX̄), (86)

the D-term potential becomes

VD =
1
2

Re ( f (X))−1
(

qXX̄ + qξ1 + ξ2e
1
3 K
)2

. (87)

The term proportional to ξ1 is the usual FI term in a non R-symmetric Kähler frame. It can be
consistently added to the model with the new FI term proportional to ξ2.

In the absence of the extra term, a Kähler transformation

K(X, X̄)→ K(X, X̄) + J(X) + J̄(X̄),

W(X)→W(X)e−J(X), (88)

with J(X) = −ξ1 ln X allows us to recast the model in the form

K(X, X̄) = XX̄,

W(X) = m3/2X, (89)

where m3/2 = F. The two models result in the same Lagrangian, at least classically (At the quantum
level, a Kähler transformation also introduces a change in the gauge kinetic function f , see for
example [24]). However, in the Kähler frame of Equation (89) the superpotential transforms nontrivially
under the gauge symmetry. As a consequence, the gauge symmetry becomes an R-symmetry.

Note that the extra term (73) violates the Kähler invariance of the theory, and the two models
related by a Kähler transformation are no longer equivalent. The model written in the Kähler frame
where the gauge symmetry becomes an R-symmetry in Equation (89) can not be consistently coupled
to LFI. A generalized Kähler invariant FI term has been built in [32,33]” [17].

4.2. The Scalar Potential in a Non R-Symmetry Frame

In this section, we work in the Kähler frame where the superpotential does not transform, and
take into account the two types of FI terms which were discussed in the last section. For convenience,
we repeat here the Kähler potential in Equation (86) and restore the inverse reduced Planck mass
κ = M−1

Pl = (2.4× 1018 GeV)−1:
K = κ−2(XX̄ + ξ1 ln XX̄). (90)

The superpotential and the gauge kinetic function are set to be constant (In order to cancel the chiral
anomalies [4], the gauge kinetic function gets a field-dependent correction ∝ q2 ln ρ. However, the
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correction turns out to be very small and can be neglected below, since q is chosen to be of order of
10−5 or smaller) :

W = κ−3F, f (X) = 1. (91)

After performing a change of the field variable X = ρeiθ where ρ ≥ 0 and setting ξ1 = b, the full scalar
potential V = VF + VD is a function of ρ. The F-term contribution to the scalar potential is given by

VF =
1
κ4 F2eρ2

ρ2b

[(
b + ρ2)2

ρ2 − 3

]
, (92)

and the D-term contribution is

VD =
q2

2κ4

(
b + ρ2 + ξρ

2b
3 e

1
3 ρ2
)2

. (93)

Note that we rescaled the second FI parameter by ξ = ξ2/q. We are interested in the role of the new
FI-term in inflationary models driven by supersymmetry breaking.

For F = 0, one finds that for ξ < −1 and b = 3 the potential has a maximum at the origin,
and a supersymmetric minimum. Since we set the superpotential to zero, the SUSY breaking is
measured by the D-term order parameter, i.e. the Killing potential associated with the gauged U(1),
which is given by

D = iκ−2−iqX
W

(
∂W
∂X

+ κ2 ∂K
∂X

W
)
+ κ−2qξρ2eρ2/3. (94)

“This enters the scalar potential as VD = D2/2. So, at the local maximum and during inflation D is of
order q and supersymmetry is broken. On the other hand, at the global minimum, supersymmetry
is preserved and the potential vanishes. Strictly speaking, the supersymetric minimum is not valid
because the new FI term becomes singular since the D-auxiliary vanishes. Therefore a small F is
required in any case” [17].

For F 6= 0, the potential has still a local maximum at ρ = 0 for b = 3 and ξ < −1. For this choice,
the derivatives of the potential have the following properties,

V ′(0) = 0, V ′′(0) = 6κ−4q2(ξ + 1). (95)

For ξ < −1, the extremum is a local maximum, as desired.
Let us comment on the global minimum after turning on the F-term contribution. As long as

F2/q2 � 1, the change in the global minimum ρv is very small, of order O(F2/q2), The plot of this
change is shown in Figure 3.

Let us comment on super symmetry breaking in the present case F 6= 0, the order parameters are
both the Killing potential D and the F-term contribution FX , which read

D ∝ q[3 + ρ2(1 + ξeρ2/3)], FX ∝ Fρ2(3 + ρ2)eρ2/2, (96)

where the F-term order parameter FX is defined by

FX = − 1√
2

eκ2K/2
(

∂2K
∂X∂X̄

)−1/2(
∂W̄
∂X̄

+ κ2 ∂K
∂X̄

W̄
)

. (97)

Therefore, near the local maximum, FX/D ∼ F
q ρ2. On the other hand, at the global minimum, both

D and FX are of the same order i.e. FX/D ∼ F
q , assuming that ρ at the minimum is of order O(1),

which is true in our models below. This makes tuning of the vacuum energy between the F- and
D-contribution in principle possible, along the lines of [4,11].
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Scalar potential

F=0

F≠0

ρ

κ4 Vmin

κ4 Vmax

κ4 V

Figure 3. This plot presents the scalar potentials for F = 0 and F 6= 0 cases. For F = 0, we have a local
maximum at ρmax = 0 and the global minimum has zero cosmological constant. For F 6= 0, the origin
ρ = 0 is still the maximum but the global minimum now has a positive cosmological constant.

“Let us consider the case b = 0 where only the new FI parameter ξ contributes to the potential.
In this case, the condition for the local maximum of the scalar potential at ρ = 0 can be satisfied
for −3 < ξ < 0. In the case where F is set to zero, the scalar potential (93) has a minimum at
ρ2

min = 3 ln
(
− 3

ξ

)
. In order to have Vmin = 0, we can choose ξ = − 3

e . However, we find that this
choice of parameter ξ does not allow slow-roll inflation near the maximum of the scalar potential.
Similar to our previous models [4] it may be possible to achieve both the scalar potential satisfying
slow-roll conditions and a small cosmological constant at the minimum by adding correction terms to
the Kähler potential and turning on a parameter F. However, here we will focus on b = 3 case where,
as we will see shortly, less parameters are required to satisfy the observational constraints” [17].

4.3. Example for Slow-Roll D-Term Inflation

“In this section we focus on the b = 3 case and assume that the scalar potential is D-term
dominated by choosing F = 0. The model has only two free parameters, namely q and ξ. The first
parameter controls the overall scale of the potential and it will be fixed by the amplitude As of the CMB
data. The only free parameter left over is the second parameter ξ. We derive the condition that leads to
slow-roll inflation scenarios, where the start of inflation (or, horizon crossing) is near the maximum of
the potential at ρ = 0” [17].

To calculate the slow-roll parameters, we need to introduce the canonically normalised field χ

defined by

dχ/dρ =
√

2gXX̄ . (98)

The slow-roll parameters can be written in terms of the canonical field χ as

ε =
1

2κ2

(
dV/dχ

V

)2
, η =

1
κ2

d2V/dχ2

V
. (99)

Since we assume inflation to start near the origin ρ = 0, the expansion of slow-roll parameters for
small ρ can be expressed as

ε =
4
9
(ξ + 1)2ρ2 +O(ρ3),

η =
2(1 + ξ)

3
+O(ρ2). (100)
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Note also that η is negative when ξ < −1. We can therefore tune the parameter ξ to avoid the η-problem.
The observation is that at ξ = −1, the effective charge of X vanishes and thus the ρ-dependence in the
D-term contribution (93) becomes of quartic order.

“Note that we obtain the same relation between ε and η as in the model of inflation from
supersymmetry breaking driven by an F-term from a linear superpotential and b = 1 (see
Equation (14)) [4]. Thus, there is a possibility to have flat plateau near the maximum that satisfies the
slow-roll condition and at the same time a small cosmological constant at the minimum nearby” [17].

The number of e-folds N during inflation is determined by

N = κ2
∫ χend

χ∗

V
∂χV

dχ = κ2
∫ ρend

ρ∗

V
∂ρV

(
dχ

dρ

)2
dρ, (101)

where we choose |ε(χend)| = 1. Notice that the slow-roll parameters for small ρ2 satisfy the simple
relation ε = η(0)2ρ2 + O(ρ4) by Equation (100). Therefore, the number of e-folds between ρ = ρ1 and
ρ2 (ρ1 < ρ2) takes the following simple approximate form as in [4],

N ' 1
|η(0)| ln

(
ρ2

ρ1

)
=

3
2|ξ + 1| ln

(
ρ2

ρ1

)
. (102)

as long as the expansions in (100) are valid in the region ρ1 ≤ ρ ≤ ρ2. Note that we used the
approximation η(0) ' η∗, which holds in this case.

“We are now comparing the theoretical predictions of this model to the observational data via
the power spectrum of scalar perturbations of the CMB such as the amplitude As, tilt ns and the
tensor-to-scalar ratio r. From the relation of the spectral index above, one should have η∗ ' −0.02,
and thus Equation (102) gives approximately the desired number of e-folds when the logarithm is of
order one. Actually, using this formula, we can estimate the upper bound of the tensor-to-scalar ratio r
and the Hubble scale H∗ following the same argument given in [4]; the upper bounds are given by
computing the parameters r, H∗ assuming that the expansions (100) hold until the end of inflation.
We then get the bound

r . 16(|η∗|ρende−|η∗ |N)2 ' 10−4, H∗ . 1012 GeV, (103)

where we used η∗ = −0.02, N ' 50 − 60 and ρend . 0.5, which are consistent with our models” [17].

4.4. A Small Field Inflation Model from Supergravity with Observable Tensor-to-Scalar Ratio

“Supergravity models with higher r are of particular interest. In this section we show that our
model can get large r at the price of introducing some additional terms in the Kähler potential. Let us
consider the previous model with additional quadratic and cubic terms in XX̄:” [17].

K = κ−2(XX̄ + A(XX̄)2 + B(XX̄)3 + b ln XX̄
)
, (104)

while the superpotential and the gauge kinetic function remain as in Equation (91). We assume that
inflation is driven by the D-term by setting the parameter F = 0. The scalar potential in terms of the
field variable ρ can be written as:

V = q2
(

b + ρ2 + 2Aρ4 + 3Bρ6 + ξρ
2b
3 e

1
3 (Aρ4+Bρ6+ρ2)

)2
. (105)

We now have two additional parameters A and B. These parameters do not affect our previous
discussions on the choices of the parameter b because they appear in higher orders in ρ in the scalar
potential. Therefore, we can continue with the b = 3 case. The Formula (102) for the number of e-folds
also holds for small ρ2 even when A, B are not zero because the new parameters appear at order ρ4 and
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higher. However these two parameters can increase the value of the tensor-to-scalar ratio r. To obtain
r ≈ 0.01, we can choose for example

q = 8.68× 10−6, ξ = −1.101, A = 0.176, B = 0.091. (106)

By choosing the initial condition ρ∗ = 0.445 and ρend = 1.155, we get the results N = 58, ns = 0.96,
r = 0.01 and As = 2.2× 10−9 , which agree with Planck’15 data as shown in Figure 4.

Figure 4. A plot of the predictions for the scalar potential with F = 0, b = 3, A = 0.176, B = 0.091,
ξ = −1.101 and q = 8.68× 10−6 in the ns - r plane, versus Planck’15 results.

Note that an application of the new FI term in no-scale supergravity model for inflation can be
found for example in [33,34].

5. Conclusions

In summary, in this review we discussed the possibility that inflation is driven by supersymmetry
breaking with the scalar component of the goldstino superfield playing the role of the inflaton.
Imposing a gauged R-symmetry allows to satisfy easily the slow-roll conditions, leading to
an interesting class of small field inflation models, characterised by an inflationary plateau around
the maximum of the scalar potential near the origin, where R-symmetry is restored with the inflaton
rolling down to a minimum with an infinitesimal tuneable positive vacuum energy. Inflation can be
driven by either an F- or a new FI D-term. The corresponding effective field theory can be derived by
a microscopic model based on a generalised Fayet-Iliopoulos model of a U(1) R-symmetry coupled to
supergravity. Going to the Higgs phase in the limit of small supersymmetry breaking scale compared
to the U(1) mass, the massive vector multiplet can be integrated out leading to an effective field theory
for the goldstino chiral multiplet characterised by a linear superpotential and an effective Kähler
potential. By implementing the theory with an additional gauged U(1) R-symmetry that remains
spectator (and unbroken) we were able to provide a microscopic model of inflation by supersymmetry
breaking. The above models are in agreement with cosmological observations and in the simplest case
predict a rather small tensor-to-scalar ratio of primordial perturbations.
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