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Abstract In a previous work, a multi-scale model has been developed in order
to investigate the impact of cation exchange and surface complexation on the
hydraulic conductivity of two contrasted compacted bentonites. Hydraulic con-
ductivity variations during the percolation of a lead nitrate solution have been
simulated using occluded and connected inter-aggregate void configurations. For
both clays, the results have displayed the strong connection between permeability
increase and textural and structural evolutions at different scales during the pro-
cess of pollutant leaching.
The present developments deal with the modelling of pollutant transport through
compacted bentonite, by accounting for advective transport, molecular diffusion
within the nanoscale interlayer pores and the inter-aggregate macro-voids, as well
as pollutant fixation on the smectite layers’ surface. The evolution of the different
porous spaces is modelled on the basis of an extensive structural investigation of
the solid phase conducted at the nanometer and micrometer scales. The multi-
scale impact of ionic exchange by heavy metal on macroscopic pollutant transport
is expressed through upscaling at the different scales of organization within the
compacted clay. We compare the respective contributions of hydraulic conductiv-
ity, effective diffusion and pollutant uptake to the overall pollutant transport dur-
ing progressive reduction of the interlamellar space associated with clay aggregate
splitting and the development of inter-aggregate pores. Lead nitrate percolation
tests are simulated for a reference bentonite and a natural magnesian bentonite.
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1 Introduction

Expansive compacted bentonites have been extensively investigated for use in the
isolation of household disposal sites or in the containment of high-level radioac-
tive waste in geological formations (Appelo et al. (2008); Baeyens and Bradbury
(1997a); Boving and Grathwohl (2001); Choi and Oscarson (1996); Eriksen et al.
(1999); Glaus et al. (2007); Ichikawa et al. (2004); Madsen (1998); Pusch (1996,
1999); Sato and Suzuki (2003); Sato (2005); Suzuki et al. (2004)). Recent exper-
imental studies have been dedicated to the intrinsic role played by heavy metal
retention in hydraulic conductivity variations (Jozja (2003); Jozja et al. (2003,
2006); Souli et al. (2008)), with measured saturated hydraulic conductivities rang-
ing from 10−11-10−12 m · s−1 before pollutant leaching to 10−10-10−11 m · s−1

after pollutant uptake. The previous values correspond to moderate compaction
states, with vertical compaction stresses around 0.2-0.5 MPa and dry densities
between 0.5 and 1.5 g · cm3, and are comparable with hydraulic conductivity
measurements performed on Montigel bentonite and Wyoming bentonite in Pusch
(1996).

Compared to advection, molecular diffusion through the clay pore space is
generally considered to play a dominant role in the performance of highly com-
pacted barriers (Boving and Grathwohl (2001); Choi and Oscarson (1996); Madsen
(1998); Ochs et al. (2001)), and numerous measurements of the diffusion of various
cations and water tracers in water-saturated bentonites have resulted in apparent
diffusion coefficients ranging from 10−9 m2 · s−1 to 10−15 m2 · s−1 depending on
the compaction state, the microstructural arrangement of pore space, the diffusing
species, the nature of the exchangeable cation, pore water ionic strength and tem-
perature (Appelo et al. (2008); Choi and Oscarson (1996); Eriksen et al. (1999);
Glaus et al. (2007); Kozaki et al. (1998, 2005); Madsen (1998); Molera and Eriksen
(2002); Ochs et al. (2001); Sato and Suzuki (2003); Suzuki et al. (2004)).

In compacted water-saturated smectites, very thin interlayer nanopores located
between the basal surfaces of stacked montmorillonite lamellae represent system-
atically more than half of the pore space (Choi and Oscarson (1996); Kozaki et
al. (2001a); Jozja (2003)). They constitute the main domain of cation adsorp-
tion, and diffusion of species adsorbed in the interlayer takes place according to a
diffuse-layer mechanism. In contrast, large micrometric pores are also encountered
between clay aggregates and/or between other grains of minerals present within
the clay material, where transport by diffusion and advection is unaffected by the
surface.

Experimental investigations have displayed structural effects induced by heavy
metal percolation through water-saturated compacted bentonites (Jozja et al.
(2003); Souli et al. (2008)). Those effects appear at both the nanometer scale (re-
duction of particle size) and micrometer scale (micro-cracking of aggregates, fabric
anisotropy), and are directly related with pore space modifications (interlamellar
spacing reduction, progressive opening of macropores).

From the previous review, it appears that a realistic model of contaminant
transport in compacted bentonite should be able to express that diffusion and
advection take place differently in nanopores and macropores owing to surface ef-
fects, and to account for the continuous evolution of the microstructure and pore
space during pollutant fixation.
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Multiphase reactive flow in ordered or disordered porous media can be ad-
dressed through the method of volume averaging presented in Quintard andWhitaker
(1993). Starting from the local transport equations, weighting functions (that de-
pend on the medium considered) are employed to obtain a generalized averag-
ing procedure that leads to spatially smoothed transport equations and a closure
problem that allows to obtain the effective transport properties on the basis of a
geometrical model of the porous medium.

Among the models of reactive transport in porous media, we may mention the
method of random-walk propagation of particles (Delay et al. (1993, 1996)). Mass
transfer in adsorbing media is simulated by dissociating the roles of advection,
dispersion, and the exchange occurring between the mobile and immobile phases.
The lengths of the particles’ jumps are determined first by the advective velocity
and then by a random draw for each particle The fitted model parameters, such as
the dispersivity or the exchange rate, have a meaning which is closer to their phys-
ical reality than that defined by macroscopic models. The model is also capable
of modeling solute transport in dual-porosity media, composed of an intergranu-
lar or fracture porosity through which mobile water flows and a water-saturated
matrix porosity with immobile water which can exchange solute with the mobile
phase. Such models require generally a large number of particles to lead to stable
solutions, and although they have been validated using analytical solutions, they
may not be completely adapted to simulate practical situations of groundwater
contamination or pollutant percolation experiments in the laboratory.

More specifically, during design of landfill sites, macroscopic phenomenological
models (Borgesson et al. (2001); Jullien et al. (2002)) are generally employed in
order to predict fluid flow and pollutant transport in the porous medium, and
macroscopic Darcy’s permeability is supposed to express microstructure effects on
the resistance to flow. Such models are not completely satisfactory because they
cannot reflect the real physical and chemical behaviour involved at the atomic and
microscopic scales, which control transport phenomena in clays. Diffusive transport
in compacted clays is generally described by a simple Fickian diffusion, with an
empirical relationship between the effective diffusion coefficient and the diffusion-
accessible porosity, or alternatively the effective diffusion coefficient is related to
the solute’s tracer diffusion coefficient in free water by using a correction based
on a variable tortuosity coefficient (Appelo et al. (2008); Boving and Grathwohl
(2001); Choi and Oscarson (1996)). In order to improve the prediction of some
cation diffusion experiments, the contributions of free and sorbed cations are dis-
tinguished by the introduction of a linear sorption or distribution coefficient Kd
and a surface diffusion coefficient Ds (Choi and Oscarson (1996); Eriksen et al.
(1999); Molera and Eriksen (2002); Ochs et al. (2001)). Inter-aggregate and inter-
layer porosity are not modelled separately, and the presence of several adjustable
parameters limits the predictive capability of this type of model.

Ichikawa et al. (1999, 2004) have developed a multiscale homogenization method,
combining Molecular Dynamics to identify the local diffusivity and viscosity near
the montmorillonite basal surfaces, and periodic homogenization to derive the ho-
mogenized diffusion and permeability coefficients for a non-sorbing solute. The ef-
fective diffusion and permeability coefficients are computed using a one-dimensional
arrangement of water and lamellae which does not account for geometrical tortuos-
ity in pore space, and does not distinguish between interlayer and external water.
The computed longitudinal coefficient is then divided by three to obtain the macro-
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scopic diffusion coefficient which is assumed to be isotropic, and the resulting value
is applied to simulate the transport of tritium in a buffer of high level radioactive
waste.

(Baltean (1999); Baltean et al. (2003)) have employed a periodic homogeniza-
tion approach with dual-scale microstructures to model the advective-diffusive
transport of a passive solute through a non-evolving microstructure. The macro-
scopic model is obtained using the homogenization method for periodic structures
with a double scale asymptotic expansion (Sanchez-Palencia (1980)). Numerical
computation is performed using a finite element method for several geometries of
the solid inclusions in two- and three-dimensions.

In conclusion, if we try to assess the hydro-mechanical behaviour of natural
clays in presence of pollutants such as heavy metal ions, it appears that hydraulic
conductivity and diffusivity evolutions are not usually connected with microfabric
changes that can be derived from a multi-scale study. The bibliographical review
motivates the need for further modelling of contaminant transport and uptake
through compacted bentonites by accounting explicitly for their dual scale mi-
crostructure together with the evolution of the pore space distribution between
nanopores and micropores.

Following a previous study on hydraulic conductivity variations during lead
nitrate percolation through two compacted magnesian bentonites (Bouchelaghem
and Jozja (2009a,b)), we propose a model of contaminant uptake and transport
based on the homogenization method for locally periodic structures. As a result
of the organization of free water within the pore space during pollutant leaching,
three levels of description are considered during the model derivation : the mi-
croscopic level is the scale of stacked montmorillonite lamellae and the nanopore
fluid whose physical properties (viscosity, pore-scale diffusion coefficient) are af-
fected by the pore walls; the mesoscopic level relates to clay aggregates, mineral
grains and inter-aggregate fluid which is not affected by the surface; the macro-
scopic level corresponds to the sample subjected to pollutant leaching tests in the
laboratory. Advective transport, diffusion and pollutant fixation are taken into ac-
count within micropores (interlamellar and interparticle porosity), while in inter-
aggregate macropores we consider only advection and diffusion. Ionic exchange will
result in a ’multi-scale’ modification of the microstructure. The homogenization
model does not require any fitting parameter, the only strong assumption being
the quasi-periodicity of the underlying microstructures.

The expressions for the effective diffusion tensors and the effective hydraulic
tensors have been derived through upscaling at both the mesoscopic scale and
the macroscopic scale. In particular, we have considered several configurations
for void space organization, as the inter-aggregate macropores may develop to
form a connected network or remain occluded, or may be negligible in highly com-
pacted samples. The resulting numerical systems are solved using two-dimensional
(at the mesoscopic scale) and three-dimensional (at the macroscopic scale) mi-
crostructures. Diffusion calculations have been compared with existing diffusivity
measurements performed on pure smectites and natural bentonites. Finally, the
transport model has been applied to a well-characterized reference montmoril-
lonite and a natural magnesian bentonite intended for use in a landfill site. For
both clays, hydraulic conductivity variations and effluent pollutant concentration
have been monitored during lead nitrate percolation through an oedometer cell.
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Fig. 1 Multi-scale schematic representation of bentonite: Mesoscopic cell Ω and Microscopic
cell Ωmicro

The confrontation between simulation and experimental breakthrough curves en-
ables in particular to assess the relative contributions of diffusion and advection
to pollutant transport.

2 Microstructure description

Based on physico-chemical investigation of bentonite samples continuously com-
pacted in a dry state prior to water saturation (Jozja (2003); Jozja et al. (2003);
Kozaki et al. (1998, 2001a); Pusch (1999); Souli et al. (2008)), the schematic de-
scription of the compacted bentonite microstructure is illustrated in Fig. 1. The
representative volume element (RVE) is composed of solid mineral grains Ωs and
inter-aggregate voids Ωv (which may form a connected network or be occluded)
that are assumed to be distributed with local periodicity within a connected porous
matrix Ωc comprising clay lamellae (stacked in a quasi-parallel way) and water-
saturated nanopores.

As both nanopores and macropores evolve during pollutant fixation, the trans-
port problem is locally periodical. We consider a dual porosity network, nanopores
are separated by a distance of order ε′L (ε′ = lc

l ), and larger pores are dis-

tributed at a distance of order εL (ε = l
L ), with L the characteristic length of

the macrostructure. We assume that ε′ ≪ ε≪ 1, which expresses the condition of
separation of scales.
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3 Transport description in the nanopores

The contaminant concentration c verifies the advection-diffusion equation (Bear
and Bachmat (1998)):

∂c

∂t
+∇ · (vc)−∇ · (D∇c) = 0 in Ωcf (1)

where v is the local fluid velocity vector, and D designates the scalar diffu-
sion coefficient of the pollutant in the inter-lamellar and inter-particle pore space
Ωcf . Owing to the particular behaviour of adsorbed water molecules (Kemper et
al. (1964)), D is taken to vary locally according to the viscosity distribution near
basal surfaces identified in Ichikawa et al. (2004) using Molecular Dynamics sim-
ulation.

Recent studies (Baeyens and Bradbury (1997a, 1999b); Kraepiel et al. (1999))
on the various sites and mechanisms that contribute to the total sorption onto
smectites have clarified the separation between interlayer adsorption (dependent
on ionic strength and linear, attributed to cation exchange on the permanent
charge sites) and edge adsorption (essentially pH-dependent and non linear, re-
sulting from surface complexation reactions). Consequently, pollutant uptake on
the montmorillonite basal surface Γsf within nanopores is expressed by the fol-
lowing condition:

n · (D∇c) = αc ⟨csat − c⟩+ on Γsf (2)

Pollutant uptake by surface complexation on the montmorillonite edge sites
Γedge is expressed using a Langmuir type equation, which has proved adequate
to describe adsorption data of heavy metal on bentonites (Brigatti et al. (1995);
Viraraghavan and Kapoor (1994)):

n · (D∇c) = αedgec
1

1 + γc
⟨csat − c⟩+ on Γedge (3)

where Γedge represents the adsorption sites located on the edges of smectite
minerals.

In Eqs. (2) and (3), ⟨ ⟩ designates Mackaulay brackets:

⟨csat − c⟩+ = csat − c, if csat − c > 0
⟨csat − c⟩+ = 0, if csat − c ≤ 0

(4)

csat is the upper limit for the pollutant concentration value, expressing that clay
retention capacity is physically limited by the amount of available sites (Baeyens
and Bradbury (1997a)). The pollutant uptake rates α and αedge are not constant.
They depend on the amount of interlamellar and border sites and their respective
capacities (Baeyens and Bradbury (1997a, 1999b)), as well as on the solute/clay
ratio and compaction state since sorbates cannot access all sorption sites on com-
pacted clays (Choi and Oscarson (1996)). In the Langmuir-type reaction boundary
condition Eq. (3), γ can be interpreted as an equilibrium constant.
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4 Mesoscopic model

4.1 Mesoscopic transport equation in the clay matrix

Upscaling is performed from the microscopic scale of inter-lamellar and inter-
particle spaces to the mesoscopic scale of clay aggregates.

Dimensionless quantities, labelled as ()′, are introduced in order to obtain the
orders of magnitude of the different terms in Eqs. (1), (2) and (3):

v′ =
v

v0
, c′ =

c

cc
, x′ =

x

l
, t′ =

t

Tc
, D′ =

D

Dc
, α′ =

α

αc
, (αedge)

′ =
αedge

(αedge)c
(5)

We take l = 10−5 m as the representative length of the mesoscale mineral
grains and clay aggregates. v0 designates the characteristic velocity for fluid flow,
and from a previous investigation of fluid flow in compacted bentonite we have

(Bouchelaghem and Jozja (2009a)): v0 = O(( lcl )
2) = (10

−8

l0−5 )
2 = O(10−6). Tc = l

v0
represents the characteristic time. Based on diffusivity measurements in water-
saturated compacted bentonites (Glaus et al. (2007); Kozaki et al. (2010); Sato
(2005)), we take Dc = O(10−11).

Based on the previous estimations, we obtain the following order of magnitude
for the intermediate Peclet number at the mesoscopic scale:

Pel =
lv0
Dc

=
10−510−6

10−11
= O(1) (6)

i.e. the mesoscale convection and diffusion are of the same order of magnitude,
and we insert Eq. (6) and the dimensionless variables into Eq. (1) in order to
obtain the dimensionless transport equation:

∂c′

∂t′
+∇

′
· (v′c′)−∇

′
·
(
D′∇

′
c′
)
= 0 in Ω′

cf (7)

while Eqs. (2) and (3) result in the following boundary conditions expressing
pollutant uptake by the clay matrix:

n ·
(
D′∇

′
c′
)
=
lαc
Dc

α′c′ on Γ ′
sf (8)

n ·
(
D′∇

′
c′
)
=
l(αedge)c

Dc
(αedge)

′c′ on Γ ′
edge (9)

and we assume:

lαc
Dc

=
l(αedge)c

Dc
= O(

lc
l
) = O(ε

′
) (10)

In order to express the fact that the solute concentration varies rapidly on
the microscale and may also vary slowly on the mesoscale, we assume that c′ =
c′(x′, y′, t′), where y′ = x′

ε′
is the local dimensionless space variable in the mi-

crostructure, and x′ the mesoscopic space variable. The dependency on y′ is Ω′
cf -

periodical, and the solution is written under the form of an asymptotic develop-
ment (Sanchez-Palencia (1980)):
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c′(x′, y′, t′) = c
′(0)(x′, y′, t′) + ε

′
c
′(1)(x′, y′, t′) + (ε

′
)2c

′(2)(x′, y′, t′) + ... (11)

where c
′(i) are Ω′

cf -periodical functions in y
′. With y′ = x′

ε′
, the gradient oper-

ator is expressed in the following way:

(∇)i =
d

dx′i
=

∂

∂x′i
+

1

ε
′
∂

∂y′i
= (∇x′)i +

1

ε
′ (∇y′)i (12)

Equations. (11) and (12) are introduced into Eqs. (7), (8) and (9). By factoriz-

ing the terms corresponding to a given order O((ε
′
)n), n = −2,−1, 0, ..., we obtain

a series of local problems at increasing orders of approximation.

From Eqs. (7), (8) and (9) taken respectively at orders O((ε
′
)−2), O((ε

′
)−1)

and O((ε
′
)−1), we classically obtain that c

′(0) is a mesoscopic quantity which does
not depend on the microscopic variable y′:

c
′(0) = c

′(0)(x′, t′) (13)

The linear problem resulting from Eq. (7) taken at order O((ε
′
)−1) and Eqs. (8)

and (9) taken at order O(1) implies the following property of variable separation

for c
′(1):

c
′(1) =

−→
β (y′) · ∇x′c

′(0)(x′, t′) + c
′1∗(x′, t′) (14)

where c
′1∗(x′, t′) is an arbritrary function of x′ and t′.

The mesoscopic transport equation is derived from Eq. (7) considered at or-

der O((ε
′
)0) = O(1). The resulting transport equation is integrated over Ω′

cf .

By accounting for the boundary conditions Eqs. (8) and (9) at order O(ε
′
), the

Ω′
c-periodicity properties of the velocity and concentration terms, the divergence

theorem, the incompressibility of fluid flow (∇y′ · v′(0) = 0), the adherence con-

dition v
′(0) · n = 0 on Γ ′

sf , Eqs. (13) and (14), we finally obtain after several
developments:

|Ω
′

cf |
|Ω′
c|
∂c′(0)

∂t′
+

1

|Ω′
c|

(∫
Ω

′
cf

v
′(0)dV ′

)
· ∇x′c′(0)

=
1

|Ω′
c|

∫
Ω

′
cf

D′
(
δij +

∂βj
∂y′i

)
dV ′ ∂

2c′(0)

∂x′i∂x
′
j

+ α′c′0
|Γ ′
sf |

|Ω′
c|

+ (αedge)
′c′0

|(Γedge)′|
|Ω′
c|

(15)

Equation (15) is then rewritten using the physical variables, we account for

v0 = O((ε
′
)2) (Bouchelaghem and Jozja (2009a); Sanchez-Palencia (1980)), Tc =

l
v0
, Eq. (10), as well as

|Ω
′
cf |

|Ω′
c|

=
|Ωcf |
|Ωc| ,

|Γ ′
sf |

|Ω′
cf

|
= lc

|Γsf |
|Ωcf | and

|Γ ′
edge|

|Ω′
cf

|
= lc

|Γedge|
|Ωcf | . After

dividing by l
v0

and introducing Eq. (6) into Eq. (15), we obtain the following
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equation describing the concentration evolution at the mesoscopic scale of clay
aggregates (we use Einstein’s summation convention over indices i and j):

πc
∂c̃

∂t
+ ṽ · ∇c̃ = Dij

∂2c̃

∂xi∂xj
+ αc̃ ⟨csat − c̃⟩

|Γsf |
|Ωc|

+ αedgec̃ ⟨csat − c̃⟩
|Γedge|
|Ωc|

(16)

where the volume average f̃ of a quantity f (f = c,v) is defined on the ele-
mentary cell |Ωc| by averaging over the fluid volume Ωcf :

f̃(x, t) =
1

|Ωc|

∫
Ωcf

f(x,y, t)dV (17)

In Eq.(16), πc =
|Ωcf |
|Ωc| represents the clay particles’ porosity, i.e. the volume

of interlamellar and inter-particle pore space per combined volume of montmo-
rillonite and pore space. |Γsf | is the measure of the smectite interlayers’ surface
where cationic exchange takes place, while |Γedge| is the measure of the smectite
egdes’ surface where surface complexation occurs.
ṽ represents the flow velocity at the mesoscopic scale of the saturated clay aggre-
gates, while Dij designate the components of the mesoscopic diffusion tensor and
will be detailed in Sect. 4.2.

The pollutant transport equation (16) is supplemented with the following con-
dition of no adsorption on the mineral grains’ surface:

D∇c̃ · n = 0 on Γcs (18)

4.2 Mesoscopic diffusion and hydraulic conductivity tensors

The components of the mesoscopic effective diffusion tensor Dij (i, j = 1, 2 in two
dimensions, i, j = 1, 2, 3 in three dimensions) introduced in Eq. (16) are defined as
follows:

Dij =
1

|Ωc|

∫
Ωcf

D

(
δij +

∂βj
∂yi

)
dV (19)

The field variables βi (i = 1, 2 in two dimensions, i = 1, 2, 3 in three dimensions)

in Eq. (19) satisfy the system inferred from Eq. (7) at order O((ε
′
)−1) and Eqs. (8)

and (9) at order O(1). As in Bouchelaghem and Jozja (2009a), we assume that the
numerical periods are symmetrical with respect to their median plane, this implies
that the periodicity conditions on the outer boundary of the periodic cell can be
replaced by Neumann and Dirichlet conditions on the boundary of the quarter
of the cell. Consequently, βi is the unique solution of the following local diffusion
problem defined over the quarter of the cell of size length Le (cf. Sect. 6.1):

∇y · (D∇yβi) = 0 in Ωcf

n · ∇yβi = −ni on Γsf ∪ Γedge

n · ∇yβi = 0 on yj = 0 and yj =
Le
2
, j ̸= i (20)

βi = 0 on yi = 0 and yi =
Le
2
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The mesoscopic velocity field ṽ = (ε′)2ṽ0, with v0 the first order approximation
of fluid velocity. By applying the conventional homogenization procedure to Stokes
equations written in the case of variable fluid viscosity µ(y′), we obtain an analog
of Darcy’s law (Bouchelaghem and Jozja (2009a)):

v0 = −ki
∂p0

∂xi

p1 = −pi
∂p0

∂xi
(21)

In Eq. (21), p0 (resp. p1) is the first (resp. second) order approximation of
pore fluid pressure. ki = ki(x,y

′) is the unique solution, in a weak sense, of the
following local problem solved over the quarter of an elementary cell (l = 1, 2):

µ0∆ykl +∇yµ0 · (∇ykl +T ∇ykl) +∇ypl − ei = 0 in Ωcf

∇y · kl = 0 in Ωcf

kl = 0 on Γsf ∪ Γedge

pl = 0, kl · t = 0 on yl = 0,
Le

2

∇ypl · n = 0,kl · ei = 0 on yi = 0,
Le

2
, i ̸= l

∇y(kl) · n = 0 on yi = 0,
Le

2
, i = 1, 2 (22)

where µ0 designates the first order approximation of variable fluid viscosity,
and ei is the unit vector in the direction of axis yi. n represents the unit normal
vector and t is the unit tangent vector on the boundaries of the cell. The volume
averaging k̃l of kl on the elementary cell |Ωc| leads then to the determination of
the hydraulic conductivity at the mesoscopic scale.

4.3 Transport description in the macropores

The contaminant concentration cv within the inter-aggregate macropores verifies
the following advection-diffusion equation:

∂cv
∂t

+∇ · (vvcv)−Dm△cv = 0 in Ωv (23)

where vv is the local fluid velocity field and Dm is the constant diffusion coef-
ficient in the macropores.

The concentration is assumed to be continuous on the interface Γcv between
clay aggregates and macropores:

c̃ = cv on Γcv (24)

The normal velocities are assumed to be continuous on Γcv, as a result the
condition of continuity of mass flux reduces to the continuity of diffusive flux:
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(D∇c̃) · n = Dm∇cv · n on Γcv (25)

The latter condition is completed by the null outflow boundary condition on
Γvs:

Dm∇cv · n = 0 on Γvs (26)

5 Macroscopic transport model

To obtain the macroscopic transport equation and the macroscopic diffusion and
hydraulic conductivity tensors, upscaling is carried out from the mesoscopic scale
to the macroscopic scale for the locally periodical medium comprising clay ag-
gregates, macrovoids and solid inclusions, Fig. 1. Within the porous clay matrix,
pollutant transport is described by the advection-diffusion equation Eq. (16).

Three situations are investigated as the saturated macropores may be occluded,
may form a connected network for contaminant transport, or may be negligible.

5.1 Case with occluded macropores

5.1.1 Macroscopic transport equation

The contaminant transport by advection and diffusion within occluded macropores
Ωv results from what occurs in the surrounding clay matrix. This implies that
convection and diffusion are of the same order of magnitude everywhere, and from
available hydraulic conductivity and diffusion experiments we make the following
assumption for the macroscopic Peclet number :

PeL =
LV0
Dm

= O(1) (27)

with V0 the characteristic velocity at the mesoscopic scale, and L = O(10−2) the
characteristic macroscopic length of the sample in the laboratory. We also define
the characteristic time variable Tc = L

V0
and the characteristic diffusion coefficient

(Dc)
meso = Dm = O(10−9) in both domains Ωc and Ωv at the mesoscale.
By using Eq. (6) and Eq. (10), we make the following assumption concerning

the reaction term:

L

V0

(
αc

|Γsf |
|Ωc|

+ (αedge)c
|Γedge|
|Ωc|

)
=
ε
′

ε
l

(
|Γsf |+ Γedge

)
|Ωc|

v0
V0

= O(1) (28)

which is motivated by the high values of specific surface areas measured in
compacted smectites as well as the estimation of the number of sites available for
cationic exchange and surface complexation.

The asymptotic analysis is performed as in Sect. 4. Using the previous char-
acteristic values, the system of Eqs. (16), (18), (23)-(26) is put into dimensionless
form:
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πc
∂c̃′

∂t′
+ṽ′ ·∇′c̃′ =

1

PeL
D′ ·∇′ (∇′c̃

)
+
L

V0

(
αc|Γsf |+ (αedge)c|Γedge|

)
|Ωc|

α′c̃′ in Ω′
c (29)

∂c′v
∂t′

+∇′ · (v′
vc

′
v)−

1

PeL
D′△′c′v = 0 in Ω′

v (30)

c̃′ = c′v on Γ ′
cv (31)

(
D′∇′c̃′

)
· n = ∇′c′v · n on Γ ′

cv (32)

(
D′∇′c̃′

)
· n = 0 on Γ ′

cs (33)

∇′c′v · n = 0 on Γ ′
vs (34)

The homogenization is performed by looking for the pollutant concentration
c̃′(x′, y′, t′) in the clay matrix and the pollutant concentration c′v(x

′, y′, t′) in the
macropores in the form of a double scale asymptotic expansion similar to Eq.
(11), with ε as the ”small parameter” instead of ε

′
. y′ designates now the local

dimensionless position vector, and x′ represents the macroscopic dimensionless
position vector in the macroscopic cell Ω. By inserting the expression (12) of the
gradient operator into the dimensionless system, we obtain the local problems at
the successive orders of approximation.

At the lowest order, we define the concentration c′(0) in the basic period Ω′ in
the following way:

c′(0)(x′,y′, t′) =

{
c̃
′(0) if y′ ∈ Ω′

c

c
′(0)
v if y′ ∈ Ω′

v

From Eqs. (29) and (30) taken at order O(ε−2), Eq. (31) taken at order O(ε0) =
O(1), and the boundary conditions (32), (33), (34) taken at order O(ε−1), it is
straightforward to deduce that c′0 is a macroscopic quantity:

c′(0) = c′(0)(x′, t′) (35)

At the first order of approximation, we define c′(1):

c′(1)(x′,y′, t′) =

{
c̃
′(1) if y′ ∈ Ω′

c

c
′(1)
v if y′ ∈ Ω′

v

The second system consists in writing Eqs. (29) and (30) at order O(ε−1), the
continuity condition (31) at order O(ε1), and Neumann boundary conditions (32),
(33) and (34) at order O(1), and by accounting for Eq. (35), we infer the following
linear decomposition for c′1:

c′(1)(x′,y′, t′) = ψk(y
′)
∂c′(0)(x′, t′)

∂x′k
+ c′1∗(x′, t′) (36)
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where c′1∗ is an arbitrary function of x′ and t′, and ψk (k = 1, 2, 3) is defined
in Sect. 5.1.2.

The macroscopic transport equation is obtained by considering Eqs. (29) and
(30) at order O(1), the Dirichlet condition (31) at order O(ε2), and the interface
flow boundary conditions Eqs. (32), (33) and (34) at order O(ε). The resulting
transport equations are integrated over their respective domains Ω′

c and Ω′
v by

accounting for conditions (35) and (36), the Ω′-periodicity of the variables, the
divergence theorem, the incompressibility condition ∇y′ ·ṽ′0 = 0 and the adherence
condition ṽ′0 ·n = 0 on the interface Γ ′

cs with solid grains (Bouchelaghem and Jozja
(2009a)). After development, we finally obtain the macroscopic transport equation
expressing the evolution of the pollutant concentration ⟨c⟩ = c0(x′, t′) within the
compacted bentonite:

π
∂⟨c⟩
∂t

+ ⟨V⟩ · ∇⟨c⟩ = Dik
∂2⟨c⟩
∂xi∂xk

+

(
α|Γsf |+ αedge|Γedge|

)
|Ω| ⟨c⟩ ⟨csat − c⟩ (37)

where π = πc|Ωc|+|Ωv|
|Ω| = πc|Ωc|

|Ω| + πv represents the total porosity of the com-

pacted clay, and πv = |Ωv|
|Ω| is the macroporosity. Dik (i, k = 1, 2, 3) represent the

components of the macroscopic diffusion tensor defined in Sect. 5.1.2.
The macroscopic fluid velocity ⟨V⟩ represents the volume average of the local fluid
velocities over the interparticle and aggregate voids’ space:

⟨V⟩ = (ε)2

|Ω| (
∫
Ωc

ṽ0dV +

∫
Ωv

v0
vdV ) (38)

and is obtained from the macroscopic conductivity tensor defined in Sect. 5.1.2.

5.1.2 Macroscopic diffusion and hydraulic conductivity tensors

The asymptotic analysis has resulted in the introduction of the macroscopic dif-
fusion tensor Dik during the derivation of the macroscopic transport Eq. (37):

Dik =
1

|Ω|

∫
Ωcf∪Ωv

aij

(
δjk +

∂ψk
∂yj

)
dV (39)

where aij represents the local diffusion tensor at the mesoscopic scale: aij =
Dij in Ωcf , aij = Dmδij in Ωv (i, j = 1, 2, 3).

The Ω-periodical coefficients ψk(y
′) (k = 1, 2, 3) verify the local problem con-

sisting in Eqs. (29) and (30) at order O(ε−1), the continuity condition (31) at
order O(ε1), and Neumann boundary conditions (32), (33) and (34) at order
O(ε0) = O(1). The symmetries of the RVE employed allow to replace the con-
ditions of periodicity with Neumann and Dirichlet boundary conditions, and the
following system is solved for ψk over the eighth of a three-dimensional elementary
cell (of side length Lm):

∂

∂y′i

(
aij

∂ψk
∂yj

)
= 0 in Ωc ∪Ωv
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niaij

∂ψk
∂yj

]]
= − [[niaik]] on Γcv

[[ψk]] = 0 on Γcv

niaij
∂ψk
∂yj

= −niaik on Γcs (40)

nj
∂ψk
∂yj

= −nk on Γvs

n · ∇y′ψk = 0 on yi = 0 and yi =
Lm
2

, i ̸= k

ψk = 0 on yk = 0 and yk =
Lm
2

where we use the notation [[f ]] to designate the discontinuity of any function f
which takes different values f|∂Ωc∩Γcv

and f|∂Ωv∩Γcf
on either side of Γcv: [[f ]] =

f|∂Ωc∩Γcv
− f|∂Ωv∩Γcv

.
In the case of non connected macropores, we have derived in Bouchelaghem

and Jozja (2009a) the following expression for the macroscopic velocity at the first
order of approximation, that defines the effective hydraulic conductivity tensor
Kncv:

⟨V⟩ = −Kncv∇xp0

Kncv
ij =

1

|Ω|

∫
Ωc

Kkl
∂

yk
(yi +Πi)

∂

yl
(yj +Πj)dV (41)

The following local problem is solved for Πk (k = 1, 2, 3) on the eighth of the
elementary cell :

∂

∂yi
(Kij

∂Πk
∂yj

) = −∂Kik
∂yi

in Ωc

Πk = −yk on Γcv

Kij
∂Πk
∂yj

ni = −Kikni on Γcs

Πk = 0 on yk = 0,
Lm
2

∂Πk
∂yj

nj = 0 on yi = 0,
Lm
2
, i ̸= k (42)

Knowing Πk, we deduce the hydraulic conductivity tensor Kncv from a simple
volume averaging procedure using Eq. (41).

5.2 Connected macropores

In this situation the macropores Ωv form a connected network for pollutant trans-
port, and the difference with the occluded case originates from the fact that solute
transport in the macropores is no longer a consequence of transport within the
porous clay matrix. As observed in Bouchelaghem and Jozja (2009a), fluid flow is
much slower within the clay matrix than within the porous cavities. We still verify
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PeL = O(1) for the macroscopic Peclet number, which implies at the macroscopic
scale that convection within Ωv and diffusion within Ωv and Ωc are of the same
order of magnitude. This entails that advection can be neglected, and contaminant
transport takes place by diffusion alone within the porous clay matrix.

The equations written for the transport problem at the mesoscopic scale are
unchanged, except that there is no convection term in the mesoscopic pollutant
transport equation Eq. (16). Consequently, the macroscopic transport equation is
given by Eq. (37), in which the convective term contains only the contribution
from the macropores (ṽ0 = 0).

Equation (39) is still valid for the macroscopic diffusion tensor. The velocity
field is obtained by setting Ωc = 0 in Eq. (38), while the local system of equations to
solve on Ωv is similar to the local system of Stokes equations (22) in the particular
case of constant viscosity (Bouchelaghem and Jozja (2009a)):

v0
v = −kj

∂p0

∂xj
(43)

The vector kj (j = 1, 2, 3), which is Ωv-periodical, constitutes the unique solu-
tion in Ωv of the analog of the local problem of Eqs. (22) written in the particular
case of constant local viscosity µ (which implies ∇yµ = 0 in Eq. (22)a):

µ∆ykj +∇ypj − ei = 0 in Ωv

∇y · kj = 0 in Ωv

kj = 0 on Γ ′
vs (44)

kj , pj being Ωv-periodical. ei is the unit vector in the direction of axis yi.
By averaging kj over Ωv, we obtain the macroscopic velocity field in Eq. (38)
which defines the macroscopic hydraulic conductivity tensor Kcv for connected
macropores:

⟨V⟩ = −Kcv∇xp0

Kcv
ij =

(ε)2

|Ω|

∫
Ωv

(ki)jdV (45)

5.3 No macropores

Finally, in highly compacted bentonite the pore space is limited to interlayer poros-
ity (Bourg et al. (2006); Kozaki et al. (2001a)). In that case, the problem reduces
simply to the system of Eqs. (29) and (33). The developments are simplified since
only the porous clay matrix has to be considered. Consequently, the macroscopic
transport equation is given by Eq. (37), where the velocity field and the effective
diffusion tensor are obtained respectively by setting Ωv = 0 in Eqs. (38) and (39),
while the volume averaging process is limited to the clay matrix volume Ωc.
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6 Diffusion calculations and confrontation with existing measurements

Finite element computation has been made for the effective diffusion tensors at the
mesoscopic and macroscopic scales by solving the local problems on a variety of
microstructures using Comsol Multiphysics 3.5a (Comsol (2009)). Confrontation
with available measurements allows to assess the underlying model assumptions
as well as the representativity of the numerical microstructures employed.

6.1 Mesoscopic diffusion calculations in the clay matrix

6.1.1 Microstructures employed. Application to two contrasted bentonites

The transport model has been applied to two different bentonites and percola-
tion test simulation is presented in Sect. 7. The first bentonite (originating from
Prrenjas, Albania), is a natural smectitic clay with quartz as the main impurity,
the main exchangeable cations being Mg2+ and Ca2+. Prrenjas bentonite displays
a poorly-organized texture characterized by a compact assembling of short and
rigid particles composed of a limited number (14 in average) of smectite layers of
small lateral extension. The second bentonite investigated, Wyoming bentonite,
is a well-characterized montmorillonite which serves as a reference material. In
Wyoming bentonite, bentonite particles contain a large number (30 in average af-
ter Mg-exchange) of long smectite lamellae of important lateral extension, stacked
in a nearly-parallel way (Bouchelaghem and Jozja (2009b)). The first kind of el-
ementary cell employed is illustrated in Fig. 2 for Prrenjas bentonite. It consists
of 14 smectite lamellae stacked together and separated by interlayer water, parti-
cles being separated by inter-particle water. A similar arrangement has been re-
tained by Ichikawa et al. (1999) and Bouchelaghem and Jozja (2009a) for hydraulic
conducitivity computations, and by Ichikawa et al. (1999) for effective diffusion
computations. The local system of Eqs. (21) is solved on the two-dimensional mi-
croscopic cell, and the mesoscopic diffusion tensor is obtained by inserting the
components βi into Eq. (19) and averaging over Ωcf .

The kind of cell represented in Fig. 2 allows only the determination of the
vertical component Dyy of the mesoscopic diffusion tensor, since nx = 0 on Γcf
implies βx = 0 during the resolution of Eqs. (21), and Dxx = πcDw according
to Eq. (19) (Dw designates here the diffusion coefficient in bulk water). For the
natural bentonite (πc = 72.8 %), we obtain Dyy = 0.707Dw , while for the ref-
erence Wyoming bentonite (πc = 66.6 %) we obtain Dyy = 0.611Dw. The Dyy
values computed for both bentonites are very close to πcDw since in the numerical
microstructures diffusion takes place essentially in the inter-particle space where
it is unaffected by the viscosity variations. In contrast, measurements of the rela-
tive diffusivities along the direction parallel to the nanopore walls range between
20 % and 70 % of the diffusion coefficient in bulk water Dw, depending on the
number of monolayers of water molecules in the interlamellar space (Kemper et
al. (1964)). Consequently, in order to investigate the diffusion tensor anisotropy,
we have looked for a microstructure more representative of the local tortuosity
of diffusive path. Figure 3 represents a quarter of the two-dimensional spatially
periodic cell. Similar square cells have been employed by Smith et al. (2004) in
order to model diffusive transport through platy-clay soils, they allow to express
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Fig. 2 Microscopic cell Ωmicro and variable diffusion coefficient employed for mesoscopic
diffusion and hydraulic conductivity computations.

the tortuosity of diffusion path through a compacted clay at a reasonable compu-
tational cost. (Sato and Suzuki (2003); Ichikawa et al. (2004)) have also proposed
a conceptual representation of bentonite with high smectite content similar to the
numerical microstructures used in our study.

The clay platelets are distributed using a random generation procedure so
that there is no preferred position of the clay plates, while the pseudo-random
orientation θ with respect to the longitudinal axis varies between −20 and +20,
and the slenderness ratio e of length to thickness is equal to 5 for Prrenjas clay
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Fig. 3 One quarter of two-dimensional microscopic periodic cell Ωmicro employed for meso-
scopic diffusion calculations. πc = 66.7 % and e = 10. Isovalues of β1 field.

and 10 for Wyoming bentonite, based on observations of compacted bentonites
presented in Jozja et al. (2003, 2006).

For Prrenjas clay, we obtainDxx = 0.424Dw andDyy = 0.286Dw. For Wyoming
bentonite Dxx = 0.323Dw and Dyy = 0.103Dw. The rectangular shape of the
platelets favors a quasi-rectilinear diffusive path for solutes along the horizontal
direction, while the tortuosity of diffusion path increases along the transverse
direction as porosity decreases owing to mechanical compaction, and this effect is
enhanced with increasing slenderness ratio.

6.1.2 Comparison with experimental diffusivities

Numerical computations of the mesoscopic diffusion tensor of a highly compacted
bentonite are compared to through-diffusion measurements of 22Na in a purified
Na-montmorillonite from Milos (Greece) presented in Glaus et al. (2007). Owing
to the high degrees of compaction, Glaus et al. (2007) assume that diffusion takes
only place in the interlayer space.

Sato and Suzuki (2003) have performed diffusion measurements by varying
the diffusion direction, which may coincide with the compaction direction, or be
perpendicular to it, and Scanning Electron Microscopy (SEM) observations were
performed in both directions. A purified bentonite of smectite content > 99 wt. %
(Kunipia) has been employed under two compaction states. Each numerical value
compared in Table 1 to the experimental values is an average value taken over
more than 25 realizations of the microstructure. The axial values correspond to
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Table 1 Comparison between mesoscopic diffusivity coefficients measured by Sato and Suzuki
(2003) and Glaus et al. (2007) and computed for a purified bentonite (pure smectite).

Direction of diffusion
ρd

g · cm−3
Exp.

m 2 · s−1
Num.

m 2 · s−1

Perpendicular Dxx 1 2.7 ·10−10 2.55 ·10−10

Axial Dyy Sato and Suzuki (2003) 1 1.2 ·10−10 1.13 ·10−10

Perpendicular Dxx 1.5 1.3 ·10−10 1.15 ·10−10

Axial Dyy Sato and Suzuki (2003) 1.5 3.3 ·10−11 3.36 ·10−11

Perpendicular Dxx 1.95 - 7.56 ·10−11

Axial Glaus et al. (2007) Dyy 1.95 2 ·10−11 1.86 ·10−11

the case where the diffusion direction in the diffusion cell coincides with the vertical
mechanical compaction direction, and is therefore approximately perpendicular to
the longitudinal plane of clay particles.

Measurements presented in Sato and Suzuki (2003) show that diffusivity in
the direction perpendicular to the compaction direction is higher than in the axial
direction, and the anisotropy increases with the compaction rate. The anisotropy
of the diffusion tensor, which is attributed to the elongated shape of clay platelets
and preferential orientation of clay particles in the direction perpendicular to me-
chanical compaction, is well reproduced by the numerical mesoscopic diffusion
tensor computed from Eq. (19) using microstructures similar to Fig. 3. The model
compares also well with through-diffusion measurements in the compaction direc-
tion by Glaus et al. (2007). Although no diffusion data is available in the direction
parallel to clay platelets, we have reported the perpendicular diffusivity coefficient
in order to show that it decreases as expected with the level of compaction, and
agrees well with the observed increasing anisotropy with dry density.

To conclude on the mesoscopic diffusion calculations, the computations made
for the particular bentonites investigated (Prrenjas and Wyoming) lead to vertical
and horizontal diffusion components consistent with existing experimental mea-
surements. Indeed, if we take Dw = 1 10−9 m2 · s−1 as in Ichikawa et al. (2004),
Wyoming bentonite diffusion components are close to the values measured on the
less compacted bentonite in Sato and Suzuki (2003) with a similar microporosity
(πc = 62.2 %). This enables us to validate the mesoscopic diffusion model. With
a reasonable number of clay particles distributed at random we are able to rep-
resent the tortuosity and anisotropy of the inter-lamellar and interparticle pore
space diffusion path.

6.2 Macroscopic diffusion calculations

6.2.1 Microstructures employed

Non-connected macropores

Figure 4 presents typical three-dimensional macrostructures with non-connected
elongated and flat ellipsoidal voids presenting axial symmetry. In Fig. 4, a clay sat-
uration of 75 % has been employed with a macro-porosity πv = 5 %, and macrovoid
eccentricity ratio em = 0.979. These microstructures have been employed for the
determination of the macroscopic diffusion tensor defined by Eqs. (39), as well as
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Fig. 4 Microstructures for macroscopic hydraulic conductivity and diffusion calculations. Non-
connected macrovoids. Flat ellipsoidal macrovoids and ψ1 isovalues (a), elongated ellipsoidal
macrovoids and ψ2 isovalues (b).

in the macroscopic hydraulic conductivity computations detailed in Bouchelaghem
and Jozja (2009a).

a and c designate respectively the largest and smallest axes lengths. In the
case of elongated (resp. flat) ellipsoids, a (resp. c) is the semi-length along the axis
of symmetry of the spheroid, and c (resp. a) denotes the semi-length along the
two remaining axis of the orthonormal system of axis. The macrovoid eccentricity
ratio em =

√
1− ( ca )

2 is taken to vary between 0 and 1, this allows to cover a wide
range of void shapes, from circular inclusions (em = 0) to fracture, needle-like
voids (em = 1).

Connected macropores

In the three-dimensional microstructures, quartz and other mineral inclusions
are represented by a centered cubic lattice. Three kinds of connected voids, char-
acterized by different evolutions of the size of pore chambers and pore throats,
are proposed in order to study the progressive formation of inter-connected chan-
nels at the scale of particle aggregates, easing contaminant transport by both
convection and diffusion (Jozja (2003); Jozja et al. (2003); Souli et al. (2008)).
The microstructures employed for macroscopic hydraulic conductivity and diffu-
sion calculations are illustrated in Fig. 5, representing the partial derivative ∂ψk

∂xk

(k = 1, 2, 3) computed within the inter-aggregate voids and the clay matrix (clay
saturation amounts to 75 %). Although idealized, such microstructures allow to
compare different evolutions of the open constrictions available for nuclide diffu-
sion and different evolutions of specific surface area, as well as to vary the threshold
porosity for which macrovoids lose connectivity.

The resolution of the local system of Eqs. (41) is performed with the UMF-
PACK linear system solver with an average number of 10000 Lagrange quadratic
finite elements and 45000 degrees of freedom, and a relative tolerance of 10−20, the
only difficulty being related to the handling of the discontinuity conditions on Γ ′

cv.
Consequently, the geometry consists of separate parts, Ωc and Ωv, and we have to
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Fig. 5 One eighth of microstructures with connected macrovoids. πv = 3.03 % and ∂ψ1
∂x

isovalues (a), πv = 8.2 % and ∂ψ2
∂y

isovalues (b), πv = 12.04 % and ∂ψ3
∂z

isovalues (c).

connect the geometry, finite element mesh and equations at the interface Γcv. We
use a single dependent variable ψk (k=1,2,3) over the entire domain Ωc∪Ωv, ψk is
continuous from Dirichlet condition (41)c being imposed directly in the numerical
system to solve, whereas its first derivatives ∂ψk

∂y′
j

are discontinuous according to

Neumann boundary condition (41)b which is imposed in a weak form, with an ideal
constraint type. As expected, ψk (k = 1, 2, 3) is continuous across Γcv as illustrated
in Fig. 4, while we observe in Fig. 5 that the flux ∇ψk · n is discontinuous across
the interface Γcv. The numerical implementation of Eqs. (41) has been validated
by confrontation with numerical and experimental macroscopic diffusivity data in
two-phase media presented in Chang (1983).

No macropores
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Fig. 6 One eighth of microstructures with no macro-voids. Cubical inclusions and ψ1 isovalues
(a), flat ellipsoidal inclusions (es=0.745) and ψ2 isovalues (b), elongated ellipsoidal inclusions
(es=0.745) and ψ3 isovalues (c), spherical inclusions (es=0) and ψ3 isovalues (d).

When the porosity is limited to inter-layer nanopores, different geometries are
adopted for the solid inclusions, in order to evaluate the effect of grain shape on the
effective diffusion. As shown in Fig. 6 displaying the evolution of ψk, (k = 1, 2, 3),
spherical, cubical, flat ellipsoidal and elongated ellipsoidal inclusions are employed.
es represents the eccentricity ratio of the mineral grain, and is defined for ellipsoidal
inclusions in the same way as the macrovoid eccentricity ratio em.

In the simulation of lead nitrate percolation through Prrenjas and Wyoming
bentonites presented in Sect. 7, we consider that the grains are approximately
spherical (es < 0.4) on the basis of experimental observations.

6.2.2 Comparison with experimental data

Macroscopic diffusion calculations have been compared with available data re-
ported in Bourg et al. (2008) and Muurinen et al. (1990) on compacted water-
saturated Wyoming bentonite in the direction parallel to compaction. Smectite
content is estimated to be 72.5 %, the total porosity is 38 %, and the micropores



Multi-scale study of pollutant transport and uptake in compacted bentonite 23

Table 2 Comparison between computed and measured (Sato and Suzuki (2003)) macroscopic
diffusivity coefficients (in 10−10 m 2 · s−1).

ρd
g/cm3

Axial Dyy
Exp.

Perp.Dxx
Exp.

Axial Dyy
Num.

Perp. Dxx
Num.

1 3.9 4.1 3.83 4.21
1.5 2.1 2.6 2.23 2.54

represent approximately 46 % of the smectite volume. The low value of macrop-
orosity, πv ≃5 %, indicates that macropores are occluded. For a dry density ρd =
1.76 g · cm−3, the numerical diffusivity of 4.5 ·10−11 m2 · s−1 compares well with
the experimental value of 4.58 ± 0.6 ·10−11 m2 · s−1.

Macroscopic diffusion simulation of available diffusivity measurements (Sato
and Suzuki (2003)) has also been performed in the case of connected macropores.
Contrary to Kunipia, Kunigel-V1 is a natural bentonite whose smectite content
is about 50 wt.%. The pure smectite matrix occupies approximately 50 % of the
elementary volume. Macropores represent 29.5 % of the elementary volume for
ρd = 1 g · cm−3, and 19 % for ρd = 1.5 g · cm−3, and we assume that they form a
connected network. The confrontation with the experimental diffusivities of Sato
and Suzuki (2003) is summarized in Table 2.

The computed values are fairly close to the experimental ones, and agree with SEM
observations showing that contrary to a purified bentonite, there is no noticeable
diffusivity anisotropy in a compacted bentonite containing a significant proportion
of impurities (Sato and Suzuki (2003)).

7 Transport simulation for two contrasted bentonites

7.1 Description of the percolation tests

Percolation tests through compacted purified bentonite have been performed within
an oedometer using a highly concentrated solution of lead nitrate (Jozja (2003);
Jozja et al. (2003)). The first step consists in consolidating the air-dried clay sam-
ple under a pressure of 0.5 MPa. During the second step, bentonite is prehydrated
and saturated with deionised water under a pressure of 0.3 MPa. Finally, a 10−2

M Pb(NO3)2 solution is percolated under a pressure of 0.3 MPa until total ex-
change of Mg and Ca by Pb. The total porosity, the compacting pressure and
the hydraulic head are constant during pollutant permeation through the sample.
Output solutions from the oedometer are regularly analysed for these three ele-
ments using Atomic Absorption Spectrometry, while the hydraulic conductivity is
calculated at regular time intervals from Darcy’s law.

For Prrenjas bentonite, the experiment is stopped when the output lead con-
centration measured is equal to the input lead concentration of 20 mmol l−1. A
significant increase in hydraulic conductivity has been measured after 500 hours,
which is strongly correlated with pollutant concentration fluctuations observed on
the breakthrough curve. The total duration of the experiment is about 850 hours,
the final hydraulic conductivity is about 34 times higher than the initial value. For
Wyoming bentonite, the input concentration of 20 mmol l−1 has not been reached,
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and at the end of the experiment (around 3800 hours), the hydraulic conductivity
has increased by a moderate factor of 2.

After lead saturation, Prrenjas and Wyoming samples have been removed from
the oedometer without changing their compaction state, and investigated using X-
rays Diffusion at Small Angles and Scanning Electron Microscopy using the tech-
nique of cryofracturing. The experimental observations in Jozja (2003) and nu-
merical simulation in Bouchelaghem and Jozja (2009b) have displayed the strong
correlation between permeability variations and structural variations at both the
scale of interlamellar space and particle aggregates. Furthermore, the effect of
lead uptake on texture is largely different for Prrenjas and Wyoming bentonites.
For Prrenjas clay, inter-layer space reduction and clay particles splitting under
constant total porosity occur concurrently with the progressive formation of con-
nected inter-aggregate macrovoids easing solution flow. With Wyoming bentonite,
few textural alterations are observed, and although the macroscopic porosity evo-
lution is important (πv = at the end of lead percolation), inter-layer spacing re-
duction is reported on occluded macroporosity alone.

7.2 Confrontation with experimental breakthrough curves

Lead percolation has been simulated for both clays using the macroscopic transport
equation Eq. (37).

Concerning the porosity evolution, measurements of the water content and
sample dimensions in the initial stage and after pollutant percolation have shown
that the total porosity π remains constant. However, an important re-arranging
has been observed between the inter-lamellar and inter-particle voids on one side,
and the inter-aggregate void space on the other side, which originate from textural
evolutions at both scales and cannot be estimated from mass balance considera-
tions (i.g. by writing the continuity equation for the solid phase). Consequently, the
structural rearranging, which plays an essential role in the evolution of hydraulic
conductivity, effective diffusion and reaction rate, is modelled by assuming a grad-
ual decrease of the nanoporosity, which is reported on the inter-aggregate porosity
during the percolation experiment. During the simulation, we have employed a
series of microstructures with decreasing inter-lamellar spacing at the mesoscopic
scale, and microstructures with increasing inter-aggregate pores at the macroscopic
scale, that allow to update the hydraulic conductivity tensor, the diffusion tensor
and the reaction rate at both scales during lead transport and uptake. Starting
with an initial state with no macropores, we decrease the interlamellar spacing
concurrently with macropores development. For Prrenjas clay, inter-lamellar spac-
ing is reduced from two water layers to a variable inter-layering of two and a single
water layer, with the progressive development of occluded macropores and con-
nected macropores (the total porosity variation has been estimated to be ∆πv ≃
5 % in Bouchelaghem and Jozja (2009b). For Wyoming bentonite, there is no
significant microstructural changes, and although the macroporosity variation is
more important (∆πv ≃ 9.5 % at the end of the percolation test), the macropores
remain occluded (Bouchelaghem and Jozja (2009b)).

Concerning the reaction rate, we have distinguished between the ionic exchange
expressed by Eq. (2) on the interlamellar sites, and the surface complexation cor-
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Table 3 Comparison between macroscopic diffusion and hydraulic conductivity.

Sample Wyoming Prrenjas Wyoming Prrenjas
Dxx (m2 s−1) Dxx (m2 s−1) K (m s−1) K (m s−1)

Initial state 3.23 10−10 4.24 10−10 1.8 10−12 2.2 10−11

After pollutant uptake 3.87 10−10 6.26 10−10 3.1 10−12 7.26 10−10

responding to Eq. (3) on the edge sites. The reaction rate is also taken to vary with
time. For Prrenjas, the first 400 hours are characterized by cationic exchange only,
and the reaction rate α has been estimated based on the cationic exchange ca-
pacity measured in Jozja (2003). After 400 hours, in agreement with the observed
evolution of pore space (the splitting of clay aggregates leads to a correspond-
ing increase in egde complexation sites), the surface complexation reaction term
αedgeΓedge is also taken into account as the interlamellar sites become saturated.
For Wyoming bentonite, we have also taken into account the two kinds of reaction
sites, the transition time being around 1550 hours.

Figure 7 displays the measured and computed effluent lead concentration dur-
ing the percolation test through Wyoming bentonite. Lead appears in the efflu-
ent solution after 1200 hours. Afterwards, we observe a regular and moderate
increase in lead concentration, which is reproduced by the multiscale transport
model through the progressive development of occluded macropores concurrently
with a gradual saturation of the interlamellar and edge reaction sites.

Figure 8 compares the measured and simulation effluent lead concentration for
Prrenjas clay. Lead appears in the effluent solution after 470 hours of percolation.
The input concentration is reached after 830 hours approximately, indicating the
end of lead fixation by clay. Compared with the reference Wyoming bentonite,
the increase of effluent lead concentration is not regular, and is accompanied by
noticeable fluctuations. Such fluctuations, which are not completely expressed by
the model, can be attributed to the modifications of the pore space organization
at several scales. The interlamellar spacing reduction and micro-aggregate split-
ting associated with the development of macropores affect mainly the hydraulic
conductivity and the reaction rate.

7.3 Comparison between diffusion and hydraulic conductivity evolution owing to
structural changes

For both Prrenjas and Wyoming clays, the macroscopic hydraulic conductivity
and the macroscopic diffusion component Dxx have been gathered in Table 3 for
the initial stage (after water saturation, prior to lead nitrate percolation) and at
the final stage of the experiment.

It is interesting to notice that contrary to hydraulic conductivity, effective
diffusion is practically not affected by the microstructure evolution. In order to
compare the relative contributions of advection and diffusion, we have performed
simulations in which we set alternatively the hydraulic conductivity and the ef-
fective diffusion tensors to zero in the macroscopic transport equation, while the
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Fig. 7 Wyoming bentonite. Experimental and numerical breakthrough curves of Pb2+ during
the percolation of a 10−2 M solution of lead nitrate.
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Fig. 8 Prrenjas bentonite. Experimental and numerical breakthrough curves of Pb2+ during
percolation of a 10−2 M solution of lead nitrate.
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Fig. 9 Prrenjas bentonite. Comparison between the relative contributions of advection and
diffusion to simulated lead effluent concentration.

reaction rate remains unchanged. The results are summarized in Fig. 9 for the
reference Wyoming bentonite and in Fig. 10 for the natural Prrenjas clay. We
observe that owing to structural evolutions and subsequent hydraulic conductiv-
ity increase, pollutant transport by advection plays a dominant role as compared
with pollutant transport by diffusion. Due to the dependency of variable reaction
rate on pollutant concentration, the total pollutant transport is not equal to the
additive sum of the advective and diffusive fluxes. In particular, diffusion alone is
not able to counterbalance the effect of lead uptake, while with advection alone
we observe that the lead output time is notably delayed for Prrenjas clay.

8 Conclusion

We have presented a multi-scale model of advective-diffusive-reactive transport in
a compacted water-saturated bentonite. The aim of the modelling work has been
to account for the structural modifications occuring at the microscopic level of clay
platelets (inter-lamellar space reduction, splitting of clay aggregates) and at the
mesoscopic level of clay aggregates and mineral grains (development of occluded
or connected inter-aggregate pores).

The local problems for the determination of the hydraulic conductivity and
the effective diffusion tensors have been developed at both the mesoscopic scale
and the macroscopic scale of the compacted bentonite sample. Owing to the pro-
gressive evolution of pore distribution during pollutant uptake, several situations
have been considered. Although the micropores are always present, the macro-
pores may be occluded or form a connected network, or may not be present in
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Fig. 10 Prrenjas bentonite. Comparison between the relative contributions of advection and
diffusion to simulated lead effluent concentration.

highly compacted bentonite. Confrontation with diffusion and hydraulic conduc-
tivity data shows that by using simple but representative microstructures, we are
able to reproduce the tortuosity and anisotropy of fluid flow and solute diffusion
paths.

The model has been applied to simulate lead nitrate percolation tests through
a natural bentonite characterized by a poorly organized texture, and a well-
structured reference bentonite. By relying on an thorough structural investiga-
tion of the solid phase carried out at several scales (Jozja et al. (2003, 2006);
Bouchelaghem and Jozja (2009b)), we have proposed a realistic description of the
bentonite texture evolution at both the nanometric and micrometric levels, which
has proved able to reproduce hydraulic conductivity and lead nitrate effluent con-
centration measured during lead nitrate percolation.

For the natural and the reference bentonites investigated, we have compared
the relative contributions of diffusive transport, advective transport and pollutant
uptake to the pollutant breakthrough curves. The conclusions obtained tend to
show that the usual assumption considering that advective transport of solute
may be considered to be negligible in comparison to transport by molecular dif-
fusion in compacted water-saturated bentonites may not be valid under moderate
compaction states (ρd < 1− 1.2 g · cm−3) and important structural variations.
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