W. B. Banerdt, Early results from the InSight mission: surface environment and global seismic activity, Nat. Geosci, 2020.

M. Golombek, Selection of the InSight landing site, Space Sci. Rev, vol.211, pp.5-95, 2017.

M. Golombek, Geology and physical properties investigations by the InSight Lander, Space Sci. Rev, vol.214, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02331765

K. L. Tanaka, Map of Mars, 1:20,000,000, USGS Scientific Investigations Map, vol.3292, 2014.

S. E. Smrekar, Pre-mission InSights on the interior of Mars, Space Sci. Rev, vol.215, p.3, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01990798

D. M. Burr, Repeated aqueous flooding from the Cerberus Fossae: Evidence for very recently extant, deep groundwater on Mars, Icarus, vol.159, pp.53-73, 2002.

J. Vaucher, The volcanic history of central Elysium Planitia: Implications for martian magmatism, Icarus, vol.204, pp.418-442, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00489757

J. R. Brown and G. P. Roberts, Possible evidence for variation in magnitude for marsquakes from fallen boulder populations, Grjota Valles, Mars, J. Geophys. Res.: Planets, vol.124, pp.801-822, 2019.

J. Taylor, N. A. Teanby, and J. Wookey, Estimates of seismic activity in the Cerberus Fossae region of Mars, J. Geophys. Res. Planets, vol.118, pp.2570-2581, 2013.

D. Giardini, The seismicity of Mars, Nat. Geosci, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02526752

L. Pan, Crust stratigraphy and heterogeneities of the first kilometers at the dichotomy boundary in western Elysium Planitia and implications for InSight lander, Icarus, vol.338, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02346218

P. Lognonné, SEIS: Insight's seismic experiment for internal structure of Mars, Space Sci. Rev, vol.215, p.12, 2019.

P. Lognonné, Initial results from SEIS with a focus on shallow Mars structure, Nat. Geosci, 2020.

T. Spohn, The heat flow and physical properties package (HP 3 ) for the InSight mission, Space Sci. Rev, vol.214, p.96, 2018.

S. Kedar, Analysis of regolith properties using seismic signals generated by InSight's HP 3 penetrator, Space Sci. Rev, vol.211, pp.315-337, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01729585

W. M. Folkner, The rotation and interior structure experiment on the InSight mission to Mars, Space Sci. Rev, vol.214, p.100, 2018.

N. E. Putzig, Radar-derived properties of the InSight landing site in western Elysium Planitia on Mars, Space Sci. Rev, vol.211, pp.135-146, 2017.

N. H. Warner, Near surface stratigraphy and regolith production in southwestern Elysium Planitia, Mars: implications for Hesperian-Amazonian terrains and the InSight lander mission, Space Sci. Rev, vol.211, pp.147-190, 2017.

J. N. Maki, The color cameras on the InSight lander, Space Sci. Rev, vol.214, p.105, 2018.

A. Trebi-ollennu, InSight Mars lander robotics instrument deployment system, Space Sci. Rev, vol.214, p.93, 2018.

H. Abarca, Image data processing for the InSight landet operations and science, Space Sci. Rev, vol.215, p.22, 2019.

N. T. Mueller, The HP3 radiometer on InSight. Ninth International Conference on Mars, vol.6194, 2019.

A. Spiga, Atmospheric science with InSight, Space Sci. Rev, vol.214, p.109, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02331771

M. Golombek, Initial assessment of InSight landing site predictions. 50th Lunar and Planetary Science, Abstract #1696, 2019.

T. J. Parker, Localization of the InSight lander. 50th Lunar and Planetary Science, Abstract #1948, 2019.

R. E. Arvidson, Localization and physical properties experiments conducted by Spirit at Gusev crater, Science, vol.305, pp.821-824, 2004.

R. E. Arvidson, Localization and physical properties experiments conducted by Opportunity at Meridiani Planum, Science, vol.306, pp.1730-1733, 2004.

N. H. Warner, Geomorphology and origin of Homestead hollow, the landing location of the InSight lander on Mars. 50th Lunar and Planetary Science, Abstract #1184, 2019.

C. M. Weitz, Clast sizes and shapes at the InSight landing site. 50th Lunar and Planetary Science, Abstract #1392, 2019.

M. Golombek and D. Rapp, Size-frequency distributions of rocks on Mars and Earth analog sites: Implications for future landed missions, J. Geophys. Res, vol.102, pp.4117-4129, 1997.

M. P. Golombek, Size-frequency distributions of rocks on the northern plains of Mars with special reference to Phoenix landing surfaces, J. Geophys. Res. Planets, vol.113, pp.0-09, 2008.

M. Golombek, Detection and characterization of rocks and rock sizefrequency distributions at the final four Mars Science Laboratory landing sites, Mars, vol.7, pp.1-22, 2012.

M. P. Golombek, Geology of the Gusev cratered plains from the Spirit rover traverse, J. Geophys. Res. Planets, vol.110, pp.2-07, 2006.

J. A. Grant, Crater gradation in Gusev crater and Meridiani Planum, Mars, J. Geophys. Res, 2006.

J. Sweeney, Degradation of 100-m-scale impact craters at the InSight landing site on Mars with implications for surface processes and erosion rates in the Hesperian and Amazonian, J. Geophys. Res, vol.123, pp.2732-2759, 2018.

W. K. Hartmann, Does crater "saturation equilibrium" occur in the Solar System?, Icarus, vol.60, pp.56-74, 1984.

S. A. Wilson, Crater retention ages at the InSight landing site: Implications for the degradation history of Homestead hollow. 50th Lunar and Planetary Science, Abstract #2161, 2019.

N. H. Warner, Probing the regolith at the InSight landing site using rocky ejecta craters. 50th Lunar and Planetary Science, Abstract #1185, 2019.

J. A. Grant, Surficial deposits at Gusev crater along Spirit rover traverses, Science, vol.305, pp.807-810, 2004.

J. A. Grant, Modification of Homestead hollow at the InSight landing site based on the distribution and properties of local deposits, 9th Intl Conf. Mars, Abstract, p.6421, 2019.

D. Banfield, The atmosphere of Mars as observed by InSight, Nat. Geosci, 2020.
URL : https://hal.archives-ouvertes.fr/insu-02494466

M. Mehta, Explosive erosion during the Phoenix landing exposes subsurface water on Mars, Icarus, vol.211, pp.172-194, 2011.

N. R. Williams, Surface alteration from landing InSight on Mars and its implications for shallow regolith structure. 50 th Lunar and Planetary Science, Abstract #2781, 2019.

J. Garvin, Microtopography of the Mars InSight landing site: Geological implications. 50th Lunar and Planetary Science, Abstract #1705, 2019.

V. Ansan, InSight landing site: Stratigraphy of the regolith beneath the lander and in its surroundings, and implications for formation processes. 50th Lunar and Planetary Science, Abstract #1310, 2019.

R. Sullivan, R. Anderson, J. Biesiadecki, T. Bond, and H. Stewart, Cohesions, friction angles, and other physical properties of Martian regolith from Mars Exploration Rover wheel trenches and wheel scuffs, J. Geophys. Res, vol.116, p.2006, 2011.

P. Delage, An investigation of the mechanical properties of some Martian regolith simulants with respect to the surface properties at the InSight mission landing site, Space Sci. Rev, vol.211, pp.191-213, 2017.
URL : https://hal.archives-ouvertes.fr/insu-02552601

A. Banin, MARS, pp.594-625, 1992.

L. A. Haskin, Water alteration of rocks and soils from the Spirit rover site, Gusev crater, Mars, Nature, vol.436, pp.66-69, 2005.

J. A. Hurowitz, In situ and experimental evidence for acidic weathering of rocks and soils on Mars, J. Geophys. Res, vol.111, pp.2-19, 2006.

P. R. Christensen and H. J. Moore, MARS, pp.686-727, 1992.
URL : https://hal.archives-ouvertes.fr/hal-02526752

K. E. Herkenhoff, The Martian Surface: Composition, Mineralogy and Physical Properties, pp.451-467, 2008.

M. P. Golombek, The Martian Surface: Composition, Mineralogy and Physical Properties, pp.468-497, 2008.

M. P. Golombek, The origin of sand on Mars. 49th Lunar and Planetary Science, Abstract #2319, 2018.

D. E. Smith, Mars Orbiter Laser Altimeter (MOLA): Experiment summary after the 1 year of global mapping of Mars, J. Geophys. Res, vol.106, pp.23689-23722, 2001.

C. F. Yoder and E. M. Standish, Martian precession and rotation from Viking lander range data, J. Geophys. Res, vol.102, issue.E2, pp.4065-4080, 1997.

S. Le-maistre, InSight coordinates determination from direct-to-Earth radiotracking and Mars topography model, Planet. Space Sci, vol.121, pp.1-9, 2016.

B. A. Archinal, Report of the IAU working group on cartographic coordinates and rotational elements, Celest. Mech. Dyn. Astron, vol.130, p.22, 2015.

M. P. Golombek, Rock size-frequency distributions on Mars and implications for MER landing safety and operations, J. Geophys. Res. Planets, vol.108, issue.E12, p.8086, 2003.

P. Rosin and E. Rammler, The laws governing the fineness of powdered coal, J. Inst. Fuel, vol.7, pp.29-36, 1933.

J. J. Gilvarry, Fracture of brittle solids I. Distribution function for fragment size in single fracture (theoretical), J. Appl. Phys, vol.32, pp.391-399, 1961.

J. J. Gilvarry and B. H. Bergstrom, Fracture of brittle solids II. Distribution function for fragment size in single fracture (experimental), J. Appl. Phys, vol.32, pp.400-410, 1961.

K. H. Wohletz, M. F. Sheridan, and W. K. Brown, Particle size distributions and the sequential fragmentation/transport theory applied to volcanic ash, J. Geophys. Res, vol.94, pp.15703-15721, 1989.

W. K. Brown and K. H. Wohletz, Derivation of the Weibull distribution based on physical principles and its connection to the Rosin-Rammler and lognormal distributions, J. Appl. Phys, vol.78, pp.2758-2763, 1995.

C. Charalambous, On the Evolution of Particle Fragmentation with Applications to Planetary Surfaces, 2014.

D. L. Turcotte, Fractals and Chaos in Geology and Geophysics, 1997.

C. Charalambous, Rock distributions at the InSight landing site and implications based on fragmentation theory. 50th Lunar and Planetary Science, Abstract #2812, 2019.

T. L. Heet, R. E. Arvidson, S. C. Cull, M. T. Mellon, and K. D. Seelos, Geomorphic and geologic settings of the Phoenix Lander mission landing site, J. Geophys. Res, vol.114, pp.0-04, 2009.