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The current tsunami of deep learning has already conquered new areas, such as the generation of creative content (images, music, text). The motivation is in using the capacity of modern deep learning architectures and associated training and generation techniques to automatically learn styles from arbitrary corpora and then to generate samples from the estimated distribution, with some degree of control over the generation. In this article, we analyze the use of autoencoder architectures and how their ability for compressing information turns out to be an interesting source for generation of music. Autoencoders are good at representation learning, that is at extracting a compressed and abstract representation (a set of latent variables) common to the set of training examples. By choosing various instances of this abstract representation (i.e., by sampling the latent variables), we may efficiently generate various instances within the style which has been learnt. Furthermore, we may use various approaches for controlling the generation, such as interpolation, attribute vector arithmetics, recursion and objective optimization, as will be illustrated by various examples. Before concluding the article, we will discuss some limitations of autoencoders, introduce the concept of variational autoencoders and briefly compare their respective merits and limitations for generating music.

I. Introduction

One of the first documented case of algorithmic composition (i.e., using a formal process, including steps (algorithm) and components, to compose music), long before computers, is the Musikalisches Wurfelspiel (Dice Music), attributed to Mozart. A musical piece is generated by concatenating randomly selected (by throwing dices) predefined music segments composed in a given style (Austrian waltz in a given key).

The first musics generated by computer appeared in the late 1950s, shortly after the invention of the first computers. The Illiac Suite is the first score composed by a computer [START_REF] Hiller | Experimental Music: Composition with an Electronic Computer[END_REF] and was an early example of algorithmic music composition, making use of stochastic models (Markov chains) for generation, as well as rules to filter generated material according to desired properties. Note that, as opposed to the previous case which consists in rearranging predefined material, abstract models (transitions and constraints) are used to guide the generation.

One important limitation is that the specification of such abstract models, being rules, grammar, or automata, etc., is difficult (reserved to experts) and error prone. With the advent of machine learning techniques, it became natural to apply them to learn models from a corpus of existing music. In addition, the method becomes, in principle, independent of a specific musical style (e.g., classical, jazz, blues, serial). More precisely, the style is actually defined extensively by (and learnt from) the various examples of music curated as the training examples.

The two main abstract models which can be induced by machine learning techniques are Markov models and artificial neural networks1 . Since the mid 2010s, deep learning -the 3rd wave of artificial neural networks -has been producing striking successes and is now used routinely for applications such as image recognition, voice recognition and translation. A growing area of application of deep learning techniques is the generation of content, notably music but also images. Various types of artificial neural network architectures (feedforward, recurrent, etc.) are being used 2 . In this article, we will focus on a specific type of artificial neural network, autoencoders, and how they turn out an interesting approach for generating music.

II. Related Work and Organization

A recent book about deep learning techniques for music generation is [START_REF] Briot | Deep Learning Techniques for Music Generation[END_REF], with some shorter introduction and survey in [START_REF] Briot | From artificial neural networks to deep learning for music generation -History, concepts and trends[END_REF]. Some general surveys about of AI-based methods for algorithmic music composition are [START_REF] Papadopoulos | AI methods for algorithmic composition: A survey, a critical view and future prospects[END_REF] and [START_REF] David | AI methods in algorithmic composition: A comprehensive survey[END_REF], as well as books [START_REF] Cope | The Algorithmic Composer[END_REF] and [START_REF] Nierhaus | Algorithmic Composition: Paradigms of Automated Music Generation[END_REF].

A complete book about deep learning is [START_REF] Goodfellow | Deep Learning. Adaptive Computation and Machine Learning[END_REF]. There are various introductory books (and courses) about artificial neural networks, e.g., a very good course named "Machine Learning", created by Andrew Ng at Stanford, and freely available on Coursera.

In this article, in Section III we will introduce the (actually very simple) concept of autoencoder, the way to represent music and to train it on a corpus of Celtic melodies. Section IV will introduce a straightforward way of using an autoencoder to generate new melodies, illustrated by various examples. Section V will introduce and analyze various approaches for controlling the generation of the melodies. Section VI will discuss some limitations and further developments, notably the concept of variational autoencoder, and analyze its merits and limits concerning generation, before concluding this article.

III. Autoencoder i. Architecture

An autoencoder is a feedforward3 neural network with the following structural constraints:

• the size (number of nodes) of the output layer is equal to the size of the input layer; • there is (exactly) one hidden layer; and • the size of the hidden layer is smaller than the size of the input layer.

The output layer actually mirrors the input layer, creating its peculiar symmetric diabolo (or sand-timer) shape aspect, as shown in Figure 1, with two components highlighted:

• the encoder component, composed of the input layer and the hidden layer (and their connexions); and • the decoder component, composed of the hidden layer and the output layer (and their connexions). 

ii. Training

An autoencoder is trained with each of the examples both as the input data and as the output target, thus trying to minimize the difference between the reconstructed data and the original input data. As the hidden layer has fewer nodes than the input layer, the encoder component must compress information4 , while the decoder component has to reconstruct, as accurately as possible, the initial information. This forces the autoencoder to discover significant (discriminating) features to encode useful information into the hidden layer nodes, considered as a vector of latent variables.

iii. Generation

Indeed the motivation for an autoencoder is neither in just learning the identity function and nor in the direct compressing of data, as opposed to some experiments in using compression for creating art, e.g., the compressed cars by the sculptor César in the 1960s and more recently by the sculptor Ichwan Noor (see Figure 2). The latent vector of an autoencoder constitute a compact representation (some kind of label 

iv. Representation and Encoding

In order to use an autoencoder with music, we need to define a way to represent that music. As in this article we focus on algorithmic music composition, we will consider a symbolic representation (of notes and durations), as opposed to some audio representation (waveform signal or spectrum). We choose a piano roll representation, for its simplicity. Piano roll (and its name) is inspired from automated mechanical pianos with a continuous roll of paper with perforations (holes) punched into it. In practice, it is a two dimensional table with the x axis representing the successive time steps and the y axis the pitch, as shown in Figure 3. There is still an additional step from the representation to the artificial network input, this is the encoding5 of a representation (of a musical content). It consists in the mapping of the representation (composed of a set of variables, e.g., pitch or dynamics) into a set of inputs (also named input nodes or input variables) for the neural network architecture. The most frequent type of encoding is one-hot-encoding6 , where a discrete or a categorical variable is encoded as a categorical variable, through a vector with the number of all possible elements as its length. Then, to represent a given element, the corresponding element of the one-hot vector7 is set to 1 and all other elements to 0. For instance, the pitch of a note is represented as shown in the right part of Figure 3 8 . Note that a global time step has to be fixed and usually corresponds, as stated by Todd in [START_REF] Peter | A connectionist approach to algorithmic composition[END_REF], to the greatest common factor of the durations of all the notes to be learned. In the case of the corpus that we will consider, it is a sixteenth note. Also note that, there is no way to distinguish between a long note and a repeated short note 9 . Therefore, we will use the solution proposed in [START_REF] Hadjeres | DeepBach: a steerable model for Bach chorales generation[END_REF] to consider holding curent note (a hold) as a special kind of note (pitch). This solution is simple, but its main limitation is that it only applies to the case of monophonic melodies 10 . We will also consider silence (rest) as a special kind of note 11 . These two special cases will be added to the set of possible note pitches for the one-hot vector.

v. Learning Celtic Melodies

In this article, we will use as corpus a set of Celtic melodies, selected from the folk music repository "The Session" [START_REF] Keith | The Session[END_REF]. In practice, we selected 75 melodies, all in 4/4, in D Major key, and tagged as "Reel" (a type of Celtic dance). Two examples, "The Green Mountain" and "Willa Fjord", are shown12 in Figures 4 and5, respectively.

The shortest melody in the corpus is 8 measures long and the shortest note duration is a sixteenth note. The lowest note pitch is G 3 and the highest note pitch is B 5 . Thus, the number of possible notes within the [G 3 , B 5 ] interval is 29. The size of the final one-hot vector is thus 31 (after adding the hold and rest cases). The size of the the input representation is therefore: 8 (measures) × 16 (sixteenth notes per measure) × 31 (size of the one-hot vector) = 8 × 16 × 31 = 3,968.

vi. Architecture

Successive melody time slices are encoded into successive one-hot vectors which are concatenated and directly mapped to the input nodes of the neural network autoencoder architecture. In Figure 6, each blackened vector element, as well as each corresponding blackened input node element, illustrate the specific encoding (one-hot vector index) of a specific note time slice, depending on its construct the input representation of an architecture, as we will see in Figure 6. 9 Actually, in the original mechanical paper piano roll, the distinction is made: two holes are different from a longer single hole. The end of the hole is the encoding of the end of the note.

10 Which is the case for Celtic melodies. Polyphonic music would need to be represented as different voices/tracks. Training the architecture proceeds by presenting an example of melody at the input layer and at the output layer (as the target for the reconstruction) 16 . The training procedure will incrementally adjust the connexion weights between neurons in order to minimize the reconstruction error.

IV. Generation

The model having being trained, it may be used for generation. As explained in Section III.iii and shown in Figure 7, we instantiate the latent vector, usually denoted as z, and feedforward it into the decoder component. This will reconstruct some melody corresponding to the compressed version. Figure 8 shows an example of melody generated from a latent vector randomly generated17 .

i. Size of the Hidden Layer

For simplification, we will name h the size of the hidden layer (which is also the size of the latent vector z). Setting the value of h is an important decision. If h is large, close to the input (and output) layer size, reconstruction will be almost perfect or even perfect, but there will be many latent variables to be instantiated in order to generate melodies 18 . If h is small, the control of the generation will be easier to understand, specially in the case of h = 2 where the latent vector can be visualized in a 2D-figure 19 , as shown for each example of the corpus20 in Figure 9, but the reconstruction will not be optimal.

Figure 10 shows the loss (the error of the reconstruction) and the accuracy (the precision of the reconstruction), in function of h. Our experiment shows that h = 1.258 is the lowest value for which the accuracy is equal to 1, that is, for which the reconstruction of all training examples is perfect.

In Figure 11, we show the reconstruction by the autoencoder of "The Green Mountain" melody, in function of the value of h. We could see that with h = 1000, the reconstruction is still perfect21 . simplifications appear, although most of melodic motives are still preserved. It is from h = 150 that the melody starts being simplified, with from h = 100 a major simplification trend and quasi stability.
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It may seem surprising that, even with a small size of the hidden layer, the autoencoder could reconstruct partially an initial melody. What does the autoencoder is in fact to map the various dimensions corresponding to the various latent variables to some variational characteristics which vary among examples, e.g., main melodic motif, average duration of notes, etc. 22 What is common to all examples is stored into the connexion weights of the network, for it to be able to reconstruct a melody. What is specific to examples is stored into the latent variables. Therefore, changing the values of the latent variables will allow to change the melodies generated.

V. Approaches for Generation i. Exploration

The latent space (the space of variation for z the latent vector of latent variables) may be explored with various operations to control/vary the generation of content, e.g., as summarized in [RER + 18]:

• translation;

• interpolation;

• averaging; • attribute vector arithmetics.

ii. Interpolation

We may for instance do interpolation (morphing) between two existing melodies, "The Green Mountain" (see Figure 4) and "Willa Fjord" (Figure 5), with, e.g., 5 steps of linear interpolation. In practice, as shown in Figure 12: 1. we compute the value of z resulting from feedforwarding "The Green Mountain" into the encoder component of the autoencoder;

2. as well as the value of z resulting from feedforwarding "Willa Fjord";

3. we compute the various values/steps for interpolating between the two values of z; and 4. we feedforward each value into the decoder component of the autoencoder to reconstruct the corresponding successive melodies.

In the case of h = 1500, the resulting melodies are shown in Figure 13. We could see that the interpolation, although correct (it maps the start and the target), is not uniform. Step 1 is equal to start and step 4 is equal to target. This discontinuity limitation will be analyzed and addressed in Section VI.i.

We can also do interpolation between arbitrary values of z. With h = 2, we interpolate the value of z 1 between its minimum value and its maximum value23 , while z 2 stays constant to its mean value, as shown in Figure 14. Unfortunately, the resulting melody, shown in Figure 15, is actually constant for all steps. The same happens, with a different generated melody shown Figure 12: Generation of interpolation between two melodies by the autoencoder: 1) encode 1st melody into a latent vector; 2) encode 2nd melody into another latent vector; 3) interpolate between them; 4) decode interpolated latent vectors to reconstruct successive melodies in Figure 16, when interpolating the value of z 2 . This is actually another illustration of some limitation of the ways the autoencoder dispatches the melodies in the latent space, as will be analyzed in Section VI.i.

iii. Attribute Vector Arithmetics

In this approach, the idea is to specify some attribute vector capturing a given characteristic (e.g., long notes, high pitch range, etc.) and to apply it to an existing example in order to influence it. An attribute vector is computed as the mean of the latent vectors of all examples sharing that characteristic. As an example, let us augment the Celtic corpus with a set of (80) soprano voice melodies from Bach chorales -an example, BWV 347, is shown at Figure 17 -and train the autoencoder accordingly 24 . Let us compute the mean of latent vectors of all Bach chorales soprano voices examples. Then, as illustrated in Figure 18: • let us consider the Celtic melody "The Green Mountain" (shown in Figure 4); • compute its latent vector;

• add the "Bach chorales" attribute latent vector (computed as the mean of latent vectors of all Bach chorales melodies examples); and • create the corresponding melody, shown in Figure 19.

We can see that the original melody has been simplified, with longer notes, such as in the Bach chorales melodies corpus, while keeping the basic melodic motif. Figure 20 shows25 the position of this chimera melody regarding the Celtic and Bach corpus. We can see that the original "The Green Mountain" melody (circled blue spot) is on the left, within the main part of the Celtic corpus (dark purple blue spots), while its "Bach-ized" version (circled yellow spot) is right at the center of the Bach corpus (green spots).

We can also do the other way around, by selecting one of Bach chorales soprano voice, e.g., BWV 347; compute the mean of Celtic melodies latent vectors; add it to BWV 347 latent vector; and obtain a melody, shown in Figure 21. The result of the transformation is much less obvious than for previous case. But, by looking at Figure 22, we can see that the original BWV 347 melody (circled blue spot) is actually already at the center of the Celtic corpus (dark blue spots), thus minimizing the move to its "Celtic-ized" version (circled yellow spot), which results in very little musical change.

iv. Recursion

In [START_REF] Kazakçi | Digits that are not: Generating new types through deep neural nets[END_REF], Kazakçi et al. proposed an original way of content generation from autoencoders. The idea is to feedforward a random initial content (random melody representation) into the autoencoder and recursively feedforward the generated output as the input until the output gets to a fixed point. They have experimented with a dataset of handwritten numerical digits (the MNIST dataset for handwritten digits recognition) and generated new types of visual patterns that they name "digits that are not". We have applied their approach on our autoencoder trained on Celtic melodies, as illustrated in Figure 23, with Figure 24 showing an example of progressive refinement in such a way that similar objects are modeled by nearby points and dissimilar objects are modeled by distant points. The difference with an autoencoder is that t-SNE does not try to minimize a reconstruction error but instead tries to preserve the neighborhood distances. of a melody. Note that each melody generated corresponds to some attractor of the network and their number is finite26 .

v. Objective Optimization

Another approach is by controlling the exploration of the latent space (the input of the decoder) by optimizing some property. This idea has been initially proposed in 1988 by Lewis and named by him creation by refinement [START_REF] Peter | Creation by refinement: A creativity paradigm for gradient descent learning networks[END_REF]. The idea is to "revert" the standard way of using gradient descent for standard task -adjust the connexion weights in order to minimize the classification error -, into a very different task -adjust the input in order to maximize an expected classification result27 . This approach can be seen as the precursor of various approaches for controlling the creation of a content by maximizing some target property28 , such as Deep Dream [START_REF] Mordvintsev | Deep Dream[END_REF] and style transfer We apply this approach to optimize the value of the latent vector of the autoencoder to match some objective 29 . In practice, a vector of random values is created, as initial values of the latent vector. Then, an optimization algorithm 30 is applied on the latent vector to maximize the objective, as illustrated in Figure 25. We experimented with three different objectives for the melody:

property is to generate a melody consonant to an existant melody. Note that he used stacked autoencoders, i.e. nested autoencoders with a decreasing number of hidden layers. 30 Gradient-based or even simple random generate-and-test. • first note to be a C 431 , shown in Figure 26; • maximize the number of hold (i.e. having notes as long as possible), shown in Figure 27; and • minimize the number of hold (i.e. having notes as short as possible), shown in Figure 28. 

VI. Further Developments i. Variational Autoencoder

As noted in Section V.ii, although producing interesting results, the autoencoder suffers from some discontinuity limitation. We could see that the interpolation, although correct (it maps the start and the target), is not continuous and thus creates discontinuities in the generation when exploring the latent space. The reason, as discussed in [START_REF] Rocca | Understanding variational autoencoders (VAEs) -Building, step by step, the reasoning that leads to VAEs[END_REF], is that the autoencoder is solely trained to encode and decode with a minimal loss, no matter how the latent space is organized. The approach is then to regulate the latent space to ensure that the latent space has better continuity properties for the generation.

A variational autoencoder (VAE) [START_REF] Diederik | Auto-encoding variational Bayes[END_REF] is a refinement of an autoencoder with the added constraint that the encoded representation, i.e. the latent variables, follows some prior probability distribution 32 , usually a Gaussian distribution. This regularization ensures two main properties: continuity (two close points in the latent space should not give two completely different contents once decoded) and completeness (for a chosen distribution, a point sampled from the latent space should provide a "meaningful" content once decoded) [START_REF] Rocca | Understanding variational autoencoders (VAEs) -Building, step by step, the reasoning that leads to VAEs[END_REF]. The price to pay is some larger reconstruction error, but the tradeoff between reconstruction and regularity can be adjusted depending on the priorities (as we will see in Section VI. iii).

ii. Generation

Figure 29 shows the melodies generated by the variational autoencoder with h = 1500 by interpolation between "The Green Mountain" and "Willa Fjord". By comparing it with the generation by the autoencoder (Figure 13), we could see that the interpolation is more continuous, at the price of some imperfect reconstruction of the two original melodies.

In the case of h = 2, we may compare the melodies generated by the variational autoencoder for the interpolation of values of z 1 and of z 2 33 (shown in Figures 30 and31, respectively), to the melodies generated by the autoencoder (Figures 15 and16).

Let us now compare in Table 1 the results of the various approaches for generation (interpolation, vector arithmetics, recursion and objective optimization) by a variational autoencoder to the case of an autoencoder. These simple experiments suggest that a variational autoencoder may not necessarily lead to an improvement in the quality of the generation, depending on the generation approach 34 .

iii. Interpretation and Disentanglement

Another issue is that the characteristics (meaning, e.g., note duration range, note pitch range, motif, etc.) of the dimensions captured by the latent variables are automatically "chosen" by the autoencoder architecture (variational or not), in function of the training examples and the configuration. Thus, they can only be interpreted a posteriori. For instance, in Figures 30 and31, 32 This constraint is implemented by adding a specific term to the cost function which computes the cross-entropy between the distribution of latent variables and the prior distribution. The model and implementation is actually more sophisticated, instead of an encoder encoding an input as a single point, a variational autoencoder encodes it as a distribution over the latent space, from which the latent variables are sampled, as explained in [START_REF] Rocca | Understanding variational autoencoders (VAEs) -Building, step by step, the reasoning that leads to VAEs[END_REF]. 33 We use a straightforward linear interpolation of z 1 or of z 2 . However, decoding a straight line in the latent space does not necessarily produce melodies whose attributes vary uniformly. See, e.g., [START_REF] Hadjeres | GLSR-VAE: Geodesic latent space regularization for variational autoencoder architectures[END_REF] for a discussion and a proposed solution. 34 As pointed out in Section VI.i, there is a tradeoff between continuity and reconstruction. Also, as pointed out in [GBC16, Section 20.10.3], there are still some troubling issues about variational autoencoders. we can observe that z 1 seems to capture the range as well as the average of note durations, while z 2 captures refinements of the melody motif. This actually heavily depends on the set of training examples and the way they vary 35 . Furthermore, as for the mapping between a genotype and a phenotype, there may be a manyto-many mapping between latent variables and characteristics. In fact, the dimensions captured by the latent variables are not independent (orthogonal), as in the case of Principal component analysis (PCA). However, various techniques36 have being recently proposed to improve the disentanglement of the dimensions (see, e.g., [START_REF] Mathieu | Disentangling disentanglement in variational autoencoders[END_REF]). Some recent approaches also propose to "force" the meaning of latent variables, by splitting the decoder into various components and training them onto a specific dimension (e.g., rhythm or pitch melody) [YWW + 19]. iv. RNN Encoder-Decoder and Variational Recurrent Autoencoder (VRAE) t of the RNN encoder acts as a memory which iteratively accumulates information about the successive elements x t of an input sequence read by the RNN encoder; resulting in a final state h e N ; which is passed to the RNN decoder as the summary c of the whole input sequence; which then iteratively generates the output sequence by predicting the next item y t given its hidden state h d t and the summary c as a conditioning additional input

A practical limitation of an autoencoder is that the size of the input (and output) layer is fixed and as a result also the length of the music generated. The solution is to combine: the generative property of the autoencoder with the variable length property of a recurrent neural network (RNN) architecture (see [BHP19, Section 6.5]). The idea is to embed a recurrent network (RNN) within the encoder and a similar RNN within the decoder (thus, named an RNN Encoder-Decoder [CvMG + 14]), as shown in Figure 37.

A natural further step is to combine this with the variational characteristic of a variational autoencoder, resulting in what is named a variational recurrent autoencoder (VRAE) [START_REF] Fabius | Variational Recurrent Auto-Encoders[END_REF]. We will not further detail VRAE architectures here because of space limitation. Please see, e.g., the MusicVAE architecture and details on generation experiments presented in [RER + 18] and, e.g., [START_REF] Briot | Deep Learning Techniques for Music Generation[END_REF] for some comparative analysis of various architectures.

VII. Conclusion

The use of artificial neural networks and deep learning architectures and techniques for the generation of music (as well as other artistic contents) is a very active area of research. In this paper, we have introduced and illustrated the use of autoencoders to generate music. Various approaches, simple conceptually and to implement, have also been discussed to control the generation. Some lesson from these simple experiments shows that a variational autoencoder, although providing some important improvements on the continuity of the latent space, also suffers from some reconstruction imperfection. Therefore, depending on the generation approach and the priorities, one may consider better using a simple autoencoder. We hope that this article will help at showing the potential of using autoencoders for music generation. MIDI files of examples may be found at: http://www-desir.lip6.fr/~briot/dlt4mg/Papers/compress-to-create-midi/.
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 1 Figure 1: Autoencoder architecture (with its encoder component in blue and its decoder component in purple)
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 23 Figure 2: Compressed cars by César (left) and by Ichwan Noor (right)
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 45 Figure 4: "The Green Mountain" (8 first measures)
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 6 Figure 6: Autoencoder architecture for learning melodies
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 78 Figure 7: Generation of a melody by the decoder component of the autoencoder from a latent vector (random or given)
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 9 Figure 9: Values of the latent vector (z) generated by the encoder component of the autoencoder (h = 2) for each of the 75 examples of Celtic melodies. Each dot and its color (from blue to yellow) corresponds to each melody of the corpus (from #0 to #74)
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 11 Figure 11: (from top to bottom) Reconstruction by the autoencoder of "The Green Mountain" for h = 1000, 750, 500, 250, 200, 150, 100, 2
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 131415161718 Figure 13: (from top to bottom) Melodies resulting from the interpolation (5 steps) by the autoencoder (h = 1500), from"The Green Mountain" to "Willa Fjord"
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 2021 Figure 20: TSNe representation of the following melodies: Celtic corpus (dark purple blue spots) -including "The Green Mountain" (circled blue spot) -; Bach corpus (green spots); and "The Green Mountain Bach-ized" (circled yellow spot) generated by the autoencoder (h = 1500)
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 2223 Figure 22: TSNe representation of the following melodies: Celtic corpus (dark purple blue spots); Bach corpus (green spots) -including "BWV 347" (circled blue spot) -; and "BWV 347 Celtic-ized" (circled yellow spot) generated by the autoencoder (h = 1500)
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 24 Figure 24: (from top to bottom) Example of successive melodies generated by the autoencoder (h = 1500) for each step of the recursion
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 25 Figure 25: Generation of a melody by the decoder component of the autoencoder by updating a latent vector (initially random) in order to maximize some objective
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 2627 Figure 26: Example of melody generated by the autoencoder (h = 1500) with the objective of its first note being a C 4
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 28 Figure 28: Example of melody generated by the autoencoder (h = 1500) with the objective of minimizing the number of hold
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 293031 Figure 29: (from top to bottom) Melodies resulting from the interpolation (5 steps) by the variational autoencoder (h = 1500), from "The Green Mountain" to "Willa Fjord"
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 32333435 Figure 32: "The Green Mountain" transformed into a Bach chorales-like melody by the variational autoencoder (h = 1500)
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 36 Figure 36: Example of melody generated by the variational autoencoder (h = 1500) with the objective of minimizing the number of hold
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 37 Figure 37: RNN Encoder-Decoder architecture. Inspired from [CvMG + 14]. The hidden layer h et of the RNN encoder acts as a memory which iteratively accumulates information about the successive elements x t of an input sequence read by the RNN encoder; resulting in a final state h e N ; which is passed to the RNN decoder as the summary c of the whole input sequence; which then iteratively generates the output sequence by predicting the next item y t given its hidden state h d t and the summary c as a conditioning additional input

  

  

Table 1 :

 1 Comparison of generation approaches with autoencoder and variational autoencoder

Some tentative comparison, pros and cons, of neural networks and Markov models for learning musical style and for generation may be found in [BHP19, Section 1.2.3].

See a tentative classification and analysis, e.g., in[START_REF] Briot | From artificial neural networks to deep learning for music generation -History, concepts and trends[END_REF].

A feedforward neural network, also named multilayer Perceptron (MLP), is the most basic and common type of artificial neural network. It is composed of an arbitrary sequence of layers composed of artificial neurons, where each successive layer is analog to multiclass logistic regression. Computation proceeds by feedforwarding data from the input layer into the successive layers, until reaching the output layer.

Compared to traditional dimension reduction algorithms, such as principal component analysis (PCA), feature extraction by an autoencoder is nonlinear, thus more general, but it does not ensure orthogonality of the dimensions, as we will see in Section VI.iii.

Note that this stage of encoding is different and independent of the encoding that will be performed by the Encoder.

The advantage of one-hot encoding over value encoding (direct encoding of a variable as a scalar) is its robustness against numerical operations approximations (discrete versus analog), at the cost of a high cardinality and therefore a potentially large number of nodes for the architecture.

The name comes from digital circuits, one-hot referring to a group of bits among which the only legal (possible) combinations of values are those with a single high (hot!) (1) bit, all the others being low (0).

The Figure also illustrates that a piano roll could be straightforwardly encoded as a sequence of one-hot vectors to

Actually, only their 8 first measures, which is the actual length of the melodies that will be considered, as explained just below.

Which will be varied, as we will see in Section IV.i.

See, e.g., [BHP19, Sections 5.5.3 and 5.5.4] for details about the reasons of these choices.

It transforms a musical score into data for the architecture and vice-versa. We designed it for our course at UNIRIO which is available at http://www-desir.lip6.fr/~briot/cours/unirio3/. It uses the Music21 symbolic music representation library as pivot and also for reading MIDI and ABC music formats.

 16 Actually, a mini batch of examples, randomly selected from the training set, is used for each epoch.

The ranges of the possible values for each latent variable may be determined by computing the lowest and the highest values of latent variables for each training example, see Figure9.

And moreover, the autoencoder may not be enough forced to extract interesting features.

Let us think of the analogy of approximating a 3D location on earth onto a 2D map and even onto a 1D road on this map.

To compute the value of z corresponding to a given melody, we just need to feedforward the melody data into the encoder component of the autoencoder and retrieve the values of the hidden layer nodes, i.e. the latent variables.

The reconstruction of "The Green Mountain" is perfect but it is not the case for all the training examples, otherwise

As will be discussed in Section VI.iii.

These values, as well as mean values, for all latent variables, are computed from the latent vectors for all training examples.

The training set of examples is the union of Celtic melodies and Bach soprano melodies. We transpose Bach soprano melodies into the D Major key in order to be aligned with the Celtic corpus. Also, as some Bach melodies are outside of the Celtic pitch range, the pitch range must be adjusted and as a consequence the one-hot vector size (and the autoencoder input layer size) is adjusted.

It uses the T-distributed Stochastic Neighbor Embedding (t-SNE) nonlinear dimensionality reduction machine learning algorithm for visualization[START_REF] Van Der Maaten | Visualizing data using t-SNE[END_REF]. t-SNE models each high-dimensional object by a two (or three) dimensional point

This is some kind of mode collapse, as for generation by generative adversarial networks (GAN)[START_REF] Kodali | On convergence and stability of GANs[END_REF].

In Lewis' initial proposal, the neural network which is a feedforward binary classifier is at first trained with positive and negative examples of what he names "well formed" melodies, defined as follows: 1) using only the unison, 3rd and 5th intervals between notes and 2) following some scale degree stepwise motion. Then, a vector of random values is used as the initial input of the network and refined as to obtain a positive classification (i.e. a well formed melody). See more details in[START_REF] Peter | Creation by refinement: A creativity paradigm for gradient descent learning networks[END_REF].

The target property may be of any kind as long as it may be measured and thus optimized.

Sun [Sun17] may have been the first author to propose this approach for autoencoders. In his experiments, the target

Note that the objective is not completely fulfilled. The first note of the generated melody is a D 4 . This makes sense because the corpus of melodies is in the key of D Major and many of them start with a D. This is important to remember that we can optimize some objective but within the boundaries of the representation that the autoencoder has learnt. Opening up this structural restriction is possible but with another generation (and architectural) model, see, e.g., structure imposition with a restricted Boltzmann machine (RBM)[START_REF] Lattner | Imposing higher-level structure in polyphonic music generation using convolutional restricted Boltzmann machines and constraints[END_REF].

For instance, when using Bach chorale melodies, the result is different: z 1 captures mostly the range of note durations, while z 2 captures the pitch range.

Two examples of approaches are: 1) increasing the weight of the prior distribution conformance (the β-VAE approach) [HMP + 17]; 2) ensuring that for a given dimension no other dimension will be present by using a classifier to check the equiprobability among the classes along other dimensions (the antagonist approach)[START_REF] Robert | DualDis: Dual-branch disentangling with adversarial learning[END_REF].
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