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Neuroinflammation commences decades before Alzheimer’s disease (AD) clinical

onset and represents one of the earliest pathomechanistic alterations throughout

the AD continuum. Large-scale genome-wide association studies point out several

genetic variants—TREM2, CD33, PILRA, CR1, MS4A, CLU, ABCA7, EPHA1, and

HLA-DRB5-HLA-DRB1—potentially linked to neuroinflammation. Most of these genes

are involved in proinflammatory intracellular signaling, cytokines/interleukins/cell turnover,

synaptic activity, lipid metabolism, and vesicle trafficking. Proteomic studies indicate that

a plethora of interconnected aberrant molecular pathways, set off and perpetuated by

TNF-α, TGF-β, IL-1β, and the receptor protein TREM2, are involved in neuroinflammation.

Microglia and astrocytes are key cellular drivers and regulators of neuroinflammation.

Under physiological conditions, they are important for neurotransmission and synaptic

homeostasis. In AD, there is a turning point throughout its pathophysiological evolution

where glial cells sustain an overexpressed inflammatory response that synergizes with

amyloid-β and tau accumulation, and drives synaptotoxicity and neurodegeneration

in a self-reinforcing manner. Despite a strong therapeutic rationale, previous clinical

trials investigating compounds with anti-inflammatory properties, including non-steroidal

anti-inflammatory drugs (NSAIDs), did not achieve primary efficacy endpoints. It is
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conceivable that study design issues, including the lack of diagnostic accuracy

and biomarkers for target population identification and proof of mechanism, may

partially explain the negative outcomes. However, a recent meta-analysis indicates

a potential biological effect of NSAIDs. In this regard, candidate fluid biomarkers of

neuroinflammation are under analytical/clinical validation, i.e., TREM2, IL-1β, MCP-1, IL-

6, TNF-α receptor complexes, TGF-β, and YKL-40. PET radio-ligands are investigated

to accomplish in vivo and longitudinal regional exploration of neuroinflammation.

Biomarkers tracking different molecular pathways (body fluid matrixes) along with

brain neuroinflammatory endophenotypes (neuroimaging markers), can untangle

temporal–spatial dynamics between neuroinflammation and other AD pathophysiological

mechanisms. Robust biomarker–drug codevelopment pipelines are expected to enrich

large-scale clinical trials testing new-generation compounds active, directly or indirectly,

on neuroinflammatory targets and displaying putative disease-modifying effects: novel

NSAIDs, AL002 (anti-TREM2 antibody), anti-Aβ protofibrils (BAN2401), and AL003 (anti-

CD33 antibody). As a next step, taking advantage of breakthrough and multimodal

techniques coupled with a systems biology approach is the path to pursue for developing

individualized therapeutic strategies targeting neuroinflammation under the framework of

precision medicine.

Keywords: Alzheimer’s disease, neuroinflammation, microglia, neuroinflammatory pathways, biomarkers, anti-

inflammatory therapy, systems biology, precision medicine

INTRODUCTION

Alzheimer’s disease (AD) is the most commoncause of
neurodegenerative dementia. According to current estimates,
17% of people aged 75–84 years in the United States have AD,
and the disease costs the country US$236 billion per year. The
prevalence is projected to triple by 2050 to >15 million, with
annual costs of >$700 billion (1). There is an urgent need
for developing pharmacological treatments with a disease-
modifying effect to halt the disease at its earliest preclinical
stage where brain and cognitive functions can still be preserved
(2, 3). Indeed, drugs currently available on the pharmaceutical
market (i.e., acetylcholinesterase inhibitors and non-competitive
N-methyl-D-aspartate antagonists) have been approved for a
symptomatic effect only and for the dementia stage of AD (4).

The acknowledged pathophysiological hallmarks—(I)
extracellular deposition of amyloid beta (Aβ), (II) intracellular
aggregates of tau proteins, ultimately called neurofibrillary
tangles (NFT), and (III) neurodegeneration—have been
integrated in research diagnostic criteria (5–8).

Abbreviations: [11C]-PIB, [11C]-Pittsburgh compound-B; [18F]-
fluorodeoxyglucose-PET, [18F]-fluorodeoxyglucose-positron emission
tomography; Aβ, amyloid beta; Aβ1−40, 40-amino acid-long amyloid beta
peptide; Aβ1−42, 42-amino acid-long amyloid beta peptide; AD, Alzheimer’s
disease; ADAPT, Alzheimer’s disease anti-inflammatory prevention trial; ADCS,
Alzheimer’s disease cooperative studies; APMI, Alzheimer precision medicine
initiative; APMI-CP, Alzheimer precision medicine initiative cohort program;
APS, Alzheimer progression score; ASC, apoptosis-associated speck-like protein
containing a caspase recruitment domain; BDNF, brain-derived neurotrophic
factor; CB2R, cannabinoid receptor type 2; CCE, cell cycle events; CD, cell
surface cluster of differentiation; CDx, companion diagnostic; CNS, central

The hypothesis-free biomarker-guided “A/T/N” classification
scheme was introduced to categorize subjects based on core
AD hallmarks (9). The A/T/N scheme is anticipated to provide
consistent recruitment of individuals and target engagement
among various different sites in AD clinical trials. Even
though the A/T/N classification scheme provides crucial
pathophysiological insights, it offers a partial depiction
of the spectrum of pathomechanistic modifications of
AD (10, 11).

The increasing animal and in-human evidence for the
upstream role that neuroinflammation may play in AD has

nervous system; COX, cyclooxygenase; COX-1, cyclooxygenase-1; COX-2,
cyclooxygenase-2; CRP, C-reactive protein; CSF, cerebrospinal fluid; CSF-1R,
colony stimulating factor 1 receptor; GWAS, genome-wide association studies;
ILs, interleukins; IL-1Ra, interleukin-1 receptor antagonist; INTREPAD, impact
of naproxen treatment in presymptomatic Alzheimer’s disease; JNK, c-Jun Kinase;
K-ARPI, Korean AD research platform initiative based on immune-inflammatory
biomarkers; LTP, long-term potentiation; MAPK, p38 mitogen-activated protein
kinase; MCI, mild cognitive impairment; MCP-1, monocyte chemoattractant
protein-1; MMP-9, metalloprotease-9; MMSE, Mini-Mental State Examination;
mNGF, mature nerve growth factor; Nap1, Nck-associated protein 1; ND,
neurodegenerative diseases; NF-κB, nuclear factor kappa-light-chain-enhancer of
activated B cells; NFT, neurofibrillary tangles; NGF, nerve growth factor; NIH,
National Institutes of Health; NSAIDs, non-steroidal anti-inflammatory drugs;
P4M, predictive, preventive, personalized, and participatory medicine; PET,
positron emission tomography; PMI, US precision medicine initiative; PMI-CP,
US PMI cohort program; proNGF, precursor of the nerve growth factor; p-tau,
hyperphosphorylated tau; RNS, reactive nitrogen species; ROS, reactive oxygen
species; SCARA1, class A1 scavenger receptor; SphK1, sphingosine kinase 1;
sTREM2, soluble TREM2; TGF-β1, transforming growth factor-beta1; TLRs,
Toll-like receptors; TNF-α, tumor necrosis factor-alpha; TNF-Rs, TNF receptors;
TNF-RI, TNF receptor I; TNF-RII, TNF receptor II; TREM2, triggering receptor
expressed on myeloid cells 2; TSPO, translocator protein.
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posed several conceptual therapeutic concerns and open up new
avenues for preventing AD cognitive decline.

The pathophysiological mechanisms of multifactorial and
polygenic AD are not limited to the neuronal tissue; they
are related to cerebral immunological responses (12). Indeed,
brains of patients with AD and other neurodegenerative diseases
(ND) show chronic inflammation (13). Neuroinflammation is
as an innate immunological response of the nervous system
that comprises microglia, astrocytes, cytokines, and chemokines,
which play a central role in an early phase of AD pathogenesis
(12, 14). The key contribution of inflammation in the AD
pathophysiology has been hypothesized more than 20 years ago
(12, 15–17). Recent studies demonstrate that this early disease-
aggravating central nervous system (CNS) inflammation starts
decades before the appearance of severe cognitive decay or AD
(18–20). Along this line, different longitudinal studies show
that inflammation and microglial activation occur years before
AD onset (21–23). Furthermore, there is a strong link between
neuroinflammation and amyloid and tau accumulation in the
human brain (23–26).

The acknowledged cell mediators of inflammatory
mechanisms in AD are microglia and astrocytes (12). In
general, these cells play a substantial role in neural transmission
and synapse remodeling, as they facilitate the removal of non-
essential synapses by eradicating inadequate connections
(27, 28). Thus, the efficiency of neuronal transmission
is increased.

NEUROINFLAMMATION AND CELL
MEDIATORS OF INFLAMMATORY
MECHANISMS IN ALZHEIMER’S DISEASE

The Role of Microglia and Astrocytes in
Alzheimer’s Disease Synaptic Dysfunction
Synapses exhibit a quad-partite arrangement that consists of an
axon terminal, a dendritic spine put in direct communication
with a microglial and an astrocytic process (29). Astrocytes and
microglia—the brain-resident macrophages—play a key role
in neural circuit development and synaptic homeodynamics
during adulthood. Astrocytes are essential for supporting
synaptogenesis (axonal and dendritic spines sprouting)
and regulating synaptic robustness (30–32). Astrocytes also
contribute to the spatiotemporal integration of several synaptic
signals and regulate the synaptic transmission (33, 34). Microglial
cells play a key role in the immune surveillance of the presynaptic
microenvironment and also for the synaptic remodeling toward
axonal and dendritic terminals pruning by reshaping proteolytic
and phagocytic processes. Microglial cells are able to recruit
astroglia, or they can be recruited by the latter (30–32, 35).
They are thought to drive the well-known age-related regional
synaptic vulnerability, as recently reported (36). Indeed, an
age-related ultrastructural and functional shift of microglia
cells is associated with increased synaptic susceptibility and
neurodegeneration (35).

Therefore, astrocytes and microglia express physiological
properties essential for synaptic transmission, the accurate

modulation of neural and synaptic plasticity, and both synaptic
adaptation and homeostasis (30–32).

In summary, it is well-established that microglia and
astrocytes take part in aberrant molecular pathways
that, ultimately, reflect AD pathomechanistic alterations,
i.e., brain proteinopathies, synaptic failure, loss of
brain plasticity, neuroinflammation, axonal damage, and
neurodegeneration (37–41).

The Role of Microglia
Microglial cells, arising from the mesodermal (myeloid) lineage
(42), are the main category of macrophages in the CNS
parenchyma. They express a large assortment of receptors that
recognize exogenous or endogenous CNS insults and initiate
an immune response. Besides their typical immune cell role,
microglial cells protect the brain by stimulating phagocytic
clearance and providing trophic sustenance to preserve cerebral
homeostasis and support tissue repair. When circumstances
related to loss of homeostasis or tissue alterations occur, then
many dynamic microglial mechanisms are triggered, leading to
the “activated state” of microglia (43). These encompass cellular
morphology modifications, changes in the secretory profile
of molecular mediators, and increased proliferative responses
(44). A persistent homeodynamic imbalance, such as brain
accumulation of Aβ, can trigger a step further in activation,
referred to as “priming” (37). Priming of microglia is directed
by alterations in their microenvironment and the release of
molecules guiding their proliferation. Priming makes microglia
inclined to secondary inflammatory stimulating factors, which
can then elicit amplified inflammatory reactions (37).

Activated microglia is a typical pathophysiological feature of
AD and other ND (12, 43, 45). Two main types of microglia cells
are present in the brain, “resting” (or “quiescent”) and “active”
microglia. In particular, there is evidence for the high degree
of heterogeneity of microglial activation in the CNS, which can
be categorized into two opposite activation phenotypes: M1
and M2 (43, 46, 47). According to the phenotype activated,
microglia can generate either cytotoxic or neuroprotective effects
(46). The M1 or “proinflammatory” phenotype (classically
activated) displays proinflammatory cytokines and nitric oxide.
It decreases the release of neurotrophic factors, thus exacerbating
inflammation and cytotoxicity (43). In contrast, the M2 or “anti-
inflammatory” phenotype (alternatively activated) displays anti-
inflammatory cytokines, increased expression of neurotrophic
factors, and several other signals involved in downregulation,
protection, or repair processes in response to inflammation (43).
Preliminary evidence from experimental studies suggests that the
phenotypic transformation of the activated M1/M2 functional
states (“phenotypic switching”) (48, 49) can be determined by
both the stage and the severity of the disease. In preclinical
models, M1 microglia seems to prevail at the injury site, at the
end stage of disease, and once inflammation resolution and repair
processes of M2 microglia are diminished (46).

In light of the increasing evidence that the modality by which
microglia is activated is a continuum between proinflammatory
(M1) and anti-inflammatory (M2) phenotypes, the M1/M2
“dichotomy” (or “polarization” scheme) is still disputed. Actually,
it seems possible that the global process of microglia activation
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represents a much larger heterogeneous spectrum of very
dissimilar responses (43).

Experimental models of AD demonstrate that microglia
cluster around plaques, likely via chemotactic mechanisms, and
may contribute both in Aβ (39, 44) clearance and in limiting
the growth and further accumulation plaques (39, 44). Moreover,
the dysregulation of microglia activity, including dystrophic
microglia, may be either a trigger, or a worsening factor, or both,
of the seeding of aberrant protein aggregates in the brain (39, 44).

In AD, during inflammation, there is a transition from
the resting to the active functional state of microglia that,
at a general level, might be the consequence of stress or
depressive-like behavior (50). At a molecular level, inflammation
is promoted by the presence of Aβ aggregates, including
oligomers and fibrils (51–54). Indeed, microglia can bind to
soluble Aβ oligomers and insoluble Aβ fibrils through cell
surface receptors, including the class A1 scavenger receptor
(SCARA1), cell surface cluster of differentiation (CD) markers
(CD36, CD14, and CD47), the α6β1 integrin, and the Toll-
like receptors (TLRs) (55–58). A key point within the scientific
debate is represented by a recent evidence indicating that
microglia displays either beneficial or harmful effects throughout
the beginning and advancement of AD (45). This is strictly
related to the nature of the major activities: (I) clearance of
Aβ or (II) release of proinflammatory mediators. In early AD
pathogenesis, Aβ oligomers and fibrils gather in the extracellular
space and elicit a pathological cascade resulting in neuronal
apoptosis and depletion. Microglia eliminate Aβ peptides and
dying/dead cells through phagocytosis (59, 60). Besides clearance

of Aβ oligomers and fibrils, microglia surrounds plaques and
fibrils likely creating a physical barrier that can prevent their
spreading and toxicity (61). Aβ clearance is also stimulated
by the release of numerous proteases participating in Aβ

degradation (62). In spite of the advantageous actions of
early activation of microglia cells, their chronic activation by
Aβ is detrimental and induces protracted inflammation and
disproportionate Aβ deposition, thus rushing neurodegeneration
(Figure 1). During AD pathogenesis, the production and
release of proinflammatory cytokines and other detrimental
components are intensified. In addition, the typical phagocytic
action of microglia is decreased. Moreover, the microglial-
dependent release of apoptosis-associated speck-like protein
containing a caspase recruitment domain (ASC) modulates the
diffusion of the pathology within and between cerebral areas
(63). Extracellular vesicles—constituted by microvesicles and
exosomes and released by reactive microglia—play a role in AD
pathogenesis (64) (Figure 1). Finally, microglial cells are able to
regulate AD pathogenesis via active interaction with neurons,
astrocytes, and oligodendrocytes. Indeed, activated microglial
cells induce altered astrocytes via proinflammatory cytokines
(Figure 1). These astrocytes can rush and aggravate neuronal and
oligodendrocytes death (65).

The still open question is to understand the specific
contributions of neuronal and glial cells in the early phase
of inflammation in preclinical AD. Aβ1−42 oligomers have
a major role in synaptic depletion and gradual cognitive
deterioration (66, 67). They induce neuroinflammation
and neurodegeneration by stimulating the microglia to

FIGURE 1 | Multifaceted functions of microglia during Aβ pathology. In healthy brain and early stages of AD, microglia clear small aggregates of Aβ peptides by

phagocytosis and by secreting proteolytic enzymes, such as IDE, neprilysin, and MMP9. During advanced AD, microglia exacerbate AD pathology by releasing

proinflammatory cytokines that induce neuronal cell death as well as A1 astrocytes, which, in turn, affect neuronal survival. Moreover, during advanced AD,

microglia-derived ASC specks and EVs promote seeding of Aβ aggregates. Aβ, amyloid beta; AD, Alzheimer’s disease; ASC, apoptosis-associated speck-like protein

containing a CARD; C1q, complement component 1q; EVs, extracellular vesicles; IDE, insulin degrading enzyme; IL-1β, interleukin-1 beta; MMP-9, metalloprotease-9;

TNF-α, tumor necrosis factor-alpha. From Wang and Colonna (45). Copyright© 2019, Society for Leukocyte Biology. Reprinted with permission from Wiley.
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FIGURE 2 | Role of neuroinflammation in AD pathogenesis: impairment of neurotrophin signaling. Aβ1−42 oligomers promote neuroinflammation and neuronal death in

AD brain by eliciting the release of proinflammatory cytokines (IL-1β and TNF-α) from microglia and also interfering with the synthesis of anti-inflammatory cytokines

such as TGF-β1. TNF-α inhibits microglia phagocytosis of Aβ and stimulates γ-secretase activity, thus facilitating Aβ accumulation and microglia-mediated

neuroinflammation. Proinflammatory microglial activities promote neuronal death also through the formation of ROS and RNS. Neuroinflammatory phenomena can

finally contribute to the pathogenesis of AD by impairing neurotrophin signaling function: (I) reducing the synthesis of BDNF and TGF-β1 and (II) causing an impairment

of NGF metabolic pathway characterized by a reduced conversion of proNGF to biologically active mNGF and by an increased degradation of mNGF promoted by

MMP-9. Aβ, amyloid beta; Aβ1−42, 42-amino acid-long amyloid beta peptide; BDNF, brain-derived neurotrophic factor; IL-1β, interleukin-1 beta; MMP-9,

metalloprotease-9; NGF, nerve growth factor; mNGF, mature nerve growth factor; proNGF, precursor of the nerve growth factor; RNS, reactive nitrogen species; ROS,

reactive oxygen species; TGF-β, transforming growth factor-beta; TNF-α, tumor necrosis factor-alpha.

produce and release proinflammatory cytokines (14, 68) and
also by interfering with the synthesis of anti-inflammatory
cytokines, for instance the transforming growth factor-beta
1 (TGF-β1) (Figure 2) (69–71). This early proinflammatory
process is characterized by neuronal and microglia-derived
cytokines and chemokines as well as by mobilization of
microglia toward Aβ-burdened neurons (Figure 2) (19, 72).
In addition to Aβ, extracellular non-phosphorylated tau,
rather than hyperphosphorylated tau (p-tau), activates the p38
mitogen-activated protein kinase (MAPK) pathway, eliciting a
proinflammatory reaction (73).

The Role of Astrocytes
Astrocytes, differently from microglia and similarly to neurons
and oligodendrocytes, arise from the neuroectoderm (74). These
cells promotes synaptogenesis (axonal and dendritic spines
sprouting), regulates the synaptic strength, take part in the
spatial–temporal integration of multiple synaptic processes,
and modulate the neurotransmission. Hence, astrocytes execute
a variety of physiological activities, in both developing and
adult brain, that are essential for synaptic plasticity and a
solid and organized cognitive activity (74). Of note, astrocytes
modulate Ca2+-dependent signaling pathways that are crucial
for hippocampal synaptic function and plasticity (75, 76).
Indeed, depending on the fluctuations of intracellular Ca2+

concentrations, they release gliotransmitters, such as glutamate,

D-serine, and ATP, which have feedback actions on neurons (77).
Moreover, each astrocyte wraps several neurons, thus interacting
with hundreds of neuronal dendrites (78) and connecting with
up to two million synapses in the human cortex (79). This kind
of interconnectedness indicates that each astrocyte creates a hub
to facilitate the integration of the information (74). Moreover,
remodeling of astrocytes promotes neuroprotection and recovery
of injured neural tissue (80, 81). Along with microglia activation,
hypertrophic reactive astrocytes gather around Aβ plaques as
reported in human postmortem studies (82) as well as in animal
models (83). Like microglia, astrocytes are also activated by tissue
injury, infection, and inflammation (84). In AD, after exposure
to Aβ, astrocytes release various proinflammatory molecules,
such as cytokines, interleukins (ILs), complement components
(85–87), nitric oxide, and other cytotoxic compounds, ultimately
amplifying the neuroinflammatory response.

Human neuropathological studies conducted on AD brains
report the presence of cytoplasmic inclusions of non-fibrillar
Aβ in astrocytes, supposed to reflect a phagocytic engulfment
from extracellular Aβ deposits (86). In addition, rodent models
of AD indicate the ability of astrocytes to uptake and clear
Aβ in subjects bearing cerebral fibrillar aggregates and diffuse
plaques (16, 17, 33, 86). Conversely, the shutdown of astrocyte-
mediated homeodynamics is associated with increased Aβ plaque
burden and synaptic terminals dystrophy (68). This enhanced
phagocytic activity may represent a compensatory mechanism
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to incipient increased Aβ accumulation to neutralize its
induced toxicity.

GENES MODULATING
NEUROINFLAMMATION IN ALZHEIMER’S
DISEASE

Genome-wide association studies (GWAS) allowed the detection
of more than 40 susceptibility gene variants associated with
a bigger risk of developing late-onset AD (88). These results
include genes associated with immune reaction (in particular,
ABCA7, CD33, CLU, CR1, EPHA1, HLA-DRB5-HLA-DRB1, and
MS4A). The relevance of neuroinflammation is further sustained
by recent large-scale GWAS showing that the risk of developing
late-onset AD is substantially more elevated in individuals with
rare variants of microglial immunoreceptors: TREM2, encoding
the triggering receptor expressed on myeloid cells 2 protein (89);
CD33 (transmembrane receptor CD33), expressed on cells of
myeloid lineage (90, 91); and PILRA (paired immunoglobulin-
like type 2 receptor alpha) (92).

The receptor protein TREM2 enhances the rate of
phagocytosis in microglia and macrophages, modulates
inflammatory signaling, and controls myeloid cell number,
proliferation, and survival (89). Recent studies show that
triggering TREM2 receptor inmicroglial cells is closely associated
with the pathogenesis of AD (93). TREM2 modulates microglial
functions (e.g., stimulates the production of inflammatory
cytokines) in response to Aβ plaques and tau tangles (94, 95).
TREM2 absence enhances amyloid pathology, during early
AD; however, this is exacerbated at later stages due to the
loss of phagocytic Aβ clearance (94). TREM2 variants cause
AD by decreasing the Aβ phagocytic ability of microglia and
through the dysregulation of the proinflammatory response
of these immune cells (96). Interestingly, the analysis of the
existing single-cell transcriptome datasets for human neurons
highlights the association of microglia with late-onset AD
(97). In addition, the study of regulatory networks of genes
showing differential expression in AD brains indicates that
immune- and microglia-specific gene modules primarily
contribute to AD pathophysiology (98). Finally, Tanzi and
colleagues, after exploring the potential role of the cross-talk
between CD33 and TREM2 in both neuroinflammation
and the cause of AD, propose that TREM2 is working
downstream of CD33 to modulate the neuroinflammatory
process (99).

ROLE OF NEUROINFLAMMATION IN
ADULT NEUROGENESIS AND
ALZHEIMER’S DISEASE

Besides the above-mentioned role of Aβ and tau in triggering
neuroinflammation, it is assumed that the presence of
extracellular tau plays a role in the transition from resting
to active microglia. In the resting microglia, the protein
fractalkine (CX3CL1), secreted by healthy neurons, binds to the
cell receptor (CX3CR1) present in the microglia allowing the

maintenance of microglia in the resting state. Tau pathology is
shown to be associated with neuroinflammatory processes. On
the other hand, microglia could be involved in tau propagation
in tauopathies. In this scenario, microglial CX3CR1 acts like
a receptor for extracellular tau, since the absence of CX3CR1
impairs the internalization of tau microglia (100). Thus,
extracellular tau can compete with CX3CL1 for a common
receptor. Microglia cells lacking CX3CR1 are deficient in
neuronal CX3CL1 signaling and are not in the resting state.
As a result, these active microglial cells could secrete some
compounds, such as cytokines, potentially affecting neuronal
functions like adult neurogenesis. The absence of the microglial
CX3CR1 impairs the synaptic integration of adult born
hippocampal granule neurons (101). Mice lacking CX3CR1
show modifications in both microglia and neurons of some
cerebral areas, like dentate gyrus. Adult-newborn neurons, in
CX3CR1–/– mice, show a deficient synaptic integration in the
neuronal network and exhibit a diminished amount of dendritic
spines. These display some morphological alterations, since mice
lacking CX3CR1 protein have a hyperactive, anxiolytic-like, and
depressive-like phenotype (101).

Mainly, all the previous remarks are observed in mouse
models, but little is known about the consequences of changes
in microglia in humans. Interestingly, CX3CL1 concentrations
are reduced in the cerebrospinal fluid (CSF) of AD patients
compared to control subjects, thus suggesting that variations
in CX3CL1 levels might represent a new target to use in
inflammation and AD (102). Two recent different publications
describe the consequences, in humans, of having homozygous
mutations in the colony-stimulating factor 1 receptor (CSF-1R)
gene expressing a cell receptor essential for the development and
maintenance of microglia. The consequences are the presence of
abnormalities not only in brain structures, like corpus callosum,
but also in bones that, in some cases, are overly dense and
malformed (103, 104). In the future, it will be interesting to
explore possible changes in adult neurogenesis at the dentate
gyrus in the autopsy, in the cases of patients with biallelic CSF-
1Rmutations.

CELLULAR AND MOLECULAR
NEUROINFLAMMATORY PATHWAYS IN
ALZHEIMER’S DISEASE

Neuroinflammatory pathways and microglial cells activation are
associated with neuronal ectopic cell cycle activation (105).
In particular, microglial activation induced by Aβ oligomers
promotes neuronal ectopic cell cycle events (CCEs) via the
tumor necrosis factor-alpha (TNF-α) and the c-Jun kinase (JNK)
signaling pathways. Hence, administering of non-steroidal anti-
inflammatory drugs (NSAIDs) in AD transgenic mice precludes
both microglial activation and stimulation of CCE (105, 106).
Two analyses report the capability of ibuprofen to alter the
advancement of mild AD (107). However, forthcoming AD
clinical trials show no effectiveness in mild dementia individuals,
probably because these drugs are administered in a late phase
of CNS inflammation. Indeed, recent studies designate initial
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CNS inflammation as an encouraging target to prevent the
advancement of the pathology (19).

Today, it is widely accepted that oxidative stress is strongly
associated with the inflammation observed in AD (108). In fact,
neuroinflammatory processes can act both as cause and as effect
of chronic oxidative stress (Figure 2). In this context, microglia
play a pivotal role. Proinflammatory microglial activities may
be detrimental in AD due to reactive oxygen and nitrogen
intermediate species—ROS and RNS, respectively—leading to
oxidative stress-induced neuronal death, which could be further
exacerbated by chronic stress (109, 110). Cumulative evidence
suggests that microglial inflammation-induced oxidative stress
in AD is amplified. In contrast, microglial-mediated clearance
mechanisms are not functional (43, 110).

TNF-α exerts a key role in this early proinflammatory
process observed in preclinical AD as emerges from preclinical
studies in animal models of AD (111–114) as well as from
human longitudinal studies (21, 113–115). TNF-α is chronically
released during the course of AD pathology, likely by activated
microglia, neurons, and astrocytes stimulated by increased levels
of extracellular Aβ (111). Aβ oligomeric forms activate microglia
with anomalous TNF-α-mediated pathways in mouse models
(68). Such an atypical stimulation of cerebral innate immunity
is responsible for reduced serotonergic tonus, a primary event
in depression due to Aβ, a prodromal symptom of AD (70).
On the other hand, TNF-α can stimulate γ-secretase activity,
which results in an increased synthesis of Aβ peptides and a
further increase in TNF-α release (113, 116). It is hypothesized
that this auto-amplified loop in the AD brain can contribute
to the maintenance of excessive levels of TNF-α, which could
then stimulate Aβ synthesis and neuronal loss, also inhibiting
microglia phagocytosis of Aβ (Figure 2) (113, 117). Finally,
TNF-α significantly contributes to promote insulin resistance
and the following cognitive decline in AD (118, 119). Aβ

oligomeric forms prompt peripheral glucose intolerance in
mice by activating TNF-α signaling in the hypothalamus (120).
Multiple studies detected elevated TNF-α levels in both mild
cognitive impairment (MCI) and AD (21, 113). Interestingly,
Down syndrome cases with preclinical AD show significant links
among augmented levels of plasma TNF-α, Aβ accumulation,
and the following cognitive deterioration in the subsequent
years (115).

TNF-α exerts its activity by binding two distinct high-
affinity receptors (TNF-Rs) placed at the cell surface: TNF-RI,
ubiquitously expressed apart from erythrocytes, and TNF-RII,
whose expression is limited to myeloid cells, endothelial cells,
oligodendrocytes, microglia, astrocytes, and subpopulations of
neurons (113). The concentrations of the soluble forms of the
TNF receptors (sTNF-RI and sTNF-RII) are typically unaltered
in CSF and blood of AD patients compared to controls (21).
However, both TNF-α and TNF-RI concentrations are increased
in postmortem brains of early-stage AD patients (113). MCI
subjects present controversial data; longitudinal studies report
associations between TNF-R concentrations and the risk of
conversion from MCI to AD (21). Notably, the TNF-α receptor
complex and its functional proteins are assumed to play a
crucial role since they link neuroinflammatory pathways to

amyloid deposition process in a chronically damaging and self-
perpetuating way (21).

A strong neurobiological link is also found in the AD brain
between the deficit of anti-inflammatory cytokines, such as TGF-
β1, and the early proinflammatory process observed in preclinical
AD (70). TGF-β1 is a neurotrophic factor whose deficit exerts
a key role in AD. A selective impairment of TGF-β1 pathway
is present in early AD, both in the AD brain (121, 122) and
in AD animal models (71, 123, 124). This deficit seems to
critically contribute to neuroinflammation in AD brain. TGF-
β1 displays both anti-inflammatory and neuroprotective actions
(123, 125) and stimulates Aβ clearance by microglia (126).
Furthermore, it exhibits a primary role in synaptic plasticity and
memory creation processes, thus supporting the path from early
to late long-term potentiation (LTP) (127). We should reconsider
the relevance of TGF-β1 in neuroinflammation resulting from
microglia activation, contributing to reactivate the neuronal cell
cycle in the AD brain (128). According to this scenario, the
reactivation of the neuronal cell cycle might be assisted by the
disruption of Smad-dependent TGF-β1 pathways. Overall, these
studies suggest the potential contribution of the deficit of Smad-
dependent TGF-β1 pathway to neuroinflammation and cognitive
impairment (70).

Moreover, neuroinflammatory phenomena might
impair neurotrophin signaling (Figure 2) and interfere
with brain-derived neurotrophic factor (BDNF)-induced
neuroprotection (129–131).

Finally, neuroinflammation can exert a primary function
in AD pathophysiology by interfering with nerve growth
factor (NGF) maturation and function. NGF is a neurotrophic
factor essential for the survival and homeostasis of basal
forebrain cholinergic neurons whose selective degeneration
critically contributes to cognitive decline in AD patients (132,
133). Studies in transgenic animal models of AD indicate
that the proinflammatory process—initiated before plaque
deposition and promoted by soluble Aβ oligomers—leads to
an impairment of NGF metabolic pathway characterized by a
reduced conversion of the precursor proNGF to the mature NGF
(mNGF) as well as by an increased deprivation ofmNGF (18, 132,
134). Neuroinflammatory processes promote an overactivation of
metalloprotease-9 (MMP-9), as observed in the brains of Down
syndrome patients (132), MCI subjects, and AD patients (135).
Increased MMP-9 activity would then facilitate the degradation
of mNGF, finally compromising mNGF activity in sustaining the
trophic dependence of the cholinergic neurons (132). Notably, a
strong correlation is present in Down syndrome cases showing
preclinical AD among the plasma TNF-α increase, a deficit
in NGF maturation (with grown concentrations of proNGF),
and an increased degree of cognitive impairment (115). This
study substantiates the key contribution of inflammatorymarkers
(i.e., TNF-α) in combination with plasma Aβ1−42 levels and
increased proNGF levels to better predict the worsening of
“latent” AD pathology with the consequential cognitive decline
in Down syndrome patients (115). The discovery of an imbalance
in the metabolic pathway controlling NGF maturation and
degradation in Down syndrome/AD patients provides a platform
for the identification of novel biomarker candidates as well for
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the development of disease-modifying drugs. Therefore, drug
discovery processes should be directed in the future to develop
new drugs that are able to interfere with early CNS inflammation
and, at the same time, rescue neurotrophin signaling (e.g., BDNF,
NGF, TGF-β1) in the AD brain.

TARGETING NEUROINFLAMMATION IN
ALZHEIMER’S DISEASE: EVIDENCE FROM
ANIMAL MODELS

Among the different mediators of inflammation explored, TNF-
α mediates proinflammatory processes in various ND including
AD (136). In normal conditions, TNF-α from glial cells
modulates homeostatic activity-dependent regulation of synaptic
connectivity (137). On the other hand, this cytokine mediates the
disrupting effects of Aβ on LTP in experimental AD. Accordingly,
mutant mice lacking TNF receptor type 1 exhibit normal
LTP following Aβ application and similar results are obtained
with the use of anti-TNF agents including the monoclonal
antibody infliximab and thalidomide, which also inhibits TNF-
α production (138). Generally, several studies indicate that
blocking the TNF-α pathway in AD models is associated with:
(I) improvement in memory decline, as tested in different
behavioral tests evaluating cognitive function; (II) reduction
in immunohistochemical and histopathological markers like
formation of Aβ plaques and NFT; and (III) reduction in the
number of microglial cells in the AD brain (139).

Similarly to TNF-α, also the proinflammatory cytokine IL-1β
mediates the synaptotoxic effects of Aβ peptide (140). Indeed,
the interleukin-1 receptor antagonist (IL-1Ra) is able to reverse
synaptic plasticity alteration triggered by the administration of
the 40-amino acid-long Aβ peptide (Aβ1−40) (141). However, the
role of ILs in AD pathogenesis is far more complex since some
exert proinflammatory while others exert anti-inflammatory
actions. In this frame, it is worth mentioning IL-12 and IL-23
which are increased in CSF in both AD and MCI (142, 143).
Notably, genetic ablation of IL-12 and IL-23 or therapeutic
approaches directed against IL-12 and IL-23 signal reduce the
AD-like pathology, including histopathological and behavioral
changes, making them attractive targets for the treatment of
AD (144). On the other hand, IL-10 seems to play a protective
role since delivery of this cytokine via adeno-associated virus
leads to markedly decreased microgliosis and astrogliosis as well
as reversed cognitive impairment in transgenic AD mice (145),
although the use of a different adeno-associated virus approach
generates a different outcome (146).

There is a growing interest on the role of complement
and microglia in AD pathology (147). Microglia cells have
prominent functions in complement-mediated synaptic pruning,
in the postnatal period (148, 149). It is hypothesized that an
inappropriate reactivation of this mechanism later in life could
result in synapse loss, thus facilitating the progression of ND
(150). In this frame, C1q, which mediates the toxic effects of Aβ

oligomers on LTP, is increased in synaptic connections before
plaque deposition, and inhibition of C1q, C3, or the microglial

complement receptor CR3 diminishes phagocytic microglia,
resulting in protection against synapse loss (151).

Investigations conducted in transgenic AD mice also address
the effects of NSAIDs on amyloid load and inflammation
(152). These studies suggest that NSAIDS not only exert
neuroprotection through the suppression of inflammatory events
but also reduce early amyloid pathology by mechanisms that
remain unclear (153). Of note, two selective cyclooxygenase-2
(COX-2) inhibitors are found to be effective in rescuing LTP
impairment by synthetic soluble Aβ1−42, whereas the same effect
is not achieved with the cyclooxygenase-1 (COX-1) inhibitor
piroxicam (154). Similarly, ibuprofen prevents early memory
decline in AD model, and this effect is associated with activation
of hippocampal plasticity-related genes (155). Overall, these
studies indicate that NSAIDs exert neuroprotection and prevent
memory decline through the modulation of multiple neuronal
pathways (156).

BIOMARKERS OF NEUROINFLAMMATION
IN ALZHEIMER’S DISEASE

Most of the failed AD clinical trials—including trials
investigating anti-inflammatory compounds—did not assess any
biological in vivo identification of AD-related pathomechanistic
alterations, thus preventing proof of mechanisms (157)
and including a percentage of subject displaying non-AD
pathophysiology (158). Therefore, robust biomarkers–drug
codevelopment pipelines are strongly recommended for
next-generation clinical trials (159).

Fluid Biomarkers of Neuroinflammation in
Alzheimer’s Disease
Modifications of the concentrations of several cytokines (160–
164) and other inflammatory biomarkers associated with
either microglia—e.g., soluble TREM2 (sTREM2), monocyte
chemoattractant protein-1 (MCP-1), and YKL-40 (165–168)—
or astroglia, e.g., YKL-40 (161), are extensively investigated
in AD patients. These alterations, potentially, reflect the
inflammatory mechanisms within the CNS coupled with the
neurodegenerative pathways (11, 166). A recent meta-analysis
reports higher concentration of YKL-40, sTREM2, MCP-1,
and TGF-β in the CSF of AD patients compared to controls
(160). In particular, robust evidence from several studies focus
on CSF YKL-40 that shows a fair classificatory capability in
differentiating between AD individuals and controls as well
as in predicting the progression from the asymptomatic to
later prodromal and dementia stages (166–168). However, its
function in differentiating subjects with AD and other dementia
remains controversial since neuroinflammation seems to be
associated with neurodegeneration tout court and not with
specific neurodegenerative pathways (12, 169).

The clinical meaning of inflammatory biomarkers in blood
needs to be elucidated, as they might represent low-invasive
and low-cost screening tools of cerebral inflammatory activity
during the early asymptomatic stages of AD (170–172).
The main issue concerning the peripheral measurements of
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inflammatory biomarkers is that they may not directly reflect
brain neuroinflammation (163). Nonetheless, IL-6 and IL-1β
concentrations are significantly higher in AD compared to
cognitively normal controls in four meta-analysis (160–163).
IL-1β is a key molecule participating in the inflammatory
response, cell proliferation, differentiation, and apoptosis.
Some evidence suggest that IL-1β is produced and secreted
by microglia cells in response to Aβ deposition, thus resulting
in chronic neuroinflammation and, eventually, neuronal
disruption, dysfunction, and neurodegeneration (173, 174).
A negative correlation between CSF concentrations of this
cytokine and cognitive scores has also been described in AD
(175). IL-6 levels are associated with the severity of cognitive
decline as assessed by Mini-Mental State Examination (MMSE)
scores (161). Notably, peripheral IL-6 concentrations positively
correlate with the cerebral ventricular volumes (176) and with
matched CSF samples (177) in AD. The peripheral modifications
of IL-6 levels could begin in the prodromal phase of AD; indeed,
a recent meta-analysis highlights the greater IL-6 concentrations
in MCI subjects compared to controls (160). In line with these
findings, a longitudinal study reports the association of elevated
plasma IL-6 levels with a greater risk of cognitive decay, at
2-year clinical follow-up. Other cytokines emerging as candidate
peripheral inflammatory biomarkers are IL-2, IL-12, IL-18, and
TGF-β (160–163).

Overall, these studies have several biases to consider. First,
the risk of misdiagnosis is high since AD and MCI diagnoses
are mainly clinical based in the majority of the studies lacking
the necessary biomarker information [e.g., cerebral amyloid-
positron emission tomography (PET) uptake or CSF Aβ1−42

measurements]. This means that at least 20–25% of the AD
patients and MCI subjects enrolled in the previous studies
do not have cerebral amyloid deposition (6). Moreover, these
studies are cross-sectional without an appropriate follow-up,
and this could lead to incorrect MCI diagnosis. Indeed, the
clinical picture of MCI is heterogeneous not only with a 10–15%
annual rate of developing AD (178) but also with a consistent
proportion of individuals who recover, remain stable, or develop
ND other than AD (179). In addition, the MCI classification
(e.g., amnestic or non-amnestic), which significantly impacts
clinical outcome (8, 179, 180), is inadequately specified in most
of the studies. Furthermore, data regarding comorbidities—such
as cerebrovascular diseases, coronary diseases, atrial fibrillation,
periodontitis, and diabetes or concomitant drugs (e.g., non-
steroidal inflammatory medications, corticosteroids, statins) that
can significantly modify peripheral inflammatory biomarkers—
have been rarely reported. For instance, persistent higher
plasma levels of IL-1β and IL-6 are observed in relation to
cardiovascular diseases as well as atherosclerosis (181, 182).
Other potential biases include technical issues: detectionmethods
(e.g., ELISA kits) for inflammatory biomarkers in biological
fluids are consistently different among studies as well as sample
handling approaches [e.g., measurements on different fluids
matrix (plasma or serum) and storage protocols].

In conclusion, neuroinflammation is certainly a relevant
pathophysiological mechanism of neurodegeneration in AD.
However, we still lack reliable inflammatory biomarkers to be

used in a screening context of use. In essence, sTREM2, MCP-
1, IL-6, TGF-β, and, particularly, YKL-40 are interesting novel
inflammatory CSF biomarkers, but they cannot be proposed
in detecting the early asymptomatic phases of AD, as it
would be altered with disease-modifying treatments. Prospective
observational studies enrolling large cohorts of participants
with accurate clinical and biomarker-based characterizations are
needed to identify potentially effective inflammatory blood-based
biomarkers of AD.

PET Radiotracers Targeting
Neuroinflammation in Alzheimer’s Disease:
State-of-the-Art on Human Studies
There are several genetic association studies highlighting a
key role of neuroinflammation in AD by demonstrating the
occurrence of specific genetic variations related to immune
response in patients with ND including AD (183). As a
direct consequence, the possibility of tracking the regional
evolution of neuroinflammation and imaging non-invasively
the neuroinflammatory process in AD patients opens up
exciting novel opportunities to monitor disease progression and,
eventually, to explore immune-therapeutic strategies to prevent
or decelerate disease progression.

It is interesting to note that it could be possible to
assess the neuroinflammatory status by conventional [18F]-
fluorodeoxyglucose (FDG)-PET, provided that the whole uptake
curve is studied (184). Neuroinflammation can be measured
more specifically using targeted radio-ligands for PET imaging—
that allow accomplishing the regional in vivo exploration of
neuroinflammation—like [11C]-PK11195 (185). A number of
studies show alterations in [11C]-PK11195 binding in AD and
several other ND (186–189), Parkinson’s disease (190), and
progressive supranuclear palsy (189, 191), and the distributions
of [11C]-PK11195 found in these studies are akin to the well-
known distribution of neurodegeneration (e.g., posterior cortical
regions in AD). However, one should also note that translocator
protein (TSPO) gene polymorphisms can greatly affect binding
affinity (192), and TSPO expression is not circumscribed to
activated microglia, which can also occur on astrocytes, or
endothelial cells (193). In this context, a number of novel TSPO-
specific PET radiotracers are currently available, both carbon-
11 (i.e., [11C]-PK11195, [11C]-PBR28) and fluoroine-18 labeled
[e.g., [18F]-GE-180, [18F]-DPA-714, and [18F]-PBR06], typically
used in preclinical investigations (194, 195). In addition, a very
recent tracer named [18F]-FEPPA is able to provide a high
potential for TSPO-PET in humans (192).

Interestingly, microglia activation is only one (albeit
important) part of the chain of events that eventually lead to
neuroinflammation and that can potentially be imaged with
even more specific tracers. For example, protein misfolding,
aggregation, and accumulation may trigger glial response
and, therefore, neurotoxicity. To date, the causal relationships
between neuroinflammation and other pathogeneticmechanisms
of AD is not elucidated yet. PET radiotracers can represent a
suitable tool for untangling these dynamics along the roadmap
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of discovering new targets for anti-inflammatory disease-
modifying strategies. In this context, a number of specific
PET tracers can target protein aggregates in the brain. For
example, the [11C]-Pittsburgh compound-B ([11C]-PIB) is
able to bind Aβ fibers (186, 190). Aβ can also be imaged
through, e.g., (18F)-labeled derivatives like [18F]-Florbetaben,
[18F]-Florbetapir, and [18F]-Flutemetamol (196). In addition,
hyperphosphorylation and abnormal aggregation of tau, which
is crucial to neuronal activity, can be imaged using definite
tracers, using specific ligands: T807, Flortaucipir as well as the
phenyl/pyridinyl-butadienyl-benzothiazole/benzothiazolium
derivative PBB3 (197, 198). Additionally, tracers [18F]-FA and
[18F]-EFA (analogs of 2-fluoroacetate, which can be utilized to
inhibit glial cell metabolism) are able to selectively enter the
metabolic compartment (199) and may, therefore, be promising
candidates for evaluating glial metabolism when thinking of
astrocytic response.

Finally, there are other molecular targets that can offer a more
exhaustive depiction of in vivo neuroinflammation (200). For
example, the cyclooxygenase (COX) enzyme is involved in both
inflammation and generation of proinflammatory mediators.
In this context, COX-1 radioligands, like [11C]-KTP-Me, show
promising results in AD animal models (201). In addition, the
cannabinoid receptor type 2 (CB2R) is subject to upregulation in
activated microglia in various ND (202), possibly in conjunction
with a neuroprotective effect (203), and postmortem studies
emphasize the potential of compounds like [11C]-RS-016, which
show high specific binding (204). This is emphasizing the role
of CB2R as an additional potential target for PET imaging
of neuroinflammation, in humans. Further encouraging targets
examined in preclinical examinations are the purinergic receptor
P2X7 ([11C]-GSK1482160) (205) and the adenosine receptor
A2AR (i.e., [11C]-TMSX).

WHY DID ANTI-INFLAMMATORY THERAPY
FAIL IN ALZHEIMER’S DISEASE?

Clinical Trials of Anti-inflammatory Drugs
in Alzheimer’s Disease
NSAIDs have long been hypothesized to play a protective role
in AD. This assumption is reinforced by several cohort analyses.
A recent meta-analysis including 16 investigations demonstrate
that present or previous utilization of NSAIDs is linked to a
decreased relative risk of AD (0.81; 95% confidence interval,
0.70–0.94) (206). Despite the observational epidemiological data
suggesting a protective effect of NSAIDs and the evidence for a
biologically plausible role for anti-inflammatory treatment, all
placebo-controlled trials of a wide range of anti-inflammatory
agents (NSAIDs, corticosteroids, and others) in both mild-to-
moderate AD patients (Table 1) and MCI subjects (Table 2)
are negative. Studies in cognitively normal subjects at risk
of developing AD are also negative (Table 3). The first,
large primary prevention study of naproxen and celecoxib
[Alzheimer’s Disease Anti-inflammatory Prevention Trial
(ADAPT)] has been prematurely interrupted for cardiovascular
safety concerns after the enrollment of 2, 528 subjects in
the study and their treatment for a median time of 2 years.
The study is not able to support the hypothesis that either
drugs could postpone AD beginning in adults with a family
history of dementia (227). A subsequent 2-year, primary
prevention trial [Impact of Naproxen Treatment in Pre-
symptomatic Alzheimer’s Disease (INTREPAD)] has been
used to compare the effects of naproxen and placebo on the
Alzheimer Progression Score (APS) in 195 cognitively normal
older persons with a positive family history of AD (226). Over
time, the APS scores progressively increase to a similar extent
in both study groups, thus suggesting that naproxen does not

TABLE 1 | Double-blind, randomized, placebo-controlled trials using anti-inflammatory drugs in mild-to-moderate AD patients.

Drug Dose (mg/day) Therapy duration (month) Number of patients Main effect References

Celecoxib 400 12 285 Neutral (207)

Celecoxib 400 12 425 Neutral/detrimental (208)

Dapsone 100 12 201 Neutral (209)

Diclofenac 50 6 41 Beneficial (210)

Hydroxychloroquine 200–400 18 168 Neutral (211)

Ibuprofen 800 12 132 Neutral (212)

Indomethacin 100–150 6 44 Beneficial (213)

Indomethacin 100 12 51 Beneficial (214)

Naproxen 440 12 351 Neutral (215)

Nimesulide 200 3 40 Neutral (216)

Prednisone 10 12 138 Neutral/detrimental (217)

Rofecoxib 25 12 351 Neutral/detrimental (215)

Rofecoxib 25 12 692 Neutral (218)

Tarenflurbil 800–1,600 12 210 Neutral (219)

Tarenflurbil 1,600 18 1,684* Neutral/detrimental (220)

Tarenflurbil 1,600 18 840* Neutral (221)

*Patients with mild AD.
AD, Alzheimer’s disease.
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TABLE 2 | Double-blind, randomized, placebo-controlled trials using NSAIDs in MCI individuals.

Drug Dose (mg/day) Therapy duration (month) Number of patients Main effect References

Celecoxib 200–400 18 88* Beneficial (222)

Rofecoxib 25 48 1,457 Detrimental (223)

Triflusal 900 13 257 Neutral/beneficial (224)

*Subjects with age-associated memory decline.
MCI, mild cognitive impairment; NSAIDs, non-steroidal anti-inflammatory drugs.

TABLE 3 | Double-blind, randomized, placebo-controlled primary prevention trials using NSAIDs in AD.

Drug Dose (mg/day) Therapy duration (month) Number of patients Main effect References

Celecoxib 400 24 2,528 Neutral/detrimental (225)

Naproxen 220 24 160 Neutral (226)

Naproxen 440 24 2,528 Neutral/detrimental (225)

AD, Alzheimer’s disease; ADAPT, Alzheimer’s Disease Anti-inflammatory Prevention Trial; NSAIDs, non-steroidal anti-inflammatory drugs.

provide any benefit over placebo in slowing the progression of
presymptomatic AD.

Stage-Dependent Neuroinflammatory
Process in the Alzheimer’s Brain
In spite of emerging epidemiological evidence, all large,
longstanding, randomized, placebo-controlled investigations
aiming at attenuating cerebral inflammation in AD display
negative outcomes. The fact that anti-inflammatory therapies
are not able to safeguard patients with overt dementia has
been debated. Actually, a trial recruiting MCI individuals
highlights that rofecoxib could rush the conversion to AD (223).
Moreover, a primary prevention study involving celecoxib and
naproxen in cognitively healthy elderly individuals showing
family history of AD has been terminated in advance due to
the existence of negative or harmful effects generated by the
drugs (225, 228). Additional longstanding, controlled studies
examining anti-inflammatory drugs, including tarenflurbil in
mild AD patients (220), prednisone (217), and celecoxib
(208) in mild-to-moderate AD patients, report the presence
of detrimental consequences vs. placebo. NSAIDs negative
and/or harmful effects, documented in AD, MCI, as well as
in the stages preceding AD, are apparently in conflict with
epidemiological data indicating diminished AD incidence after
sustained treatment with NSAIDs. This is potentially related to
the different impact of the disease stages on NSAIDs exposure.
In this context, two different inflammatory responses in the AD
pathophysiological process are assumed to exist: (I) one, at the
early preclinical stage, with a predominantly proinflammatory
component that is amenable to therapy; (II) another, at a
later clinical stage, with predominantly innate/adaptive immune
reactions not responsive to anti-inflammatory therapy (19).
During the early inflammation stage, neurons stimulated by
Aβ initiate the inflammatory process, and then, they induce
intermediate microglia cells activation and their recruitment
around Aβ-burdened neurons. Both neurons and microglia elicit
a process exacerbating the disease characterized by the release

of proinflammatory mediators (cytokines and chemokines)
(Figure 3). The inflammatory immune response of the late
plaque-associated stage involves different processes, including
full microglial activation, microgliosis, and CNS invasion by
peripheral monocytes. Both microglia and monocytes participate
in phagocytic activities to eradicate toxic Aβ oligomers and,
probably, cellular debris (19). This assumption is in line with
data from the Rotterdam (229), the Cache County (230), and the
US Veterans (231) observational studies. The above-mentioned
analyses emphasize the lack of protection following 2-year
NSAID exposure before dementia onset. In case the timing of
exposure defines whether NSAID administration is beneficial or
harmful, then the negative results of the previously mentioned
studies (ADAPT and INTREPAD) are not unexpected, given
that the timing of exposure of the participants to NSAIDs was
restricted (2 years). On this basis, NSAIDs might be useful
for AD prevention when their administration occurs years
before the usual onset age; however, when used later in life,
they might increase the risk of disease. We cannot exclude
the possibility that (I) the majority of the advantageous effects
of NSAIDs, documented from epidemiological studies, may
originate from different types of bias (232), and (II) actually,
there is no established impact of NSAIDs on AD prevention or
treatment (233).

Alector/Abbvie claim the generation of a monoclonal
antibody (AL002) that binds and activates TREM2. AL002
entered its first phase 1 trial in 51 healthy adults and 16 AD
patients (234). Alector is also starting its first trial of the anti-
CD33 antibody, AL003. The microglial receptor CD33 opposes
the effects of TREM2 signaling andmay present a more amenable
target because it would be inhibited rather than activated. In
the first phase of the trial, 42 healthy adults will receive a single
treatment of either placebo or one of seven different AL003 doses.
The second, multiple-dose phase will enroll 12 AD patients, two
of whom will receive placebo (234).

Of note, other drugs targeting neuroinflammation to treat AD
are being developed and underwent clinical testing. XPro1595
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FIGURE 3 | Schematic representation of neuroinflammatory process occurring during the early stages of the AD pathology and potential points of attack of NSAIDs

and anti-inflammatory drugs. In this process, neurons surrounded by Aβ oligomers release proinflammatory cytokines triggering the intermediate activation of microglia

and their mobilization toward Aβ-burdened neurons. Both Aβ-burdened neurons and activated microglia are responsible for a disease-aggravating process in which

the release of proinflammatory cytokines and chemokines predominates. NSAIDs and anti-inflammatory drugs may be potentially effective during this early

inflammatory phase, antagonizing the aggravating activity of proinflammatory mediators. Selective agents stabilizing microglia may also be effective in attenuating the

inflammatory process. Aβ, amyloid beta; AD, Alzheimer’s disease; NSAIDs, non-steroidal anti-inflammatory drugs.

is currently undergoing phase 1b clinical trials. Other examples
are GC021109 and NP001. XPro1595 is a variant of TNF-
α that forms heterotrimers with native soluble TNF-α and
prevents its interaction with the type 1 TNF-α receptors
(235). Unlike other non-selective TNF-α inhibitors, XPro1595
does not suppress innate immunity or myelination mediated
by type 2 receptors (236). Differently from etanercept, long-
term treatment with XPro1595 does not suppress hippocampal
neurogenesis, learning, and memory in adult mice (237).
In 5xFAD mice, twice-weekly subcutaneous administration of
XPro1595 for 2 months reduced brain amyloid deposition and
immune cell infiltration, and improved synaptic function (238).
In young TgCRND8 mice, continuous subcutaneous infusion
of XPro1595 for 1 month prevented brain amyloid deposition
and normalized hippocampal neuron synaptic function (239).
In 3xTg mice, intracranial administration of XPro1595 reduced
amyloid pathology (240). In aged wild-type rats, intracranial
infusions of XPro1595 for 6 weeks reduced microglia activation
and improved synaptic function and cognition (241). A 12-week,
open-label, phase 1b study of XPro1595 (weekly injections of

0.03, 1.0, or 3.0 mg/kg) is ongoing in 18 mild-to-moderate AD
patients (NCT03943264). Participants were requested to have a
positive amyloid test and evidence of peripheral inflammation
[elevated blood C-reactive protein (CRP)]. Biomarkers of
neuroinflammation in blood and CSF (CRP, TNF-α), IL-1β, and
IL-6 are being measured.

GC 021109 targets microglial cells by binding the P2Y6
receptor, a metabotropic G-protein-coupled receptor, whose
natural ligand is adenosine diphosphate, a metabolite of
ATP. Astrocytes release ATP in response to the presence
of Aβ aggregates and P2Y6 signaling is thought to be
involved in shifting the phenotype of microglia, which tend
to surround amyloid plaques, from patrolling to phagocytic
(242). GC 021109 has been reported in the biotech press
to stimulate both microglial phagocytosis and inhibit
microglial release of proinflammatory cytokines such as
IL-12; however, this information is not published in the
peer-reviewed literature. A phase 1a study in 44 healthy
volunteers has been carried out in 2015 (NCT02254369),
and a 4-week, phase 1b study in 39 mild-to-moderate AD
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was completed in 2016 (NCT02386306). However, no results
were reported.

NP001 is a pH-adjusted intravenous formulation of purified
sodium chlorite. Within monocytes/macrophages, chlorite is
converted into taurine chloramine that downregulates the
nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB) expression and inhibits production of proinflammatory
cytokine IL-1β. These mechanisms of downregulation transform
inflammatory monocytes/macrophages from a proinflammatory
to a basal phagocytic state. NP001 has been tested in patients with
amyotrophic lateral sclerosis (243). A small study planned to be
carried out in 14 mild-to-moderate AD patients (NCT03179501)
was interrupted in 2018 for poor enrollment.

Preliminary Evidence of a Potential
Biological Effect of NSAIDs
Profiling molecular pathways related to ND is expected to
reveal novel pathways for therapeutic agents. In this context,
inflammation represents a primarily involved pathway (12, 19).
Interestingly, a meta-analysis including 175 studies reports
changes in several inflammatory biomarkers (IL-6, CRP, and
TNF-α) in AD (161). Another meta-analysis including nine
longitudinal studies shows a protective effect by NSAIDs against
AD progress (244). Changes in the concentrations of blood
(serum) inflammatory proteins—including IL-6, CRP, and TNF-
α–define a serum-based proteomic signature potentially useful
for AD diagnosis (245–247). Hence, according to the literature,
anti-inflammatory compoundsmight be employed as therapeutic
agents in AD and others ND. In this regard, a novel model based
on PM for targeted NSAIDs therapy to specific AD patients is
recently proposed by O’Bryant and colleagues. In particular, they
determine whether a blood proteomic companion diagnostic
(CDx) is able to predict response to NSAID treatment (248). The
analysis of the proteome in plasma samples from the Alzheimer’s
Disease Cooperative Studies (ADCS) anti-inflammatory clinical
trial, including 1-year administration of rofecoxib (25mg once
daily), naproxen (220mg twice daily), or placebo (N = 351)
(215)—indicates that an overall NSAID-general CDx is accurate
in detecting treatment response with 87% accuracy. Drug-specific
companion diagnostics—Rofecoxib-CDx and Naproxen-CDx—
generate a very high degree of accuracy in both rofecoxib (98%)
and naproxen (97%) arms (234). This is a relevant example of
direct evidence for a precision medicine-based model to address
AD treatment via the creation of CDx-driven therapeutics.

Preliminary Evidence of a Potential
Biological Effect of Monoclonal Antibodies
Selectively Targeting Aβ Protofibrils
In the last 20 years, a rising body of experimental studies has
indicated that soluble Aβ protofibrils are more synaptotoxic
than insoluble Aβ plaque cores. For instance, the former display
higher rates of synapse structure impairment, including LTP, than
plaques (249–251). Of note, solubilization of Aβ plaque cores is
strictly related to the release of smaller Aβ species, such as dimers,
and downstream increase in synaptotoxicity (252). Therefore, it is

argued that prefibrillar Aβ1−42 assemblies, rather thanmonomers
or dimers, are the proximate mediators of Aβ toxicity (253).

With regard to CNS immune resident cells, growing evidence
indicates that small soluble Aβ1−42 protofibrils are the main
trigger of microglial activation. Indeed, experimental models of
AD indicate that both microglia and astrocytes display not only
a high sensitivity to Aβ structure (16, 17, 33, 68, 86) in the
internalization process but also emphasize their greater affinity
for soluble Aβ protofibrils than mature insoluble fibrils (254,
255). In this context, it is reported that small soluble Aβ1−42

protofibrils, rather than fibrils, can induce microglial activation,
as reflected by increased cerebral levels of TNF-α (255).

The murine monoclonal antibody mAb158 displays a 1, 000-
fold higher selectivity for protofibrils [N-terminal (1–16) of the
Aβ sequence] vs. monomers and 10–15 times more efficient
binding to protofibrils vs. fibrils (256, 257).

Several studies, employingmAb158, suggest that astrocytic Aβ

uptake depends on size and/or composition of Aβ aggregates,
since astrocytes, if possible, engulf oligomeric Aβ over its fibrillar
aggregation states (258).

Recent trials conducted in mice models of AD demonstrate
that the antibody significantly slows down Aβ accumulation
in astrocytes reducing the downstream Aβ-induced neuronal
toxicity (256). The authors argue that their results provide a
strong evidence for astrocytes to play a key mechanistic role in
anti-Aβ immunotherapy.

The phase 2 preliminary results regarding the humanized
IgG1 monoclonal version of mAb158 [BAN2401 (Biogen,
Eisai Co., Ltd./BioArctic Neuroscience AB)]1 (259) show that
BAN2401 significantly reduces Aβ-PET standardized uptake
value ratio (SUVr) as well as CSF neurogranin, p-tau, and
neurofilament light chain protein levels over a 18-month clinical
trial (260, 261).

EXERCISE AS AN ANTI-INFLAMMATORY
THERAPY IN ALZHEIMER’S DISEASE

Acute, unaccustomed exercise (i.e., of an unusual duration
and/or intensity) can increase oxidative stress and act as a
proinflammatory stimulus (262, 263). However, this response
is attenuated when exercise is performed regularly, with strong
evidence actually supporting that “chronic” exercise upregulates
an endogenous systemic anti-inflammatory response (16).

Large cohort studies indicate that higher levels of physical
activity are inversely associated with inflammatory biomarkers,
for instance CRP (264, 265). There is meta-analytical evidence
that regular physical exercise can reduce inflammation-related
biomarkers (e.g., CRP, TNF-α) in middle-aged and older adults
(266, 267), these benefits being also present in individuals with
cognitive impairment (268). Animal research indicates that the
anti-inflammatory effects of exercise can also reach the brain

1https://clinicaltrials.gov/ct2/show/NCT01230853 (A Randomized, Double-blind,
Placebo-controlled, Combined Single Ascending Dose and Multiple Ascending
Dose Study to Assess Safety, Tolerability, Immunogenicity, Pharmacodynamic
Response, and Pharmacokinetics of Intravenous Infusions of BAN2401 in Subjects
With Mild to Moderate Alzheimer’s Disease).
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tissue. Physical exercise training results in an enhanced anti-
inflammatory status—as reflected by an increased expression
of anti-inflammatory cytokines including IL-10β coupled with
the decrease in proinflammatory cytokines (including TNF-
α)—at the hippocampus level in a rat model of AD (269).
Chronic exercise also promotes a conversion of the microglia
from the proinflammatory (M1) to the anti-inflammatory (M2)
phenotype in different rodent models of disease, including
AD (269–272).

Although the mechanisms underlying exercise anti-
inflammatory effects remain to be clearly elucidated, several
pathways are currently proposed. Notably, contracting muscles
act as an endocrine organ by releasing myokines (i.e., cytokines
and other small peptides) to the bloodstream, which, in
turn, induce numerous health benefits (such as a decrease
in inflammation) at the multisystemic level, including the
brain (273, 274). Muscle-derived IL-6 promotes the systemic
production of anti-inflammatory cytokines (IL-1Ra, IL-10) and
downregulates the expression of proinflammatory cytokines
(TNF-α, IL-1β) (275). Other proposed mechanisms include
exercise-induced reductions in adiposity (which, especially
visceral fat, contribute to systemic inflammation), on the one
hand, and increases in vagal tone, on the other hand, through
the cholinergic anti-inflammatory pathway, an evolutionarily
ancient circuit that modulates immune responses and the
progression of inflammatory diseases (276, 277). In conclusion,
given the documented relevance of inflammation in most
ND (169), there is strong biological rationale to support that
exercise might serve as a coadjuvant therapeutic strategy against
such conditions.

PERSPECTIVES: PRECISION MEDICINE
FOR TARGETING NEUROINFLAMMATION

General Overview on Precision Medicine
The official launch of the US Precision Medicine Initiative
(PMI), in 2015 (https://obamawhitehouse.archives.gov/
precision-medicine), by the US President Obama followed
by the National Institutes of Health (NIH) development of the
US PMI Cohort Program (PMI-CP) (278) and the creation
of the US “All of Us Research Program” (available at https://
allofus.nih.gov/) are contributing to make precision medicine
one of the key topics in biomedical research, worldwide. These
facts support the evolution of Medicine from the outdated
“one-size-fits-all” paradigm—according to which treatments
are conceived for the “average patient”—to the search for
comprehensive and accurate stratification of individuals
and future individually tailored therapeutic modalities and
targeted therapies (279). Indeed, genetic and biological
heterogeneity among individuals sharing the same clinical
features (so-called clinical syndrome) is highly frequent in
polygenic, multifactorial diseases with complex and non-linear
pathophysiological dynamics, such as cancer and AD. In this
regard, it is acknowledged that the adaptive and innate immune
systems are characterized by enormous individual heterogeneity
that accounts for the subject-specific response to vaccines and

other immunomodulatory therapies (280–282). As a result,
some drugs, regularly administered, can be of benefit only to
a restricted subset of patients; other drugs might even have
detrimental effects to some definite ethnic groups (283). Hence,
the identification of the molecular/cellular and environmental
factors indicating the presence and the type of reaction of
a single AD patient to a specific therapy is crucial (284).
The shift to individualized therapies and targeted treatments
needs exploratory, unbiased, high-throughput, integrative,
large-scale analyses of the features of the cohort’s individuals
with the disease (279, 284, 285). Cohorts stratified according
to different multimodal-throughput technological platforms
(“omic” sciences)—via systems biology (285, 286)—and different
neuroimaging modalities—via systems neurophysiology (285)—
can be assimilated in the disease modeling to stratify and
predict AD patient subgroups (279, 285). Both systems biology
and neurophysiology enable to perform a holistic, systemic
exploration of complex interactions in biological systems, thus
allowing an overview of cells/groups of cells, tissues, organs,
organisms, and populations at multiple scales. High-throughput,
integrative approaches permit to recover exhaustive biological
information, supported by advanced powerful bioinformatics.
This will enable the inclusive integration of both multiomic and
clinical data to attain fast and significant interpretation. Precision
medicine capitalizes on these theoretical and technological
advancements (287). Particularly, the integration of the “omics”
and the development of the “multiomic” disciplines—such
as proteogenomics, whereby the involved technologies are
next-generation sequencing and mass spectrometry—seem to
be able to offer a substantial support for accurate phenotype
prediction, individualized patient management, and precision
medicine (288, 289). Establishing precision medicine needs
the implementation of a network of integrated disciplines
and methods including the “omic” sciences, neuroimaging
modalities, cognitive examinations, and clinical features. All
these congregate toward many domains investigated using the
systems theory approach (290). This allows the development
of models explaining all systems levels—explored via systems
biology and systems neurophysiology—and the different
categories and scales of spatiotemporal data describing the
complexity and clinical heterogeneity of any polygenic disease
belonging to any medical fields, from oncology, to immunology
(284) (Figure 4), to neurology (285, 291, 292). Precision
medicine aims at ameliorating the efficacy of prevention
strategies and therapies using customized treatments tailored
on the individual’s “biological make-up” (285, 291, 292), based
on the “P4 Medicine” (P4M) framework (293). To safeguard
the rapid and full expansion of precision medicine in AD,
the international Alzheimer Precision Medicine Initiative
(APMI) and its own Cohort Program (APMI-CP) (available at
https://www.apmiscience.com/)—thematicall associated with
the US PMI and the US “All of Us Research Program”—are
currently established and operational (279). In this connection,
a therapeutic plan based on immune/inflammation modulation
for a subset of AD and associated dementias is currently ongoing
within the “Korean AD Research Platform Initiative Based on
Immune-Inflammatory Biomarkers” (K-ARPI) (294).
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FIGURE 4 | A roadmap proposed toward personalized immunology. There exist both horizontal and vertical roadmaps toward personalized immunology. Vertically, to

translate sample stratification to clinical therapies, it is necessary to utilize the state-of-the-art “Omics” analysis and network integration approaches to stratify patients

into subgroups and then implement personalized therapeutic approaches to treat individual patients, which needs to overcome various types of barriers at different

steps. Horizontally, it might be necessary to go through at least seven steps to enable personalized immunotherapies: (1) classic symptom-based approach, (2) deep

phenotyping approach, (3) multilayer “Omics”-based profiling, (4) cell-type-specific “Omics,” (5) state-specific “Omics,” (6) single-cell “Omics” and dynamic response

analysis of immune cells, and (7) integrated network analysis. Under the first layer (the so-called stratification layer), different colors of patients indicate individual

patients with different cellular and/or molecular profiles, while brackets represent patient subgroups; under the second layer (the so-called technique layers), different

small circles with distinct colors indicate different immune cells, while big circles represent patient (sub)groups; under the technique layers, the snapshot of microarray

representing either microarray-based or RNA-seq-based transcriptome analysis; under the third layer (the so-called therapeutic layer), the syringes with different colors

or tonalities indicate different therapeutic approaches; P1,..., Pn at step 7 designate different patients; G1, G2, G3, and G4 represent different genes, the arrows

between them representing regulatory relationships. DEG, differential expression gene; FACS, fluorescence-activated cell sorting; KNN, K-nearest neighbors; PEEP,

personalized expression perturbation profile; sc, single-cell; SSN, sample-specific network; SVM, support vector machine; TCR/BCR, T-cell receptor/B-cell receptor.

From Delhalle et al. (284). Copyright© 2018, Springer Nature. Reprinted with permission from Creative Commons CC BY. S.

CONCLUSIONS

Systems theory/biology-based studies are needed to untangle
the spatiotemporal dynamics of neuroinflammation and its
related subcomponents. Biomarkers simultaneously tracking
different molecular pathways (body fluid matrixes) along with
brain neuroinflammation endophenotypes (neuroimaging
markers) can untangle key temporal–spatial dynamics among
glia, neuroinflammation, and other AD pathophysiological
mechanisms. Implementing this approach will be necessary to
fill the gap in the understanding of whether neuroinflammation
represents a direct pathophysiological or compensatory

mechanism or both, along the AD continuum. According
to this assumption, a new pathway (mechanism)-based
pharmacological model—intended to establish effective and
functional biomarker-guided targeted and tailored treatments for
preventive and neuroinflammation-freezing strategies—needs to
be developed.
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