A. Association, Alzheimer's disease facts and figures, vol.13, pp.325-73, 2017.

F. Panza, M. Lozupone, G. Logroscino, and B. P. Imbimbo, A critical appraisal of amyloid-?-targeting therapies for Alzheimer disease, Nat Rev Neurol, vol.15, pp.73-88, 2019.

C. R. Jack, D. A. Bennett, K. Blennow, M. C. Carrillo, B. Dunn et al., NIA-AA research framework: toward a biological definition of Alzheimer's disease, Alzheimers Dement, vol.14, pp.535-62, 2018.

H. Hampel, M. Mesulam, A. C. Cuello, M. R. Farlow, E. Giacobini et al., The cholinergic system in the pathophysiology and treatment of Alzheimer's disease, Brain, vol.141, pp.1917-1950, 2018.

R. A. Sperling, P. S. Aisen, L. A. Beckett, D. A. Bennett, S. Craft et al., Toward defining the preclinical stages of Alzheimer's disease: recommendations from the national institute on Aging-Alzheimer's association workgroups on diagnostic guidelines for Alzheimer's disease, Alzheimers Dement, vol.7, pp.280-92, 2011.

B. Dubois, H. H. Feldman, C. Jacova, H. Hampel, J. L. Molinuevo et al., Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria, Lancet Neurol, vol.13, pp.614-643, 2014.

G. M. Mckhann, D. S. Knopman, H. Chertkow, B. T. Hyman, C. R. Jack et al., The diagnosis of dementia due to Alzheimer's disease : recommendations from the national institute on Aging-Alzheimer's association workgroups on diagnostic guidelines for Alzheimer's disease

&. Alzheimer and . Dement, , vol.7, pp.263-272, 2011.

M. S. Albert, S. T. Dekosky, D. Dickson, B. Dubois, H. H. Feldman et al., The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the national institute on Aging-Alzheimer's association workgroups on diagnostic guidelines for Alzheimer's disease

&. Alzheimer and . Dement, , vol.7, pp.270-279, 2011.

C. R. Jack, D. A. Bennett, K. Blennow, M. C. Carrillo, H. H. Feldman et al., A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers, Neurology, vol.87, pp.539-586, 2016.

H. Hampel, S. E. Bryant, J. L. Molinuevo, H. Zetterberg, C. L. Masters et al., Blood-based biomarkers for Alzheimer disease: mapping the road to the clinic, Nat Rev Neurol, vol.14, pp.639-52, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01972372

J. L. Molinuevo, S. Ayton, R. Batrla, M. M. Bednar, T. Bittner et al., Current state of Alzheimer's fluid biomarkers, Acta Neuropathol, vol.136, pp.821-53, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01960281

M. T. Heneka, M. J. Carson, J. Khoury, . El, G. E. Landreth et al., Neuroinflammation in Alzheimer's disease, Lancet Neurol, vol.14, pp.388-405, 2015.

H. Akiyama, S. Barger, S. Barnum, B. Bradt, J. Bauer et al., Inflammation and Alzheimer's disease, Neurobiol Aging, vol.21, pp.383-421, 2000.

R. Businaro, M. Corsi, R. Asprino, D. Lorenzo, C. Laskin et al., Modulation of inflammation as a way of delaying Alzheimer's Disease progression: the diet's role, Curr Alzheimer Res, vol.15, pp.363-80, 2018.

J. Rogers, S. Webster, L. F. Lue, L. Brachova, W. H. Civin et al., Inflammation and Alzheimer's disease pathogenesis, Neurobiol Aging, vol.17, pp.681-687, 1996.

P. L. Mcgeer and E. G. Mcgeer, The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases, Brain Res Brain Res Rev, vol.21, pp.195-218, 1995.

P. Eikelenboom, S. Zhan, W. A. Van-gool, and D. Allsop, Inflammatory mechanisms in Alzheimer's disease, Trends Pharmacol Sci, vol.15, pp.447-50, 1994.

M. F. Iulita, A. Ganesh, R. Pentz, F. Aguilar, L. Gubert et al., Identification and preliminary validation of a plasma profile associated with cognitive decline in dementia and at-risk individuals: a retrospective cohort analysis, J Alzheimer's Dis, vol.67, pp.327-368, 2019.

A. C. Cuello, Early and late CNS Inflammation in Alzheimer's disease: two extremes of a continuum?, Trends Pharmacol Sci, vol.38, pp.956-66, 2017.

J. Rogers, Principles for central nervous system inflammation research: a call for a consortium approach, Alzheimer's Dement, vol.14, pp.1553-1562, 2018.

F. Brosseron, M. Krauthausen, M. Kummer, and M. T. Heneka, Body fluid cytokine levels in mild cognitive impairment and Alzheimer's disease: a comparative overview, Mol Neurobiol, vol.50, pp.534-578, 2014.

A. R. Morgan, S. Touchard, C. Leckey, C. O'hagan, A. J. Nevado-holgado et al., Inflammatory biomarkers in Alzheimer's disease plasma

&. Alzheimer and . Dement, , vol.15, pp.776-87, 2019.

K. Nordengen, B. Kirsebom, K. Henjum, P. Selnes, B. Gísladóttir et al., Glial activation and inflammation along the Alzheimer's disease continuum, J Neuroinflammation, vol.16, p.46, 2019.

Z. Fan, D. J. Brooks, A. Okello, and P. Edison, An early and late peak in microglial activation in Alzheimer's disease trajectory, Brain, vol.140, p.349, 2017.

P. Edison and D. J. Brooks, Role of neuroinflammation in the trajectory of Alzheimer's disease and in vivo quantification using PET, J Alzheimer's Dis, vol.64, pp.339-51, 2018.

P. Parbo, R. Ismail, K. V. Hansen, A. Amidi, F. H. Mårup et al., Brain inflammation accompanies amyloid in the majority of mild cognitive impairment cases due to Alzheimer's disease. Brain, vol.140, pp.2002-2013, 2017.

B. Stevens, N. J. Allen, L. E. Vazquez, G. R. Howell, K. S. Christopherson et al., The classical complement cascade mediates CNS synapse elimination, Cell, vol.131, pp.1164-78, 2007.

C. M. Henstridge, M. Tzioras, and R. C. Paolicelli, Glial contribution to excitatory and inhibitory synapse loss in neurodegeneration, Front Cell Neurosci, vol.13, p.63, 2019.

D. P. Schafer, E. K. Lehrman, and B. Stevens, The "quad-partite" synapse: microgliasynapse interactions in the developing and mature CNS, Glia, vol.61, pp.24-36, 2013.

J. Cohen and C. Torres, Astrocyte senescence: evidence and significance, Aging Cell, vol.18, p.12937, 2019.

M. R. Stojiljkovic, Q. Ain, T. Bondeva, R. Heller, C. Schmeer et al., Phenotypic and functional differences between senescent and aged murine microglia, Neurobiol Aging, vol.74, pp.56-69, 2019.

A. M. Arranz, D. Strooper, and B. , The role of astroglia in Alzheimer's disease: pathophysiology and clinical implications, Lancet Neurol, vol.18, issue.18, pp.30490-30493, 2019.

A. Gomez-arboledas, J. C. Davila, E. Sanchez-mejias, V. Navarro, C. Nuñez-diaz et al., Phagocytic clearance of presynaptic dystrophies by reactive astrocytes in Alzheimer's disease, Glia, vol.66, pp.637-53, 2018.

D. V. Hansen, J. E. Hanson, and M. Sheng, Microglia in Alzheimer's disease, J Cell Biol, vol.217, pp.459-72, 2018.

G. J. Harry, Microglia during development and aging, Pharmacol Ther, vol.139, pp.313-339, 2013.

L. C. Graham, M. J. Naldrett, S. G. Kohama, C. Smith, D. J. Lamont et al., Regional molecular mapping of primate synapses during normal healthy aging, Cell Rep, vol.27, pp.1018-1044, 2019.

V. H. Perry and C. Holmes, Microglial priming in neurodegenerative disease, Nat Rev Neurol, vol.10, pp.217-241, 2014.

D. Strooper, B. Karran, and E. , The cellular phase of Alzheimer's disease, Cell, vol.164, pp.603-618, 2016.

F. A. Edwards, Rajendran L, Paolicelli RC. Microglia-mediated synapse loss in Alzheimer's disease, Trends Neurosci, vol.42, pp.2911-2920, 2018.

S. E. Arnold, N. Louneva, K. Cao, L. Wang, L. Han et al., Cellular, synaptic, and biochemical features of resilient cognition in Alzheimer's disease, Neurobiol Aging, vol.34, pp.157-68, 2013.

W. Y. Chan, S. Kohsaka, and P. Rezaie, The origin and cell lineage of microglia-New concepts, Brain Res Rev, vol.53, pp.344-54, 2007.

H. Sarlus and M. T. Heneka, Microglia in Alzheimer's disease, J Clin Invest, vol.127, pp.3240-3249, 2017.

W. J. Streit, Q. Xue, J. Tischer, and I. Bechmann, Microglial pathology, Acta Neuropathol Commun, vol.2, p.142, 2014.

S. Wang and M. Colonna, Microglia in Alzheimer's disease: a target for immunotherapy, J Leukoc Biol, vol.106, 2019.

Y. Tang and W. Le, Differential roles of M1 and M2 microglia in neurodegenerative diseases, Mol Neurobiol, vol.53, pp.1181-194, 2016.

R. M. Ransohoff, A polarizing question: do M1 and M2 microglia exist?, Nat Neurosci, vol.19, pp.987-91, 2016.

V. Stratoulias, J. L. Venero, M. È. Tremblay, and B. Joseph, Microglial subtypes: diversity within the microglial community, EMBO J, vol.38, p.101997, 2019.

E. Simon, J. Obst, and D. Gomez-nicola, The evolving dialogue of microglia and neurons in Alzheimer's disease: microglia as necessary transducers of pathology, Neuroscience, vol.405, pp.24-34, 2019.

Y. Wang, T. Zhu, M. Wang, F. Zhang, G. Zhang et al., Icariin attenuates M1 activation of microglia and A? plaque accumulation in the hippocampus and prefrontal cortex by up-regulating PPAR? in restraint/isolation-stressed APP/PS1 Mice, Front Neurosci, vol.13, p.291, 2019.

G. Forloni and C. Balducci, Alzheimer's disease, oligomers, and inflammation, J Alzheimers Dis, vol.62, pp.1261-76, 2018.

C. K. Glass, K. Saijo, B. Winner, M. C. Marchetto, and F. H. Gage, Mechanisms underlying inflammation in neurodegeneration, Cell, vol.140, pp.918-952, 2010.

B. Cameron and G. E. Landreth, Inflammation, microglia, and Alzheimer's disease, Neurobiol Dis, vol.37, pp.503-512, 2010.

S. L. Yates, J. Kocsis-angle, P. Embury, and K. R. Brunden, Inflammatory responses to amyloid fibrils, Methods Enzymol, vol.309, pp.723-756, 1999.

M. E. Bamberger, M. E. Harris, D. R. Mcdonald, J. Husemann, and G. E. Landreth, A cell surface receptor complex for fibrillar beta-amyloid mediates microglial activation, J Neurosci, vol.23, pp.2665-74, 2003.

Y. Liu, S. Walter, M. Stagi, D. Cherny, M. Letiembre et al., LPS receptor (CD14): a receptor for phagocytosis of Alzheimer's amyloid peptide, Brain, vol.128, pp.1778-89, 2005.

D. M. Paresce, R. N. Ghosh, and F. R. Maxfield, Microglial cells internalize aggregates of the Alzheimer's disease amyloid ?-protein via a scavenger receptor, Neuron, vol.17, pp.553-65, 1996.

C. R. Stewart, L. M. Stuart, K. Wilkinson, J. M. Van-gils, J. Deng et al., CD36 ligands promote sterile inflammation through assembly of a toll-like receptor 4 and 6 heterodimer, Nat Immunol, vol.11, pp.155-61, 2010.

A. R. Simard, D. Soulet, G. Gowing, J. Julien, and S. Rivest, Bone marrowderived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease, Neuron, vol.49, pp.489-502, 2006.

T. Bolmont, F. Haiss, D. Eicke, R. Radde, C. A. Mathis et al., Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance, J Neurosci, vol.28, pp.4283-92, 2008.

C. Condello, P. Yuan, A. Schain, and J. Grutzendler, Microglia constitute a barrier that prevents neurotoxic protofibrillar A?42 hotspots around plaques, Nat Commun, vol.6, p.6176, 2015.

S. E. Hickman, E. K. Allison, E. Khoury, and J. , Microglial dysfunction and defective -amyloid clearance pathways in aging Alzheimer's disease mice, J Neurosci, vol.28, pp.8354-60, 2008.

C. Venegas, S. Kumar, B. S. Franklin, T. Dierkes, R. Brinkschulte et al., Microglia-derived ASC specks cross-seed amyloid-? in Alzheimer's disease, Nature, vol.552, pp.355-61, 2017.

P. Joshi, E. Turola, A. Ruiz, A. Bergami, D. D. Libera et al., Microglia convert aggregated amyloid-? into neurotoxic forms through the shedding of microvesicles, Cell Death Differ, vol.21, pp.582-93, 2014.

S. A. Liddelow, K. A. Guttenplan, L. E. Clarke, F. C. Bennett, C. J. Bohlen et al., Neurotoxic reactive astrocytes are induced by activated microglia, Nature, vol.541, pp.481-488, 2017.

M. T. Ferretti and A. C. Cuello, Does a pro-inflammatory process precede Alzheimer's disease and mild cognitive impairment?, Curr Alzheimer Res, vol.8, pp.164-74, 2011.

W. L. Klein, Synaptotoxic amyloid-? oligomers: a molecular basis for the cause, diagnosis, and treatment of alzheimer's disease? J Alzheimer's Dis, vol.33, pp.49-65, 2012.

J. H. Ledo, E. P. Azevedo, D. Beckman, F. C. Ribeiro, L. E. Santos et al., Cross talk between brain innate immunity and serotonin signaling underlies depressive-like behavior induced by Alzheimer's amyloid-oligomers in mice, J Neurosci, vol.36, pp.12106-12122, 2016.

G. Caruso, C. Fresta, N. Musso, M. Giambirtone, M. Grasso et al., Carnosine prevents A?-induced oxidative stress and inflammation in microglial cells: a key role of TGF-?1, Cells, vol.8, p.64, 2019.

F. Caraci, S. F. Spampinato, M. G. Morgese, F. Tascedda, M. G. Salluzzo et al., Neurobiological links between depression and AD: the role of TGF-?1 signaling as a new pharmacological target, Pharmacol Res, vol.130, pp.374-84, 2018.

S. A. Torrisi, F. Geraci, M. R. Tropea, M. Grasso, G. Caruso et al., Fluoxetine and vortioxetine reverse depressive-like phenotype and memory deficits induced by A?1-42 oligomers in mice: a key role of transforming growth factor-?1, Front Pharmacol, vol.10, p.693, 2019.

C. E. Hanzel, A. Pichet-binette, L. Pimentel, M. F. Iulita, S. Allard et al., Neuronal driven pre-plaque inflammation in a transgenic rat model of Alzheimer's disease, Neurobiol Aging, vol.35, pp.2249-62, 2014.

J. R. Perea, J. Ávila, and M. Bolós, Dephosphorylated rather than hyperphosphorylated tau triggers a pro-inflammatory profile in microglia through the p38 MAPK pathway, Exp Neurol, vol.310, pp.14-21, 2018.

C. J. Jensen, A. Massie, D. Keyser, and J. , Immune players in the CNS: the astrocyte, J Neuroimmune Pharmacol, vol.8, pp.824-863, 2013.

S. Ben-achour, L. Pont-lezica, C. Béchade, and O. Pascual, Is astrocyte calcium signaling relevant for synaptic plasticity?, Neuron Glia Biol, vol.6, pp.147-55, 2010.

A. J. Vincent, R. Gasperini, L. Foa, and D. H. Small, Astrocytes in Alzheimer's disease: emerging roles in calcium dysregulation and synaptic plasticity, J Alzheimers Dis, vol.22, pp.699-714, 2010.

M. M. Halassa, T. Fellin, and P. G. Haydon, The tripartite synapse: roles for gliotransmission in health and disease, Trends Mol Med, vol.13, pp.54-63, 2007.

M. M. Halassa, T. Fellin, H. Takano, J. Dong, and P. G. Haydon, Synaptic islands defined by the territory of a single astrocyte, J Neurosci, vol.27, pp.6473-6480, 2007.

N. A. Oberheim, X. Wang, S. Goldman, and M. Nedergaard, Astrocytic complexity distinguishes the human brain, Trends Neurosci, vol.29, pp.547-53, 2006.

M. V. Sofroniew and H. V. Vinters, Molecular dissection of reactive astrogliosis and glial scar formation, Acta Neuropathol, vol.119, pp.638-685, 2009.

R. Medeiros and F. M. Laferla, Astrocytes: conductors of the Alzheimer disease neuroinflammatory symphony, Exp Neurol, vol.239, pp.133-141, 2013.

M. Olabarria, H. N. Noristani, A. Verkhratsky, and J. J. Rodríguez, Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer's disease, Glia, vol.58, pp.831-839, 2010.

S. Sekar, J. Mcdonald, L. Cuyugan, J. Aldrich, A. Kurdoglu et al., Alzheimer's disease is associated with altered expression of genes involved in immune response and mitochondrial processes in astrocytes, Neurobiol Aging, vol.36, pp.583-91, 2015.

H. Yamaguchi, S. Sugihara, A. Ogawa, T. C. Saido, and Y. Ihara, Diffuse plaques associated with astroglial amyloid ? protein, possibly showing a disappearing stage of senile plaques, Acta Neuropathol, vol.95, pp.217-239, 1998.

T. Wyss-coray, J. D. Loike, T. C. Brionne, E. Lu, R. Anankov et al., Adult mouse astrocytes degrade amyloid-? in vitro and in situ, Nat Med, vol.9, pp.453-460, 2003.

C. C. Chao, S. Hu, W. S. Sheng, D. Bu, M. I. Bukrinsky et al., Cytokine-stimulated astrocytes damage human neurons via a nitric oxide mechanism, Glia, vol.16, pp.276-84, 1996.

M. I. Kamboh, A brief synopsis on the genetics of Alzheimer's disease, Curr Genet Med Rep, vol.6, pp.133-138, 2018.

R. Guerreiro, A. Wojtas, J. Bras, M. Carrasquillo, E. Rogaeva et al., TREM2 variants in Alzheimer's sisease, N Engl J Med, vol.368, pp.117-144, 2013.

A. Griciuc, A. Serrano-pozo, A. R. Parrado, A. N. Lesinski, C. N. Asselin et al., Alzheimer's disease risk gene CD33 inhibits microglial uptake of amyloid beta, Neuron, vol.78, pp.631-674, 2013.

E. M. Bradshaw, L. B. Chibnik, B. T. Keenan, L. Ottoboni, T. Raj et al., Alzheimer's disease locus: altered monocyte function and amyloid biology, Nat Neurosci, vol.16, pp.848-50, 2013.

N. Rathore, S. R. Ramani, H. Pantua, J. Payandeh, T. Bhangale et al., Paired immunoglobulin-like type 2 receptor alpha G78R variant alters ligand binding and confers protection to Alzheimer's disease, PLoS Genet, vol.14, p.1007427, 2018.

J. Li and Y. Zhang, TREM2 regulates innate immunity in Alzheimer's disease, J Neuroinflammation, vol.15, p.107, 2018.

H. Zheng, B. Cheng, Y. Li, X. Li, X. Chen et al., TREM2 in Alzheimer's disease: microglial survival and energy metabolism, Front Aging Neurosci, vol.10, p.395, 2018.

L. Zhong, X. Chen, T. Wang, Z. Wang, C. Liao et al., Soluble TREM2 induces inflammatory responses and enhances microglial survival, J Exp Med, vol.214, 2017.

S. E. Hickman, E. Khoury, and J. , TREM2 and the neuroimmunology of Alzheimer's disease, Biochem Pharmacol, vol.88, pp.495-503, 2014.

D. Calderon, A. Bhaskar, D. A. Knowles, D. Golan, T. Raj et al., Inferring relevant cell types for complex traits by using single-cell gene expression, Am J Hum Genet, vol.101, pp.686-99, 2017.

B. Zhang, C. Gaiteri, L. Bodea, Z. Wang, J. Mcelwee et al., Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's Disease, Cell, vol.153, pp.707-727, 2013.

A. Griciuc, S. Patel, A. N. Federico, S. H. Choi, B. J. Innes et al., TREM2 acts downstream of CD33 in modulating microglial pathology in Alzheimer's disease, Neuron, vol.103, pp.820-855, 2019.

M. Bolós, M. Llorens-martín, J. R. Perea, J. Jurado-arjona, A. Rábano et al., Absence of CX3CR1 impairs the internalization of tau by microglia, Mol Neurodegener, vol.12, p.59, 2017.

M. Bolós, J. R. Perea, J. Terreros-roncal, N. Pallas-bazarra, J. Jurado-arjona et al., Absence of microglial CX3CR1 impairs the synaptic integration of adult-born hippocampal granule neurons, Brain Behav Immun, vol.68, pp.76-89, 2018.

J. R. Perea, A. Lleó, D. Alcolea, J. Fortea, J. Ávila et al., Decreased CX3CL1 levels in the cerebrospinal fluid of patients with Alzheimer's disease, Front Neurosci, vol.12, p.609, 2018.

N. Oosterhof, I. J. Chang, E. G. Karimiani, L. E. Kuil, D. M. Jensen et al., Homozygous mutations in CSF1R cause a pediatric-onset leukoencephalopathy and can result in congenital absence of microglia, Am J Hum Genet, vol.104, pp.936-983, 2019.

L. Guo, D. R. Bertola, A. Takanohashi, A. Saito, Y. Segawa et al., Biallelic CSF1R mutations cause skeletal dysplasia of dysosteosclerosis-pyle disease spectrum and degenerative encephalopathy with brain malformation, Am J Hum Genet, vol.104, pp.925-960, 2019.

K. Bhaskar, N. Maphis, G. Xu, N. H. Varvel, O. N. Kokiko-cochran et al., Microglial derived tumor necrosis factor-? drives Alzheimer's disease-related neuronal cell cycle events, Neurobiol Dis, vol.62, pp.273-85, 2014.

N. H. Varvel, K. Bhaskar, M. Z. Kounnas, S. L. Wagner, Y. Yang et al., NSAIDs prevent, but do not reverse, neuronal cell cycle reentry in a mouse model of Alzheimer disease, J Clin Invest, vol.119, pp.3692-702, 2009.

C. Babiloni, G. B. Frisoni, D. Percio, C. Zanetti, O. Bonomini et al., Ibuprofen treatment modifies cortical sources of EEG rhythms in mild Alzheimer's disease, Clin Neurophysiol, vol.120, pp.709-727, 2009.

M. Mhatre, R. A. Floyd, and K. Hensley, Oxidative stress and neuroinflammation in Alzheimer's disease and amyotrophic lateral sclerosis: common links and potential therapeutic targets, J Alzheimers Dis, vol.6, pp.147-57, 2004.

K. Bisht, K. Sharma, and M. Tremblay, Chronic stress as a risk factor for Alzheimer's disease: roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress, Neurobiol Stress, vol.9, pp.9-21, 2018.

G. Caruso, F. Caraci, and R. B. Jolivet, Pivotal role of carnosine in the modulation of brain cells activity: multimodal mechanism of action and therapeutic potential in neurodegenerative disorders, Prog Neurobiol, vol.175, pp.35-53, 2019.

F. E. Mcalpine and M. G. Tansey, Neuroinflammation and tumor necrosis factor signaling in the pathophysiology of Alzheimer's disease, J Inflamm Res, vol.1, pp.29-39, 2008.

G. Cantarella, D. Benedetto, G. Puzzo, D. Privitera, L. Loreto et al., Neutralization of TNFSF10 ameliorates functional outcome in a murine model of Alzheimer's disease, Brain, vol.138, pp.203-219, 2015.

B. Decourt, D. Lahiri, and M. Sabbagh, Targeting tumor necrosis factor alpha for Alzheimer's disease, Curr Alzheimer Res, vol.14, pp.412-437, 2016.

J. O. Ekert, R. L. Gould, G. Reynolds, and R. J. Howard, TNF alpha inhibitors in Alzheimer's disease: a systematic review, Int J Geriatr Psychiatry, vol.33, pp.688-94, 2018.

M. F. Iulita, F. Caraci, and A. C. Cuello, A link between nerve growth factor metabolic deregulation and amyloid-?-driven inflammation in down syndrome, CNS Neurol Disord Drug Targets, vol.15, pp.434-481, 2016.

Y. Liao, B. Wang, H. Cheng, L. Kuo, and M. S. Wolfe, Tumor necrosis factor?, interleukin-1?, and interferon-? stimulate ?-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway, J Biol Chem, vol.279, pp.49523-49555, 2004.

J. Koenigsknecht-talboo, Microglial phagocytosis induced by fibrillaramyloid and IgGs are differentially regulated by proinflammatory cytokines, J Neurosci, vol.25, pp.8240-8249, 2005.

I. Clark, C. Atwood, R. Bowen, G. Paz-filho, and B. Vissel, Tumor necrosis factor-induced cerebral insulin resistance in Alzheimer's disease links numerous treatment rationales, Pharmacol Rev, vol.64, pp.1004-1030, 2012.

M. V. Lourenco, J. R. Clarke, R. L. Frozza, T. R. Bomfim, L. Forny-germano et al., TNF-? mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer's ?-Amyloid oligomers in mice and monkeys, Cell Metab, vol.18, pp.831-874, 2013.

J. R. Clarke, N. M. Lyra-e-silva, C. P. Figueiredo, R. L. Frozza, J. H. Ledo et al., Alzheimer-associated A? oligomers impact the central nervous system to induce peripheral metabolic deregulation, EMBO Mol Med, vol.7, pp.190-210, 2015.

U. Ueberham, E. Ueberham, H. Gruschka, and T. Arendt, Altered subcellular location of phosphorylated smads in Alzheimer's disease, Eur J Neurosci, vol.24, pp.2327-2361, 2006.

I. Tesseur, K. Zou, L. Esposito, F. Bard, E. Berber et al., Deficiency in neuronal TGF-? signaling promotes neurodegeneration and Alzheimer's pathology, J Clin Invest, vol.116, pp.3060-3069, 2006.

F. Caraci, S. Spampinato, M. A. Sortino, P. Bosco, G. Battaglia et al., Dysfunction of TGF-?1 signaling in Alzheimer's disease: perspectives for neuroprotection, Cell Tissue Res, vol.347, pp.291-301, 2012.

C. Liu, Q. Liu, L. Song, Y. Gu, J. Jie et al., Dab2 attenuates brain injury in APP/PS1 mice via targeting transforming growth factor-beta/SMAD signaling, Neural Regen Res, vol.9, pp.41-50, 2014.

J. Chen, K. Ke, J. Lu, Y. Qiu, and Y. Peng, Protection of TGF-?1 against Neuroinflammation and Neurodegeneration in A?1-42-Induced Alzheimer's Disease Model Rats, PLoS ONE, vol.10, p.116549, 2015.

J. E. Tichauer, V. Bernhardi, and R. , Transforming growth factor-? stimulates ? amyloid uptake by microglia through Smad3-dependent mechanisms, J Neurosci Res, vol.90, pp.1970-80, 2012.

F. Caraci, W. Gulisano, C. A. Guida, A. Impellizzeri, F. Drago et al., A key role for TGF-?1 in hippocampal synaptic plasticity and memory, vol.5, p.11252, 2015.

K. Herrup, The involvement of cell cycle events in the pathogenesis of Alzheimer's disease, Alzheimers Res Ther, vol.2, p.13, 2010.

L. Tong, R. Balazs, R. Soiampornkul, W. Thangnipon, and C. W. Cotman, Interleukin-1? impairs brain derived neurotrophic factorinduced signal transduction, Neurobiol Aging, vol.29, pp.1380-93, 2008.

M. F. Iulita, M. B. Bistué-millón, R. Pentz, L. F. Aguilar, D. Carmo et al., Differential deregulation of NGF and BDNF neurotrophins in a transgenic rat model of Alzheimer's disease, Neurobiol Dis, vol.108, pp.307-330, 2017.

J. Song, Y. Tan, and L. , Brain-Derived neurotrophic factor in Alzheimer's disease: risk, mechanisms, and therapy, Mol Neurobiol, vol.52, pp.1477-93, 2015.

M. F. Iulita, D. Carmo, S. Ower, A. K. Fortress, A. M. et al., Nerve growth factor metabolic dysfunction in down's syndrome brains, Brain, vol.137, pp.860-72, 2014.

A. C. Cuello, R. Pentz, and H. Hall, The brain NGF metabolic pathway in health and in Alzheimer's pathology, Front Neurosci, vol.13, p.62, 2019.

M. A. Bruno, W. C. Leon, G. Fragoso, W. E. Mushynski, G. Almazan et al., Amyloid ?-Induced nerve growth factor dysmetabolism in Alzheimer disease, J Neuropathol Exp Neurol, vol.68, pp.857-69, 2009.

M. A. Bruno, E. J. Mufson, J. Wuu, and A. C. Cuello, Increased matrix metalloproteinase 9 activity in mild cognitive impairment, J Neuropathol Exp Neurol, vol.68, pp.1309-1327, 2009.

X. Cheng, Y. Shen, and R. Li, Targeting TNF: a therapeutic strategy for Alzheimer's disease, Drug Discov Today, vol.19, pp.1822-1829, 2014.

D. Stellwagen and R. C. Malenka, Synaptic scaling mediated by glial TNF-?, Nature, vol.440, pp.1054-1063, 2006.

Q. Wang, J. Wu, and M. J. Rowan, Anwyl R. ?-amyloid inhibition of long-term potentiation is mediated via tumor necrosis factor, Eur J Neurosci, vol.22, pp.2827-2859, 2005.

D. Shamim and M. Laskowski, Inhibition of inflammation mediated through the tumor necrosis factor ? biochemical pathway can lead to favorable outcomes in Alzheimer disease, J Cent Nerv Syst Dis, vol.9, p.117957351772251, 2017.

R. Mrak, Interleukin-1, neuroinflammation, and Alzheimer's disease, Neurobiol Aging, vol.22, pp.903-911, 2001.

A. W. Schmid, M. A. Lynch, and C. E. Herron, The effects of IL-1 receptor antagonist on beta amyloid mediated depression of LTP in the rat CA1 in vivo, Hippocampus, vol.19, pp.670-676, 2009.

J. Berg, S. Prokop, K. R. Miller, J. Obst, R. E. Kälin et al., Inhibition of IL-12/IL-23 signaling reduces Alzheimer's disease-like pathology and cognitive decline, Nat Med, vol.18, pp.1812-1821, 2012.

R. J. Guerreiro, I. Santana, J. M. Brás, B. Santiago, A. Paiva et al., Peripheral inflammatory cytokines as biomarkers in Alzheimer's disease and mild cognitive impairment, Neurodegener Dis, vol.4, pp.406-418, 2007.

W. Griffin, Neuroinflammatory cytokine signaling and Alzheimer's disease, N Engl J Med, vol.368, pp.770-771, 2013.

T. Kiyota, K. L. Ingraham, R. J. Swan, M. T. Jacobsen, S. J. Andrews et al., AAV serotype 2/1-mediated gene delivery of anti-inflammatory interleukin-10 enhances neurogenesis and cognitive function in APP+PS1 mice, Gene Ther, vol.19, pp.724-757, 2012.

P. Chakrabarty, A. Li, C. Ceballos-diaz, J. A. Eddy, C. C. Funk et al., IL-10 Alters immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior, Neuron, vol.85, pp.519-552, 2015.

T. Wyss-coray, Y. F. Lin, A. Lambris, J. D. Alexander, J. J. Quigg et al., Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer's mice, Proc Natl Acad Sci, vol.99, pp.10837-10879, 2002.

R. C. Paolicelli, G. Bolasco, F. Pagani, L. Maggi, M. Scianni et al., Synaptic pruning by microglia is necessary for normal brain development, Science, vol.333, pp.1456-1464, 2011.

D. P. Schafer, E. K. Lehrman, A. G. Kautzman, R. Koyama, A. R. Mardinly et al., Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner, Neuron, vol.74, pp.691-705, 2012.

A. H. Stephan, B. A. Barres, and B. Stevens, The complement system: an unexpected role in synaptic pruning during development and disease, Annu Rev Neurosci, vol.35, pp.369-89, 2012.

S. Hong, V. F. Beja-glasser, B. M. Nfonoyim, A. Frouin, S. Li et al., Complement and microglia mediate early synapse loss in Alzheimer mouse models, Science, vol.352, pp.712-718, 2016.

P. L. Mcgeer and E. G. Mcgeer, NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies, Neurobiol Aging, vol.28, pp.639-686, 2007.

G. M. Cole and S. A. Frautschy, Mechanisms of action of non-steroidal antiinflammatory drugs for the prevention of Alzheimer's disease, CNS Neurol Disord Drug Targets, vol.9, pp.140-148, 2010.

L. A. Kotilinek, M. A. Westerman, Q. Wang, K. Panizzon, G. P. Lim et al., Cyclooxygenase-2 inhibition improves amyloid-beta-mediated suppression of memory and synaptic plasticity, Brain, vol.131, pp.651-64, 2008.

N. S. Woodling, D. Colas, Q. Wang, P. Minhas, M. Panchal et al., Cyclooxygenase inhibition targets neurons to prevent early behavioural decline in Alzheimer's disease model mice, Brain, vol.139, pp.2063-81, 2016.

H. Malkki, NSAIDs protect neurons and preserve memory in a mouse model of AD, Nat Rev Neurol, vol.12, pp.370-371, 2016.

H. Hampel, E. J. Goetzl, D. Kapogiannis, S. Lista, and A. Vergallo, Biomarkerdrug and liquid biopsy co-development for disease staging and targeted therapy: cornerstones for Alzheimer's precision medicine and pharmacology, Front Pharmacol, vol.10, p.310, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02095292

J. Nicoll, G. R. Buckland, C. H. Harrison, A. Page, S. Harris et al., Persistent neuropathological effects 14 years following amyloid? immunization in Alzheimer's disease, Brain, vol.142, pp.2113-2139, 2019.

H. Hampel, S. Lista, C. Neri, and A. Vergallo, Time for the systems-level integration of aging: resilience enhancing strategies to prevent Alzheimer's disease, Prog Neurobiol, vol.181, p.101662, 2019.

X. Shen, L. Niu, Y. Wang, X. Cao, Q. Liu et al., Inflammatory markers in Alzheimer's disease and mild cognitive impairment: a metaanalysis and systematic review of 170 studies, J Neurol Neurosurg Psychiatry, vol.90, pp.590-598, 2019.

K. Lai, C. S. Liu, A. Rau, K. L. Lanctôt, C. A. Köhler et al., Peripheral inflammatory markers in Alzheimer's disease: a systematic review and metaanalysis of 175 studies, J Neurol Neurosurg Psychiatry, vol.88, pp.876-82, 2017.

C. Su, K. Zhao, H. Xia, and Y. Xu, Peripheral inflammatory biomarkers in Alzheimer's disease and mild cognitive impairment: a systematic review and meta-analysis, Psychogeriatrics, vol.19, pp.300-309, 2019.

W. Swardfager, K. Lanctôt, L. Rothenburg, A. Wong, J. Cappell et al., A meta-analysis of cytokines in Alzheimer's disease, Biol Psychiatry, vol.68, pp.930-971, 2010.

M. Saleem, N. Herrmann, W. Swardfager, R. Eisen, and K. L. Lanctôt, Inflammatory markers in mild cognitive impairment: a meta-Analysis, J Alzheimer's Dis, vol.47, pp.669-79, 2015.

B. Olsson, R. Lautner, U. Andreasson, A. Öhrfelt, E. Portelius et al., CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis, Lancet Neurol, vol.15, pp.673-84, 2016.

K. Dhiman, K. Blennow, H. Zetterberg, R. N. Martins, and V. B. Gupta, Cerebrospinal fluid biomarkers for understanding multiple aspects of Alzheimer's disease pathogenesis, Cell Mol Life Sci, vol.76, pp.1833-63, 2019.

F. Baldacci, S. Lista, E. Cavedo, U. Bonuccelli, and H. Hampel, Diagnostic function of the neuroinflammatory biomarker YKL-40 in Alzheimer's disease and other neurodegenerative diseases, Expert Rev Proteomics, vol.14, pp.285-99, 2017.

F. Baldacci, S. Lista, G. Palermo, F. S. Giorgi, A. Vergallo et al., The neuroinflammatory biomarker YKL-40 for neurodegenerative diseases: advances in development, Expert Rev Proteomics, vol.16, pp.593-600, 2019.

F. L. Heppner, R. M. Ransohoff, and B. Becher, Immune attack: the role of inflammation in Alzheimer disease, Nat Rev Neurosci, vol.16, pp.358-72, 2015.

H. Hampel, A. Vergallo, M. Afshar, L. Akman-anderson, J. Arenas et al., Blood-based systems biology biomarkers for next-generation clinical trials in Alzheimer's disease?, Dialogues Clin Neurosci, vol.21, pp.177-91, 2019.

H. Hampel, A. Vergallo, F. S. Giorgi, S. H. Kim, H. Depypere et al., Precision medicine and drug development in Alzheimer's disease: the importance of sexual dimorphism and patient stratification, Front Neuroendocrinol, vol.50, pp.31-51, 2018.

F. Baldacci, S. Lista, O. Bryant, S. E. Ceravolo, R. Toschi et al., Blood-based biomarker screening with agnostic biological definitions for an accurate diagnosis within the dimensional spectrum of neurodegenerative diseases, Molecular Biology, pp.139-155, 2016.

E. Tarkowski, A. Liljeroth, L. Minthon, A. Tarkowski, A. Wallin et al., Cerebral pattern of pro-and anti-inflammatory cytokines in dementias, Brain Res Bull, vol.61, pp.255-60, 2003.

A. L. Teixeira, H. J. Reis, F. M. Coelho, D. S. Carneiro, M. M. Teixeira et al., All-or-Nothing type biphasic cytokine production of human lymphocytes after exposure to Alzheimer's ?-Amyloid Peptide, Biol Psychiatry, vol.64, pp.891-896, 2008.

R. Hesse, A. Wahler, P. Gummert, S. Kirschmer, M. Otto et al., Decreased IL-8 levels in CSF and serum of AD patients and negative correlation of MMSE and IL-1?, BMC Neurol, vol.16, p.185, 2016.

R. Leung, P. Proitsi, A. Simmons, K. Lunnon, A. Güntert et al., Inflammatory Proteins in Plasma Are Associated with Severity of Alzheimer's Disease, PLoS ONE, vol.8, p.64971, 2013.

Y. Sun, L. Minthon, A. Wallmark, S. Warkentin, K. Blennow et al., Inflammatory Markers in Matched Plasma and Cerebrospinal Fluid from Patients with Alzheimer's Disease, Dement Geriatr Cogn Disord, vol.16, pp.136-180, 2003.

P. Bermejo, S. Martín-aragón, J. Benedí, C. Susín, E. Felici et al., Differences of peripheral inflammatory markers between mild cognitive impairment and Alzheimer's disease, Immunol Lett, vol.117, pp.198-202, 2008.

B. Winblad, K. Palmer, M. Kivipelto, V. Jelic, L. Fratiglioni et al., Mild cognitive impairment-beyond controversies, toward a consensus: report of the international working group on mild cognitive impairment, J Intern Med, vol.256, pp.240-246, 2004.

B. Dubois, H. H. Feldman, C. Jacova, J. L. Cummings, S. T. Dekosky et al., Revising the definition of Alzheimer's disease: a new lexicon, Lancet Neurol, vol.9, pp.1118-1145, 2010.

P. Libby, Inflammation in atherosclerosis, Nature, vol.420, pp.868-74, 2002.

U. Ikeda, T. Ito, and K. Shimada, Interleukin-6 and acute coronary syndrome, Clin Cardiol, vol.24, pp.701-705, 2001.

C. Villegas-llerena, A. Phillips, P. Garcia-reitboeck, J. Hardy, and J. M. Pocock, Microglial genes regulating neuroinflammation in the progression of Alzheimer's disease, Curr Opin Neurobiol, vol.36, pp.74-81, 2016.

Z. Yang, Y. Zan, X. Zheng, W. Hai, K. Chen et al., Dynamic FDG-PET imaging to differentiate malignancies from inflammation in subcutaneous and in situ mouse model for Non-Small Cell Lung Carcinoma (NSCLC)

O. Plos, , vol.10, p.139089, 2015.

M. Cosenza-nashat, M. Zhao, H. Suh, J. Morgan, R. Natividad et al., Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain, Neuropathol Appl Neurobiol, vol.35, pp.306-334, 2009.

P. Edison, H. A. Archer, G. A. Hinz, R. Pavese, N. Turkheimer et al., Alzheimer's disease: an [11C](R)PK11195-PET and [11C]PIB-PET study, Neurobiol Dis, vol.32, pp.412-421, 2008.

A. Schuitemaker, M. A. Kropholler, R. Boellaard, W. M. Van-der-flier, R. W. Kloet et al., Microglial activation in Alzheimer's disease: an (R)-[11C]PK11195 positron emission tomography study, Neurobiol Aging, vol.34, pp.128-164, 2013.

J. Stefaniak and J. O'brien, Imaging of neuroinflammation in dementia: a review, J Neurol Neurosurg Psychiatry, vol.87, pp.2015-311336, 2015.

L. Passamonti, P. V. Rodríguez, Y. T. Hong, K. Allinson, W. R. Bevan-jones et al., 11C]PK11195 binding in Alzheimer disease and progressive supranuclear palsy, Neurology, vol.90, pp.1989-96, 2018.

Z. Fan, Y. Aman, I. Ahmed, G. Chetelat, B. Landeau et al., Influence of microglial activation on neuronal function in Alzheimer's and parkinson's disease dementia, vol.11, pp.608-629, 2015.

R. Fernández-botrán, A. Z. Crespo, F. A. Gatenbee, C. Gonzalez, J. Dickson et al., Cytokine expression and microglial activation in progressive supranuclear palsy, Parkinsonism Relat Disord, vol.17, pp.683-691, 2011.

D. Owen, R. N. Gunn, E. A. Rabiner, I. Bennacef, M. Fujita et al., Mixed-affinity binding in humans with 18-kDa translocator protein ligands, J Nucl Med, vol.52, pp.24-32, 2011.

S. Lavisse, M. Guillermier, A. Herard, F. Petit, M. Delahaye et al., Reactive astrocytes overexpress TSPO and are detected by TSPO positron emission tomography imaging, J Neurosci, vol.32, pp.10809-10827, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02110993

L. Airas, A. M. Dickens, P. Elo, P. Marjamaki, J. Johansson et al., In Vivo pet imaging demonstrates diminished microglial activation after fingolimod treatment in an animal model of multiple sclerosis, J Nucl Med, vol.56, pp.305-315, 2015.

P. M. Rusjan, A. A. Wilson, P. M. Bloomfield, I. Vitcu, J. H. Meyer et al., Quantitation of translocator protein binding in human brain with the novel radioligand [ 18 F]-FEPPA and positron emission tomography, J Cereb Blood Flow Metab, vol.31, pp.1807-1823, 2011.

E. Morris, A. Chalkidou, A. Hammers, J. Peacock, J. Summers et al., Diagnostic accuracy of 18F amyloid PET tracers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis, Eur J Nucl Med Mol Imaging, vol.43, pp.374-85, 2016.

L. Saint-aubert, L. Lemoine, K. Chiotis, A. Leuzy, E. Rodriguez-vieitez et al., Tau PET imaging: present and future directions, Mol Neurodegener, vol.12, p.19, 2017.

L. Passamonti, R. P. Vázquez, Y. T. Hong, K. Allinson, D. Williamson et al., 18 F-AV-1451 positron emission tomography in Alzheimer's disease and progressive supranuclear palsy, Brain, vol.140, p.340, 2017.

J. Marik, A. Ogasawara, B. Martin-mcnulty, J. Ross, J. E. Flores et al., PET of glial metabolism using 2-18F-Fluoroacetate, J Nucl Med, vol.50, pp.982-90, 2009.

C. Tronel, B. Largeau, S. Ribeiro, M. Guilloteau, D. Dupont et al., Molecular targets for PET imaging of activated microglia: the current situation and future expectations, Int J Mol Sci, vol.18, p.802, 2017.

M. Shukuri, A. Mawatari, M. Ohno, M. Suzuki, H. Doi et al., Detection of cyclooxygenase-1 in activated microglia during amyloid plaque progression: PET studies in alzheimers disease model mice, J Nucl Med, vol.57, pp.291-297, 2016.

C. Benito, R. M. Tolón, M. R. Pazos, E. Núñez, A. I. Castillo et al., Cannabinoid CB 2 receptors in human brain inflammation, Br J Pharmacol, vol.153, pp.277-85, 2008.

J. Palazuelos, T. Aguado, M. R. Pazos, B. Julien, C. Carrasco et al., Microglial CB2 cannabinoid receptors are neuroprotective in Huntington's disease excitotoxicity, Brain, vol.132, pp.3152-64, 2009.

R. Slavik, A. M. Herde, D. Bieri, M. Weber, R. Schibli et al., Synthesis, radiolabeling and evaluation of novel 4-oxo-quinoline derivatives as PET tracers for imaging cannabinoid type 2 receptor, Eur J Med Chem, vol.92, pp.554-64, 2015.

P. R. Territo, J. A. Meyer, J. S. Peters, A. A. Riley, B. P. Mccarthy et al., Characterization of 11 C-GSK1482160 for targeting the P2X7 receptor as a biomarker for neuroinflammation, J Nucl Med, vol.58, pp.458-65, 2017.

C. Zhang, Y. Wang, D. Wang, J. Zhang, and F. Zhang, NSAID exposure and risk of Alzheimer's disease: an updated meta-analysis from cohort studies, Front Aging Neurosci, vol.10, p.83, 2018.

S. M. Sainati, D. M. Ingram, S. Talwalker, and G. Geis, Results of a doubleblind, randomized, placebo-controlled study of celecoxib in the treatment of progression of Alzheimer's disease, Sixth International Stockholm/Springfield Symposium on Advances in Alzheimer Therapy, 2000.

H. Soininen, C. West, J. Robbins, and L. Niculescu, Long-term efficacy and safety of celecoxib in Alzheimer's Disease, Dement Geriatr Cogn Disord, vol.23, pp.8-21, 2007.

A. Bain, Alzheimer disease: dapsone phase 2 trial results reported, 2002.

S. Scharf, A. Mander, A. Ugoni, F. Vajda, and N. P. Christophidis, A double-blind, placebo-controlled trial of diclofenac/misoprostol in Alzheimer's disease, Neurology, vol.53, pp.197-201, 1999.

W. A. Van-gool, H. C. Weinstein, P. Scheltens, and G. J. Walstra, Effect of hydroxychloroquine on progression of dementia in early Alzheimer's disease: an 18-month randomised, double-blind, placebo-controlled study, Lancet, vol.358, pp.455-60, 2001.

P. Pasqualetti, C. Bonomini, D. Forno, G. Paulon, L. Sinforiani et al., A randomized controlled study on effects of ibuprofen on cognitive progression of Alzheimer's disease, Aging Clin Exp Res, vol.21, pp.102-112, 2009.

J. Rogers, L. C. Kirby, S. R. Hempelman, D. L. Berry, P. L. Mcgeer et al., Clinical trial of indomethacin in Alzheimer's disease, Neurology, vol.43, pp.1609-1620, 1993.

D. De-jong, R. Jansen, W. Hoefnagels, M. Jellesma-eggenkamp, M. Verbeek et al., No effect of one-year treatment with indomethacin on Alzheimer's disease progression: a randomized controlled trial, PLoS ONE, vol.3, p.1475, 2008.

P. S. Aisen, K. A. Schafer, M. Grundman, E. Pfeiffer, M. Sano et al., Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression, JAMA, vol.289, p.2819, 2003.

P. S. Aisen, J. Schmeidler, and G. M. Pasinetti, Randomized pilot study of nimesulide treatment in Alzheimer's disease, Neurology, vol.58, pp.1050-1054, 2002.

P. S. Aisen, K. L. Davis, J. D. Berg, K. Schafer, K. Campbell et al., A randomized controlled trial of prednisone in Alzheimer's disease, Neurology, vol.54, p.588, 2000.

S. A. Reines, G. A. Block, J. C. Morris, G. Liu, M. L. Nessly et al., Rofecoxib: no effect on Alzheimer's disease in a 1-year, randomized, blinded, controlled study, Neurology, vol.62, pp.66-71, 2004.

G. K. Wilcock, S. E. Black, S. B. Hendrix, K. H. Zavitz, E. A. Swabb et al., Tarenflurbil Phase II Study investigators. Efficacy and safety of tarenflurbil in mild to moderate Alzheimer's disease: a randomised phase II trial, Lancet Neurol, vol.7, pp.483-93, 2008.

R. C. Green, Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild alzheimer disease a randomized controlled trial, JAMA, vol.302, pp.2557-64, 2009.

G. K. Wilcock, S. E. Black, A. H. Balch, D. A. Amato, A. P. Beelen et al., Safety and efficacy of tarenflurbil in subjects with mild Alzheimer's disease: results from an 18-month international multi

, Alzheimers Dement, p.86, 2009.

G. W. Small, P. Siddarth, D. H. Silverman, L. M. Ercoli, K. J. Miller et al., Cognitive and cerebral metabolic effects of celecoxib versus placebo in people with age-related memory loss: randomized controlled study, Am J Geriatr Psychiatry, vol.16, pp.999-1009, 2008.

L. J. Thal, S. H. Ferris, L. Kirby, G. A. Block, C. R. Lines et al., A randomized, double-blind, study of rofecoxib in patients with mild cognitive impairment, Neuropsychopharmacology, vol.30, pp.1204-1219, 2005.

T. Gómez-isla, R. Blesa, M. Boada, J. Clarimón, D. Ser et al., A randomized, double-blind, placebo controlled-trial of triflusal in mild cognitive impairment: the TRIMCI study, Alzheimer Dis Assoc Disord, vol.22, pp.21-30, 2008.

C. G. Lyketsos, J. Breitner, R. C. Green, B. K. Martin, C. Meinert et al., Naproxen and celecoxib do not prevent AD in early results from a randomized controlled trial, Neurology, vol.68, pp.1800-1808, 2007.

P. Meyer, J. Tremblay-mercier, J. Leoutsakos, C. Madjar, M. Lafaille-maignan et al., INTREPAD: a randomized trial of naproxen to slow progress of presymptomatic Alzheimer disease, Neurology, vol.92, pp.2070-80, 2019.

, Results of a follow-up study to the randomized Alzheimer's Disease Anti-Inflammatory Prevention Trial (ADAPT), Alzheimers Dement, vol.9, pp.714-737, 2013.

B. K. Martin, C. Szekely, J. Brandt, S. Piantadosi, J. Breitner et al., Cognitive function over time in the Alzheimer's Disease Antiinflammatory Prevention Trial (ADAPT), Arch Neurol, vol.65, pp.896-905, 2008.

C. A. Szekely, J. E. Thorne, P. P. Zandi, M. Ek, E. Messias et al., Nonsteroidal Anti-inflammatory drugs for the prevention of Alzheimer's disease: a systematic review, Neuroepidemiology, vol.23, pp.159-69, 2004.

B. A. Veld, A. Ruitenberg, A. Hofman, L. J. Launer, C. M. Van-duijn et al., Nonsteroidal antiinflammatory drugs and the risk of Alzheimer's Disease, N Engl J Med, vol.345, pp.1515-1536, 2001.

S. C. Vlad, D. R. Miller, N. W. Kowall, and D. T. Felson, Protective effects of NSAIDs on the development of Alzheimer disease, Neurology, vol.70, pp.1672-1679, 2008.

A. De-craen, Meta-Analysis of nonsteroidal antiinflammatory drug use and risk of dementia, Am J Epidemiol, vol.161, pp.114-134, 2005.

M. A. Wichmann, K. J. Cruickshanks, C. M. Carlsson, R. Chappell, M. E. Fischer et al., NSAID use and incident cognitive impairment in a population-based cohort, Alzheimer Dis Assoc Disord, vol.30, pp.105-117, 2016.

M. B. Rogers, Antibodies against microglial receptors TREM2 and CD33 head to trials | ALZFORUM. Alzforum, 2019.

P. M. Steed, M. G. Tansey, J. Zalevsky, E. A. Zhukovsky, J. R. Desjarlais et al., Inactivation of TNF signaling by rationally designed dominant-negative TNF variants, Science, vol.301, pp.1895-1903, 2003.

J. Zalevsky, T. Secher, S. A. Ezhevsky, J. L. Steed, P. M. O'brien et al., Dominant-negative inhibitors of soluble TNF attenuate experimental arthritis without suppressing innate immunity to infection, J Immunol, vol.179, pp.1872-83, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00318488

M. Yli-karjanmaa, K. S. Larsen, C. D. Fenger, L. K. Kristensen, N. A. Martin et al., TNF deficiency causes alterations in the spatial organization of neurogenic zones and alters the number of microglia and neurons in the cerebral cortex, Brain Behav Immun, vol.82, pp.279-97, 2019.

K. P. Macpherson, P. Sompol, G. T. Kannarkat, J. Chang, L. Sniffen et al., Peripheral administration of the soluble TNF inhibitor XPro1595 modifies brain immune cell profiles, decreases beta-amyloid plaque load, and rescues impaired long-term potentiation in 5xFAD mice, Neurobiol Dis, vol.102, pp.81-95, 2017.

C. Cavanagh, Y. C. Tse, H. B. Nguyen, S. Krantic, J. C. Breitner et al., Inhibiting tumor necrosis factor-? before amyloidosis prevents synaptic deficits in an Alzheimer's disease model, Neurobiol Aging, vol.47, pp.41-50, 2016.

F. E. Mcalpine, J. K. Lee, A. S. Harms, K. A. Ruhn, M. Blurton-jones et al., Inhibition of soluble TNF signaling in a mouse model of Alzheimer's disease prevents pre-plaque amyloid-associated neuropathology, Neurobiol Dis, vol.34, pp.163-77, 2009.

D. M. Sama, M. Abdul, H. Furman, J. L. Artiushin, I. A. Szymkowski et al., Inhibition of soluble tumor necrosis factor ameliorates synaptic alterations and Ca2+ dysregulation in aged rats, PLoS ONE, vol.7, p.38170, 2012.

H. Q. Li, C. Chen, Y. Dou, H. J. Wu, Y. J. Liu et al., P2Y4 receptor-mediated pinocytosis contributes to amyloid beta-induced self-uptake by microglia, Mol Cell Biol, vol.33, pp.4282-93, 2013.

R. G. Miller, G. Block, J. S. Katz, R. J. Barohn, V. Gopalakrishnan et al., Randomized phase 2 trial of NP001-a novel immune regulator: Safetyearly efficacy in ALS, Neurol Neuroimmunol Neuroinflamm, vol.2, p.100, 2015.

M. Etminan, Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer's disease: systematic review and meta-analysis of observational studies, BMJ, vol.327, p.128, 2003.

O. Se, A serum protein-based algorithm for the detection of Alzheimer Disease, Arch Neurol, vol.67, pp.1077-81, 2010.

S. E. O'bryant, X. G. Barber, R. Huebinger, R. Wilhelmsen, K. Edwards et al., A blood-based screening tool for Alzheimer's disease that spans serum and plasma: findings from TARC and ADNI, PLoS ONE, vol.6, 2011.

S. E. O'bryant, X. G. Zhang, F. Edwards, M. German, D. C. Yin et al., Validation of a serum screen for Alzheimer's disease across assay platforms, species, and tissues, J Alzheimer's Dis, vol.42, pp.1325-1360, 2014.

S. E. O'bryant, F. Zhang, L. A. Johnson, J. Hall, M. Edwards et al., A precision medicine model for targeted NSAID therapy in Alzheimer's Disease, J Alzheimer's Dis, vol.66, pp.97-104, 2018.

D. Walsh, I. Klyubin, J. V. Fadeeva, W. K. Cullen, R. Anwyl et al., Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo, Nature, vol.416, pp.535-544, 2002.

L. F. Lue, Y. M. Kuo, A. E. Roher, L. Brachova, Y. Shen et al., Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer's disease, Am J Pathol, vol.155, issue.10, p.65184, 1999.

C. A. Mclean, R. A. Cherny, F. W. Fraser, S. J. Fuller, M. J. Smith et al., Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease, Ann Neurol, vol.46, pp.860-866, 1999.

G. M. Shankar, S. Li, T. H. Mehta, A. Garcia-munoz, N. E. Shepardson et al., Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory, Nat Med, vol.14, pp.837-879, 2008.

B. O'nuallain, D. B. Freir, A. J. Nicoll, E. Risse, N. Ferguson et al., Amyloid beta-protein dimers rapidly form stable synaptotoxic protofibrils, J Neurosci, vol.30, pp.14411-14420, 2010.

L. K. Gouwens, N. J. Makoni, V. A. Rogers, and M. R. Nichols, Amyloid-?42 protofibrils are internalized by microglia more extensively than monomers, Brain Res, vol.1648, pp.485-95, 2016.

G. S. Paranjape, L. K. Gouwens, D. C. Osborn, and M. R. Nichols, Isolated Amyloid?(1-42) Protofibrils, but not isolated fibrils, are robust stimulators of microglia, ACS Chem Neurosci, vol.3, pp.302-313, 2012.

S. Söllvander, E. Nikitidou, L. Gallasch, M. Zy?k, L. Söderberg et al., The A? protofibril selective antibody mAb158 prevents accumulation of A? in astrocytes and rescues neurons from A?-induced cell death, J Neuroinflammation, vol.15, p.98, 2018.

H. Englund, D. Sehlin, A. S. Johansson, L. N. Nilsson, P. Gellerfors et al., Sensitive ELISA detection of amyloid-beta protofibrils in biological samples, J Neurochem, vol.103, pp.334-379, 2007.

H. M. Nielsen, S. D. Mulder, J. Beliën, R. Musters, P. Eikelenboom et al., Astrocytic A beta 1-42 uptake is determined by A beta-aggregation state and the presence of amyloid-associated proteins, Glia, vol.58, pp.1235-1281, 2010.

V. Logovinsky, A. Satlin, R. Lai, C. Swanson, J. Kaplow et al., Safety and tolerability of BAN2401-a clinical study in Alzheimer's disease with a protofibril selective A? antibody, Alzheimers Res Ther, vol.8, p.14, 2016.

T. Fagan and G. Strobel, BAN2401 Removes Brain Amyloid, Possibly Slows Cognitive Decline, 2016.

, ClinicalBiomarker Updates from BAN2401 Study 201 in Early AD. Presented at the 11thClinical Trials on Alzheimer's Disease (CTAD) Conference October, 2018.

S. K. Powers, E. E. Talbert, and P. J. Adhihetty, Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle, J Physiol, vol.589, pp.2129-2167, 2011.

K. Suzuki, Cytokine response to exercise and its modulation, Antioxidants, vol.7, p.17, 2018.

D. F. Geffken, M. Cushman, G. L. Burke, J. F. Polak, P. A. Sakkinen et al., Association between physical activity and markers of inflammation in a healthy elderly population, Am J Epidemiol, vol.153, pp.242-50, 2001.

S. G. Wannamethee, physical activity and hemostatic and inflammatory variables in elderly men, Circulation, vol.105, pp.1785-90, 2002.

R. S. Monteiro-junior, P. De-tarso-maciel-pinheiro, E. Da-matta-mello-portugal, L. F. Da-silva-figueiredo, T. R. Carneiro et al., Effect of exercise on inflammatory profile of older persons: systematic review and meta-analyses, J Phys Act Heal, vol.15, pp.64-71, 2018.

N. A. Sobol, K. Hoffmann, K. S. Frederiksen, A. Vogel, K. Vestergaard et al., Effect of aerobic exercise on physical performance in patients with Alzheimer's disease. Alzheimer's Dement, vol.12, pp.1207-1222, 2016.

C. Nascimento, M. R. Cominetti, J. R. Pereira, L. P. Andrade, M. Garuffi et al., Regular multimodal aerobic exercise reduces pro-inflammatory cytokines and improves BDNF peripheral levels and executive functions in elderly MCI individuals with different BDNF Val66Met genotypes

&. Alzheimer and . Dement, , vol.11, p.323, 2015.

Y. Lu, Y. Dong, D. Tucker, R. Wang, M. E. Ahmed et al., Treadmill exercise exerts neuroprotection and regulates microglial polarization and oxidative stress in a streptozotocin-induced rat model of sporadic Alzheimer's disease. J Alzheimer's Dis, vol.56, pp.1469-84, 2017.

X. He, D. Liu, Q. Zhang, F. Liang, G. Dai et al., Voluntary exercise promotes glymphatic clearance of amyloid beta and reduces the activation of astrocytes and microglia in aged mice, Front Mol Neurosci, vol.10, p.144, 2017.

T. Jiang, L. Zhang, X. Pan, H. Zheng, X. Chen et al., Physical exercise improves cognitive function together with microglia phenotype modulation and remyelination in chronic cerebral hypoperfusion, Front Cell Neurosci, vol.11, p.404, 2017.

R. A. Kohman, T. K. Bhattacharya, E. Wojcik, and J. S. Rhodes, Exercise reduces activation of microglia isolated from hippocampus and brain of aged mice, J Neuroinflammation, vol.10, p.885, 2013.

J. Delezie and C. Handschin, Endocrine crosstalk between skeletal muscle and the brain, Front Neurol, vol.9, p.698, 2018.

C. Fiuza-luces, N. Garatachea, N. A. Berger, and A. Lucia, Exercise is the real polypill, Physiology, vol.28, pp.330-58, 2013.

M. Gleeson, N. C. Bishop, D. J. Stensel, M. R. Lindley, S. S. Mastana et al., The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease, Nat Rev Immunol, vol.11, pp.607-622, 2011.

J. A. Woods, K. R. Wilund, S. A. Martin, and B. M. Kistler, Exercise, inflammation and aging, Aging Dis, vol.3, pp.130-170, 2012.

K. J. Tracey, Reflex control of immunity, Nat Rev Immunol, vol.9, pp.418-446, 2009.

F. S. Collins and H. Varmus, A new initiative on precision medicine, N Engl J Med, vol.372, pp.793-798, 2015.

H. Hampel, A. Vergallo, G. Perry, and S. Lista, The Alzheimer precision medicine initiative (APMI), J Alzheimer's Dis, vol.68, pp.1-25, 2019.

C. J. Ye, T. Feng, H. Kwon, R. T. Wilson, M. T. Asinovski et al., Intersection of population variation and autoimmunity genetics in human T cell activation, Science, vol.345, p.1254665, 2014.

D. Duffy, V. Rouilly, V. Libri, M. Hasan, B. Beitz et al., Functional analysis via standardized whole-blood stimulation systems defines the boundaries of a healthy immune response to complex stimuli, Immunity, vol.40, pp.436-50, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01384537

J. Willis and G. M. Lord, Immune biomarkers: the promises and pitfalls of personalized medicine, Nat Rev Immunol, vol.15, pp.323-332, 2015.

N. J. Schork, Personalized medicine: time for one-person trials, Nature, vol.520, pp.609-620, 2015.

S. Delhalle, S. Bode, R. Balling, M. Ollert, and F. Q. He, A roadmap toward personalized immunology, NPJ Syst Biol Appl, vol.4, p.9, 2018.

H. Hampel, N. Toschi, C. Babiloni, F. Baldacci, K. L. Black et al., Revolution of Alzheimer Precision Neurology. Passageway of Systems Biology and Neurophysiology, J Alzheimer's Dis, vol.64, pp.47-105, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01910402

J. I. Castrillo, S. Lista, H. Hampel, and C. W. Ritchie, Systems biology methods for alzheimer's disease research toward molecular signatures, subtypes, and stages and precision medicine: application in cohort studies and trials, Molecular Biology, pp.31-66, 2016.

A. Tebani, C. Afonso, S. Marret, and S. Bekri, Omics-Based strategies in precision medicine: toward a paradigm shift in inborn errors of metabolism investigations, Int J Mol Sci, vol.17, p.1555, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02452350

L. Dimitrakopoulos, I. Prassas, E. P. Diamandis, and G. S. Charames, Oncoproteogenomics: Multi-omics level data integration for accurate phenotype prediction, Crit Rev Clin Lab Sci, vol.54, pp.414-446, 2017.

M. Y. Ang, T. Y. Low, P. Y. Lee, W. M. Nazarie, W. F. Guryev et al., Proteogenomics: from next-generation sequencing (NGS) and mass spectrometry-based proteomics to precision medicine, Clin Chim Acta, vol.498, pp.38-46, 2019.

S. Lista, Z. S. Khachaturian, D. Rujescu, F. Garaci, B. Dubois et al., Application of systems theory in longitudinal studies on the origin and progression of Alzheimer's Disease, Methods in Molecular Biology, pp.49-67, 2016.

H. Hampel, S. E. Bryant, J. I. Castrillo, C. Ritchie, K. Rojkova et al., PRECISION MEDICINE -the golden gate for detection, treatment and prevention of Alzheimer's Disease, J Prev Alzheimer's Dis, vol.3, pp.243-59, 2016.

H. Hampel, A. Vergallo, L. F. Aguilar, N. Benda, K. Broich et al., Precision pharmacology for Alzheimer's disease, Pharmacol Res, vol.130, pp.331-65, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02095292

L. Hood and M. Flores, A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory, N Biotechnol, vol.29, pp.613-637, 2012.

S. H. Kim, M. Y. Noh, H. Kim, K. Oh, J. Park et al., A Therapeutic Strategy for Alzheimer's Disease Focused on Immuneinflammatory Modulation, Dement Neurocognitive Disord, vol.18, p.33, 2019.

A. Axovant, . Takeda, . Zinfandel, and . Healthcare, Alzheimer's & Dementia; during the past 3 years he had received lecture fees from Servier, Biogen, and Roche; research grants from Pfizer, Avid, and MSD Avenir (paid to the institution); travel funding from Eisai, Functional Neuromodulation, Axovant, Eli Lilly and company, Takeda and Zinfandel, GE-Healthcare, and Oryzon Genomics; consultancy fees from Qynapse, Conflict of Interest: HH is an employee of Eisai Inc. and serves as Senior Associate Editor for the Journal

E. Axovant, E. Lilly, C. Ltd, . Ge-healthcare, . Takeda et al., He is coinventor in the following patents as a scientific expert and has received no royalties: In Vitro Multiparameter Determination Method for the Diagnosis and Early Diagnosis of Neurodegenerative Disorders Patent Number: 8916388; In Vitro Procedure for Diagnosis and Early Diagnosis of Neurodegenerative Diseases Patent Number: 8298784; Neurodegenerative Markers for Psychiatric Conditions Publication Number: 20120196300; In Vitro Multiparameter Determination Method for the Diagnosis and Early Diagnosis of Neurodegenerative Disorders Publication Number, scientific advisory boards of Functional Neuromodulation

, In Vitro Method for the Diagnosis of Neurodegenerative Diseases Patent Number: 7547553; CSF Diagnostic In Vitro Method for Diagnosis of Dementias and Neuroinflammatory Diseases Publication Number: 20080206797; In Vitro Method for the Diagnosis of Neurodegenerative Diseases Publication Number: 20080199966; Neurodegenerative Markers for Psychiatric Conditions Publication Number: 20080131921. SV is an officer and director of NeuroVision. LA-A is an employee of NeuroVision. EE is the unique owner of 2E Science, a for-profit private scientific company. Neither EE nor 2E Science have any commercial interest or financial tie in relation with this article. MW is employed by the company TranScrip Partners, Vitro Procedure for Diagnosis and Early Diagnosis of Neurodegenerative Diseases Publication Number

, The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest

C. Hampel, . Cuello, . Caruso, . Nisticò, . Corbo et al., This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, Copyright © 2020