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Abstract

In this paper, we develop a methodology to automatically classify

claims using the information contained in text reports (redacted at

their opening). From this automatic analysis, the aim is to predict if a

claim is expected to be particularly severe or not. The difficulty is the

rarity of such extreme claims in the database, and hence the difficulty,

for classical prediction techniques like logistic regression to accurately

predict the outcome. Since data is unbalanced (too few observations

are associated with a positive label), we propose different rebalance

algorithm to deal with this issue. We discuss the use of different

embedding methodologies used to process text data, and the role of

the architectures of the networks.
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1 Introduction

The automatization of text data analysis in insurance is a promising and challenging field,

due to the importance of reports and analysis in the treatment of claims or contracts.

In this paper, we focus on data coming from expert reports on a claim, but textual

informations may be found also in declarations filled by policyholders themselves, or in

medical questionaries used in credit insurance. Our aim is to process these reports and

develop an automatic way to categorize the corresponding claims and to identify, soon

after their occurrence, which one will lead to a heavy loss. Apart from the complexity of

the input information, a particular difficulty is caused by the rareness of such claims (a

few percent of the total database).

The rise of deep learning techniques introduces the possibility of developing an au-

tomated treatment of these data, with potential reduced costs - and, ideally, a more

accurate analysis - for the insurance company, hence a potential increase of rentability.

Text mining has received a lot of attention in the past decades in the machine learning

literature, with many spectacular examples. Many examples can be found, for example,

in [1] or [6], with applications to insurance such as [14] or [24].

As we already mentioned, our main difficulty is to focus on the prediction of relatively

rare events, which is a classical specificity of the insurance business compared to other

fields. Indeed, while typical claims and behavior are usually easy to understand and

measure, the tail of the distribution of the losses is much more delicate, since there

are quite few events in the database to evaluate it properly. Of course, these so-called

”extreme” events may, in some cases, constitute an important part of the total losses at

a portfolio level.

In this paper, we consider the case of text data coming from experts in view of cluster-

ing some claims depending on their severity. Typically, the insurance company wants to

separate ”benign” claims from the heaviest ones in order to perform a different treatment

of these two types of claims. Indeed, in terms of reserving, a different model can be used

on these two types of events. Moreover, a particular attention can then be devoted to the

most serious claims during their development. As described above, the difficulty is that

the proportion of heavy claims is quite low compared to the other class. This imbalance

is present in other potential applications, such as fraud detection. We rely on deep neural

networks methodologies. Neural networks have already demonstrated to be valuable tools

when it comes to evaluating claims, see for example [37] or [41]. The network architec-
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tures that we use - convolutional neural networks, see [4], and recurrent neural networks

(such as Long Short Term Memory networks introduced by [18]) - are powerful tools to

perform such text analysis, see for example [29] and [11]. The specificity of our approach

is twofold:

• we introduce a bias correction in order to deal with the fact that claim development

time may be long: indeed, our models are calibrated on a database made of claims

that are closed, but also from unsettled ones. Calibrating the model on the closed

claims solely would introduce some bias due to the over-representation of claims

with small development time (this is a classical problem linked to the concept of

censoring in survival analysis, see e.g. [27],[16]).

• once this bias correction has been done, a re-equilibration of the database is required

to compensate the rareness of the events we focus on. For this, we use Bagging

methodologies (for Bootstrap Aggregating, see [9]), introducing constraints in the

resampling methodology which is at the core of Bagging.

The rest of the paper is organized as follows. In section 2 we describe the general

framework and the general methodology to address these two points. A particular focus

on processing text data is shown in section 3, where we explain the process of embedding

such data (this means to perform an adapted dimension reduction to represent efficiently

such complex unstructured data). The deep neural networks architectures that we use

are then described in section 4. In section 5, a real example on a database coming from

a French insurer gives indications on the performance of the methodology.

2 Framework and neural network predictors

In this section, we describe the generic structure of our data. Our data are subject to

random censoring, as a time variable (time of settlements of the claims) is present in the

database. The correction of this phenomenon, via classical methodologies from survival

analysis, is described in section 2.1. Next the general framework of neural networks is

defined in section 2.2. The imbalance in the data, caused by the fact that we focus on

predicting rare events, is described in section 2.3, along with methodologies to improve

the performance of our machine learning approaches under this constraint.
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2.1 The censoring framework

Our aim is to predict a 0-1 random response I, which depends on a time variable T and

covariates X ∈ X ⊂ Rd. In our practical application, I is an indicator of the severity

of a claim (I = 1 if the claim is considered as ”extreme”, 0 otherwise). The definition

of what we refer to as an extreme claim depends on management conventions that will

be described in the real data section. The variable T represents the total length of the

claim (i.e. the time between the claim occurence and its final settlement), and X some

characteristics.

In our setting, the variables I and T are not observed directly. Since T is a duration

variable, it is subject to right-censoring. This means that, for the claims that are still not

settled, T is unknown. On the other hand, I is known only if the claim is closed. This

leads to the following observations (Ji, Yi, δi,Xi)1≤i≤n assumed to be i.i.d. replications of

(J, Y, δ,X) where 
Y = inf(T,C),

δ = 1T≤C ,

J = δI,

and X represents some covariates that are fully observed (in our case, X is text data com-

ing from reports, hence it can be understood as a vector in Rd with d being huge: more

precisely, X can be understood as a matrix, each column representing an appropriate cod-

ing of a word, see section 3, the number of columns being the total number of words). The

variable C is called the censoring variable and is assumed to be random. The censoring

variable corresponds to the time after which the claim stops to be observed for any other

reason than its settlement (either because the observation period ends before settlement,

or because there has been a retrocession of the claim). This setting is similar to the one

developed by [28] or [27] in the case of claim reserving, with a variable I that may not

be binary in the general case. In the following, we assume that T and C have continuous

distributions so that these variables are perfectly symmetric (otherwise, a dissymmetry

can appear due to ties).

Considering only the complete data (i.e. with δi = 1, which corresponds to the case

where the claim is settled) would introduce some bias: among the complete of observa-

tions, there is an overrepresentation of claims associated with a small value of Ti. Since

T and I are dependent (in practice, one often observes a positive correlation between T

and the corresponding amount of the claim), neglecting censoring would imbalance the

sample, modifying the proportion of values of i for which Ii = 1.
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Our aim is to estimate the function π(x) = P(I = 1|X = x), in a context where the

dimension d of x is large. Typically, how an estimated function fits data is quantified by

minimizing some loss function. If we were dealing with complete data, a natural choice

would be the logistic loss function (also called ”cross entropy” in the neural network

literature, see for example [23]), that is

L∗n(p) = − 1

n

n∑
i=1

{Ii log p+ (1− Ii) log(1− p)} ,

which is a consistent estimator of

L(p) = −E [I log p+ (1− I) log(1− p)] .

As stated before, computation of L∗n is impossible in presence of censoring due to the lack

of information, and an adaptation is required to determine a consistent estimator of L.

A simple way to correct the bias caused by censoring is to rely on the Inverse Prob-

ability of Censoring Weighting (IPCW) strategy, see for example [35]. The idea of this

approach is to find a function y → W (y) such that, for all positive function ψ with finite

expectation,

E [δW (Y )ψ(J, Y,X)] = E [ψ(I, T,X)] , (2.1)

and to try to estimate this function W (in full generality, this function can also depend

on X). The function W depends on the identifiability assumptions that are required to

be able to retrieve the distribution of I and T from the data. In the following, we assume

that

1 C is independent from (J, T )

2 P(T ≤ C|I, T,X) = P(T ≤ C|T ),

as in [27], and is similar to the one used, for example, in [39] or [40] in a censored regression

framework. These two conditions ensure that (2.1) holds to W (y) = SC(y)−1 = P(C ≥
y)−1. SC can then be consistently estimated by the Kaplan-Meier estimator (see [21]),

that is

ŜC(t) =
∏
Yi≤t

(
1− δi∑n

j=1 1Yj≥Yi
.

)
Consistency of Kaplan-Meier estimator has been derived by [38] and [3].

Hence, each quantity of the typeE [ψ(I, T,X)] can be estimated by
∑n

i=1Wi,nψ(Ji, Yi,Xi),

where

Wi,n = δin
−1ŜC(Yi)

−1. (2.2)
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In other words, a way to correct the bias caused by the censoring consists in attributing the

weight Wi,n at observation i. This weight is 0 for censored observations, and the missing

mass is attributed to complete observations with an appropriate rule. A convenient way

to apply this weight once and for all is to duplicate the complete observations in the

original data accordingly to their weight. This is a way to artificially (but consistently)

compensate the lack of complete observations associated with a large value of Yi (let us

observe that Wi,n is an increasing function of Yi). This leads to the following duplication

algorithm.

Algorithm 1 Duplication algorithm for censored observations

Require:

- a dataset (Ji,Yi, δi,Xi)1≤i≤n.

- a list of weights Wi,n computed from the data accordingly to (2.2), and let w =

min1≤i≤nWi,n.

Set n′ = 1.

for i← 1 to n do

1. If δi = 0, go to step i+ 1.

2. Else:

• Let k = bWi,n/wc , where bxc denotes the integer part of x.

• Define, for j ∈ {1, ..., k} J ′n′−1+j = Ji, Y
′
n′−1+j = Yi, Xn′−1+i = Xi.

• n′ ← n′ + k.

end for

return The duplicated dataset: (Zi)1≤i≤n′ = (J ′i , Y
′
i ,X

′
i)1≤i≤n′ .

The cross-entropy that we want to minimize is then computed from the duplicated

dataset, defining

Ln′(p) = − 1

n′

n′∑
i=1

{J ′i log p+ (1− J ′i) log(1− p)} . (2.3)

Remark. In the experimental part of the paper, we will also introduce two alternative

6



loss functions, which can be seen as modifications of cross-entropy. The focal-loss (see

[26]) is defined as

L̃n′(p) = − 1

n′

n′∑
i=1

{J ′iγ log p+ (1− J ′i)γ log(1− p)} . (2.4)

where γ ≥ 0. The parameter γ helps to focus on ”hard” examples, by avoiding attributing

too much weights at easily well-predicted observations. The Weighted Cross Entropy (see

[30]) is a weighted version of (2.3). Introducing a weight α ∈ (0, 1), define

L̄n′(p) = − 1

n′

n′∑
i=1

{J ′iα log p+ (1− α)(1− J ′i) log(1− p)} . (2.5)

The parameter α can be used to increase the importance of good prediction for one of the

two classes, or to reflect its under-representation in the sample.

2.2 Neural network under censoring

A neural network (see for example [17], chapter 11) is an over-parametrized function

x→ p(x, θ), that we will use in the following to estimate function π. By over-parametrized,

we mean that θ ∈ Rk, with k usually much larger than d (the dimension of x). The

function p(·, θ) can also have a complex structure depending on the architecture of the

network, that we present in more details in section 4. Typically, a neural network is a

function that can be represented as in Figure 1. Following the notations of Figure 1, each

neuron is described by a vector of weights w (of the same size as x), a bias term b (1-

dimensional), and an activation function f used to introduce some nonlinearity. Typical

choices of functions f are described in Table 7. Following our notations, θ represents the

list of the weights and bias parameters corresponding to all neurons of the network. For

a given value of θ and an input x, the computation of p(x, θ) is usually called ”forward

propagation”.

On the other hand, ”backward propagation” (see [36]) is the algorithmic procedure

used to optimize the value of the parameter θ. Since our aim is to estimate the function

π, fitting the neural network consists of trying to determine

θ∗ = arg min
θ
Ln′(p(·, θ)),

where we recall that Ln has been defined in equation (2.3) (or, alternatively, using L̃n′ or

L̄n′ from (2.4) and (2.5)), and is adapted to the presence of censoring since computed on

the duplicated dataset obtained from Algorithm 1.
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Figure 1: Left-hand side: representation of a simple neural network (multilayer percep-

tron). Each unit of the network (represented by a circle), is called a neuron (a neuron is

represented on the right-hand side). X(j) represents the j−th component of the covariate

vector X.

2.3 Bagging for imbalanced data

Bagging (for bootstrap aggregating, see [9]) is a classical way to stabilize machine learning

algorithms. Bootstrap resampling is used to create pseudo-samples. In our case, a differ-

ent neural network is fitted from each pseudo-sample, before aggregating all the results.

Introducing bootstrap is expected to reduce the variance of estimation, while avoiding

overfitting.

Formally, the procedure can be described in the following way.

8



Algorithm 2 Bagging algorithm applied to neural networks

Require:

- a neural network architecture, that is a function θ → p(·, θ);

- a subset of the original data (Z ′i)1≤i≤m = (Zσ(i))1≤i≤m for m ≤ n and σ a permutation

of {1, ..., n};

- B the number of iterations of the algorithm (number of estimators that are aggre-

gated).

for k ← 1 to B do

1. Draw a bootstrap sample (Z
(k)
i ) from (Z ′i)1≤i≤m.

2. Fit p(·, θ̂(k)) on this bootstrap sample.

end for

return The final estimator is x→ π̂(x) = 1
B

∑B
k=1 p(x, θ̂

(k)).

A particular difficulty in applying bagging to our classification problem is that we have

a problem in which a class is under-represented among our observations. If we were to

apply bagging as in Algorithm 2 directly, many bootstrap samples may contain too few

observations from the smallest class to produce an accurate prediction. This could limit

considerably the performance of the resulting estimator.

For structured data, methods like SMOTE (see [10]) can be used to generate new

observations to enrich the database. Data augmentation techniques are also available

for image analysis, see [34]. These techniques are difficult to adapt to our text analy-

sis framework, since they implicitly rely on the assumption that there is some spatial

structure underlying data: typically, if the observations are represented as points in a

multi-dimensional space, SMOTE joins two points associated with label 1, and introduce

a new pseudo-observation somewhere on a segment joining them. In our situation, la-

bels are scattered through this high-dimensional space, and the procedure does not seem

adapted.

We here propose two simple ways to perform rebalancing, that we refer to as ”Balanced

bagging” and ”Randomly balanced bagging” respectively.

Balanced bagging:
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Algorithm 3 Balanced Bagging Algorithm

Require:

- same requirements as in Algorithm 2.

- n1 = number of desired observations in the under-represented class (corresponding

to J ′i = 1, denoted C1).

for k ← 1 to B do

1. Draw a bootstrap sample (Z
(k)
i )1≤i≤2n1 from (Z ′i)1≤i≤m, under the constraint

that (Z
(k)
i )1≤i≤n1 ∈ C1 and (Z

(k)
i )n1+1≤i≤2n1 ∈ C0 (where C0 denotes the class of

observations such that J ′i = 0).

2. Fit p(·, θ̂(k)) on this bootstrap sample.

3. Compute the corresponding fitting error ek, and let wk = e−1k .

end for

return The final estimator is x→ π̂(x) = 1∑B
j=1 wj

∑B
k=1wkp(x, θ̂

(k)).

Randomly balanced bagging:
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Algorithm 4 Randomly Balanced Bagging Algorithm

Require:

- same requirements as in Algorithm 2.

- n1 = mean number of desired observations in the under-represented class.

- a such that n1 + a is less than the total number of observations in C1.

for k ← 1 to B do

1. Simulate two independent variables (U0, U1) uniformly distributed on [−a, a],

and define n̂0 = n1 + U0, n̂1 = n1 + U1.

2. Draw a bootstrap sample (Z
(k)
i )1≤i≤n̂0+n̂1 from (Z ′i)1≤i≤m, under the constraint

that (Z
(k)
i )1≤i≤n̂1 ∈ C1 and (Z

(k)
i )n̂1+1≤i≤n̂1+n̂0 ∈ C0.

3. Fit p(·, θ̂(k)) on this bootstrap sample.

4. Compute the corresponding fitting error ek, and let wk = e−1k .

end for

return The final estimator is x→ π̂(x) = 1∑B
j=1 wj

∑B
k=1wkp(x, θ̂

(k)).

In each case, the final aggregated estimator perform the synthesis of each step, giving

more importance to step k if its fitting error ek is small.

2.4 Summary of our methodology

Let us summarize our methodology, which combines bias correction (censoring correction),

and bagging strategies to compute our predictor. First, we compute Kaplan-Meier weights

and use them to duplicate data according to these weights as described in Algorithm 1.

Then, from a given neural network architecture, we use one of the bagging algorithm of

section 2.3 to create pseudo-samples, and aggregate the fitted networks to obtain our final

estimator π̂(x).

The quality of the prediction strongly depends on two aspects that have still not been

mentioned in this general description of the method:

• Pre-processing of text data: this step consists in finding the proper representa-

tion of the words contained in the reports in a continuous space, adapted to defining
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a proper distance between words.

• Architecture: the performance is strongly dependent on the type of neural net-

works used (number of layers, structure of the cells and connexions).

This two points are developed in section 3 and 4 respectively.

3 Embedding methodology

In this section, we discuss the particularity of dealing with text data. To be analyzed

by neural networks structures, text data first require to be transformed into covariates

of large dimension in an appropriate space. After discussing one-hot encoding in section

3.1, we will explain the concept of word embedding in section 3.2. A combination of the

standard Fasttext embedding methodology (see [19]) with our database of text reports is

discussed in section 3.2.1.

3.1 One-hot encoding

Since our procedure aims at automatically treating text data and use them to predict the

severity of a claim, we need to find a convenient representation of texts so that it can be

treated efficiently by our network. A first idea is to rely on one-hot encoding. The set of

whole words in the reports forms a dictionary of size V (Vocabulary size), then each word

is associated to a number 1 ≤ j ≤ V. A report is then represented as a matrix. If there is

l words in the report, we encode it as a matrix X = (xa,b)1≤a≤V,1≤b≤l, with V lines and l

columns. The k−th column represents the k−th word of the report, say xk. If this word

is the j−th word of the dictionary, then xj,k = 1 and xi,k = 0 for all i 6= j. Hence, each

column has exactly one non-zero value.

To introduce some context of use of the words, the size of the dictionary can be in-

creased by not considering single words but n−grams. A n-gram is a contiguous sequence

of n items from a given sample of text or speech (either a sequence of words, or of letters).

The vocabulary size V becomes the total number of n−grams contained in the report.

Using one-hot encoding makes the data ready for machine learning treatment, but it

raises at least two difficulties:

- the vocabulary size V is huge.
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- it is not adapted to defining a convenient distance between words. Indeed, we want to

take into account that there are similarities between words (synonyms, for instance,

or even spelling errors).

Hence, there is a need for a more compact representation that would define a proper

metric on words.

3.2 Word embedding

This process of compacting the information is called word embedding, see [7], [20]. The

idea of embedding is to map each column of a one-hot encoded matrix to a lower dimension

vector (whose components are real numbers, not only 0-1 valued).

Embedding consists in defining dense vector representations of the characters. The

objectives of these projections are:

- Dimension Reduction: as already mentioned, embedding maps a sparse vector of size

V to a lower dense vector of size N < V .

- Semantic Similarity: typically, words that are similar or that are often associated, will

be close in terms of embedded vectors.

To perform embedding, we will use a linear transform of vectors. This transformation

is defined by the embedding matrix W (V columns and N lines). A one-hot encoded

report X is then transformed into X′ = WX (according to the notations of section 2),

which becomes the input of our neural network models. How to determine a proper

matrix W is described by the diagram of Figure 2. A full description of the steps of the

methodology is the following:

• a ”context window” of size c = 2p + 1 is centered on the current word xk: this

defines a set of c words (xk−j)−p≤j≤p that are used as inputs of the procedure of

Figure 2.

• the embedding matrix W is applied to each of these word, and an hidden layer,

producing, for the k−th group of words, hk = C−1
∑p

j=−pWxk.

• the N−dimensional vector hk is then sent back to the original V−dimensional space

by computing x̂k = W ′hk = (x̂j,k)1≤j≤V , where W ′ denotes the synaptic matrix of

the hidden layer also called the ”context embedding”.
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The error used to measure the quality of the embedding for word k is

−
V∑
j=1

log

(
exp(xj,kx̂j,k)∑V
l=1 exp(xl,kx̂l,k)

)
.

A global error is then obtained by summing all the words of the report, and by summing

over all the reports. The embedding matrix is the one which minimizes this criterion.

Figure 2: Summary of the embedding matrix determination.

3.2.1 FastText

The gist of FastText, see [19], is that instead of directly learning a vector representation

for a word (as with word2vec, see [33]), the words are decomposed into small character

n-grams (see [8]), and one learns a representation for each n-gram. A word is represented

as words being represented as the sum of these representations. So even if a word is

misspelled, its representation tends to be close to the one of the well-spelled word. More-

over, FastText proposes an efficient algorithm to optimize the choice of the embedding

matrix. A pre-trained FastText embedding matrix is available, trained on a huge number

of words. Nevertheless, it has not been calibrated from on a vocabulary and a context

specific to insurance. Hence, a possibility that we develop in the following is to use the

FastText algorithm (not the pre-trained matrix), but training our embedding matrix on

the corpus of insurance reports from our database.

In the following, we distinguish between three ways of performing embedding:

• the matrix W is determined via FastText’s algorithm once and for all at the be-

ginning of the procedure. The embedded words are sent as inputs into the network
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architectures described in the following section 4. Only the parameters of these

networks are iteratively optimized. We call this method ”static” embedding.

• the embedding is considered as a first (linear) layer of the network. The values of

the embedding matrix W are initialized with FastText’s algorithm, but updated

at the same time the other coefficients of the network are optimized. We call this

method ”non-static”.

• for comparison, we also consider the case of a random initialization of this matrix

W, whose coefficients are then updated in the same way as in the non-static method.

We refer to it as the ”random” method.

4 Network architectures for text data

The architecture of neural networks is a key element that can considerably impact their

performance. We consider to types of architectures in the following:

• Convolutional Neural Networks (CNN), described in section 4.1;

• Long Short Term Memory (LSTM) networks which are a particular kind of Recur-

rent Neural Networks (RNN), described in section 4.2.

4.1 Convolutional Neural Network

Convolutional Neural Networks are nowadays widely used for image processing (image

clustering, segmentation, object detection...), see for example [25]. [22] showed that they

can achieve nice performance on text analysis. Compared to the multilayer perceptron,

which is the most simple class of neural network and corresponds to the architecture

described in Figure 1, CNN are based on a particular spatial structure that prevents

overfitting.

A CNN is made of different type of layers composing the network. One may distinguish

between:

• convolutional layers: each neuron only focus on a localized part of the input, see

below;

• fully connected layers: every neuron of the layer is connected to every neuron in the

following one;
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• normalization layers: used to normalize the inputs coming from the previous layer;

• padding and pooling layers: the aim is either to expand or to reduce the dimension

of the inputs coming from the previous layer through simple operations, see below;

• the final output layer that produces a prediction of the label through combination

of the results of the previous layer.

The convolutional layers are at the core of the idea of spatial structure of CNNs.

They extract features from the input while preserving the spatial relationship between

the coordinates of the embedding matrix. Typically, they operate simple combinations of

coefficients whose coordinates are closed to each other, as illustrated in Figure 3.

Figure 3: An example of a convolution layer. Convolution Layer. Each coefficient ci,j

of the output matrix is obtained by a linear combinations of coefficients ai,j in a f × f
square of the input matrix. The color code shows which coefficients of the input matrix

have been used to compute the corresponding coefficient of C.

In CNN terminology, the matrix B in Figure 3 is called a ‘filter‘ (sometimes ’kernel’ or

’feature detector’) and the matrix formed by sliding the filter over the input and computing

the dot product is called the ‘Convolved Feature’ (‘Activation Map’ or ‘Feature Map‘).

A filter slides over the input (denoted by A in Figure 3) to produce a feature map. Each

coefficient of the output matrix (C in Figure 3) is made of a linear combination of the

coefficients of A is a small square of the input matrix. This linear combination is a

convolution operation. Each convolution layer aims to capture local dependencies in the

original input. Moreover, different filters make appear different features, that is different

structures in the input data. In practice, a CNN learns the values of these filters on its

own during the training process (although we still need to specify parameters such as
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number of filters, filter size, architecture of the network etc. before the training process).

The higher the number of filters, the more features get extracted, increasing the ability

of the network to recognize patterns in unseen inputs.

The other types of layers are described in section 7.2. An example of CNN architecture

is described in the real data application, see Figure 7.

4.2 Recurrent Neural Networks and Long Short Term Memory

(LSTM) networks

Recurrent Neural Networks (RNN) are designed to handle dependent inputs. This is

the case when dealing with text, since a change in the order of words induce a change

of meaning of a sentence. Therefore, where conventional neural networks consider that

input and output data are independent, RNNs consider an information sequence. A

representation of a RNN is provided in Figure 4.

Figure 4: A unrolled recurrent neural network and the unfolding representation in time

of the computation involved in its forward computation.

According to this diagram, the different (embedded) words (or n−grams) constituting

a report, pass successively into the network A. The t−h network produces an output

(the final one constituting the prediction), but also a memory cell ct which is sent to the

next block. Hence, each single network uses a regular input (that is an embedded word),

plus the information coming from the memory cell. This memory cell is the way to keep

track on previous information. The most simple way to keep this information would be

to identify the memory cell with the output of each network. Hence, the t−th network

uses the information from the past in the sense that it take advantage of the prediction
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done at the previous step. Nevertheless, this could lead to a fade of the contribution of

the first words of the report, while they could be determinant.

To circumvent this issue, one can turn at Long Short Term Memory (LSTM) networks

have been introduced by [18]. They can be considered as a particular class of RNN with a

design which allows to keep track of the information in a more flexible way. The purpose

of LSTM is indeed to introduce a properly designed memory cell whose content evolves

with t to keep relevant information through time (and ”forget” irrelevant).

As RNN, LSTM are successive blocks of networks. Each block can be described by

Figure 5. The specificity of LSTM is the presence of a ”cell” ct which differs from the

output ht, and which can be understood as a channel to convey context information that

may be relevant to compute the following output ht+1 in the next block of the network.

The information contained in the cell passes through three gates. These so-called gates

are simple operations that permit to keep, add or remove information to the memory cell.

Figure 5: Synthetic description of a block of a Long Short Term Memory network.

Figure 6: LSTM notation

Following the diagram of Figure 5, the memory cell ct first goes through a multiplicative
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gate. This means that each component of the vector ct is multiplied by a number between

0 and 1 (contained in a vector ft), which allows to keep (value close to 1) or suppress

(value close to 0) the information contained in each component of ct. This vector ft is

computed from the new input xt and the output of the previous block ht−1.

Next, the modified memory cell enters an additive gate. This gate is used to add

information. The added information is a vector C̃t, again computed from the input xt

and the previous output ht−1. This produces the updated memory cell that passes through

the next block.

Moreover, this memory cell is transformed and combined with (xt, ht−1) through the

third step, to produce a new output.

To summarize, the following set of operations are performed in each unit (here, σ

denotes the classical sigmoid function, and [xt, ht−1] the concatenation of the vectors xt

and ht):

• Compute ut = σ(θ0[xt, ht−1]+b0), vt = σ(θ1[xt, ht−1]+b1), and wt = tanh(θ2[xt, ht−1]+

b2).

• The updated value of the memory cell is ct = ut × ct−1 + vt × wt.

• The new output is ht = σ(θ3[xt, ht−1] + b3)× tanh(ct).

5 Real data analysis

This section is devoted to a real data analysis. The aim is to predict a severity indicator

of a claim (which is known only when the claim is fully settled) from expert reports. The

main difficulty stands in the fact that the proportion of ”severe” claims that require a

specific response is quite low. In section 5.1, we present the structure of the database and

its specificities. Section 5.2 is devoted to the inventory of the different network structures

and embedding methods that we use. The performance indicators that can be used to

assess the quality of the method are shown in section 5.3. The results and discussion is

made in section 5.4.

5.1 Description of the database

The database we consider gathers 113072 claims from a French insurer, and corresponding

expert reports describing the circumstances. These reports have been established at the
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Categories min mean var median max

Standard claims (uncensored) 0 1 1 0,75 16.3

Extreme claims (uncensored) 0,25 3.83 6,93 3,08 16.3

Standard claims (after KM) 0 1.25 2.26 0,83 16.3

Extreme claims (after KM) 0,25 5.24 11.7 4.17 16.3

Table 1: Empirical statistics on the variable T, before and after correction by Kaplan-

Meier weights (”after KM”). The category ”Extreme claims” corresponds to the situation

where I = 1 for x = 3% of the claims, while ”Standard claims” refers to the 97% lower

part of the distribution of the final amount.

opening of the claim, and do not take into account counter-expertises. Among these

claims, 23% are still open (censored) at the date of extraction. Empirical statistics on the

duration of a claim T are shown in Table 1.

For the claims that are closed, different severity indicators are known. These severity

indicators have been previously computed from the final amount of the claim: I = 1 if

the claim amount exceeds some quantile of the distribution of the amount, corresponding

to the x% upper part of the distribution. In the situation we consider, this percentage x

ranges from 1.5 to 7, which means that we focus on relatively rare events, since I = 0 for

the vast majority of the claims.

Some elements about the structure of the reports are summarized in Table 2 below.

To get a first idea of which terms in the report could indicate severity, Table 3 shows

which are the most represented words, distinguishing between claims with I = 1 and

claims with I = 0.

In both cases, the two most frequent words are ”insurer” and ”third party”, which

have to be linked with the guarantee involved. For extreme claims, we notice a frequent

presence of a term related to a victim, for example motorcycle, or pedestrian. In addition

there are also words related to the severity of the condition of a victim, such as injured or

deceased. Moreover, two verbs are present in our top, ”to ram” (we used this translation

of the French verb ”percuter”) and ”to hit” (in French, ”frapper”), which are related to

some kind of violence of the event. On the other hand, for ”standard” claims, the most

frequent words are related to the car. Hence, reports on extreme claims use the lexical

field of bodily damage, while the others use the terminology related to material damage.
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Average sentence length 10 words for a standard claim (12 for an extreme one)

Max sentence length 26

Min sentence length 3

Vocabulary size 9749 (without n-grams) 256020 (with n-grams)

Train set size 73684

Test set size 20971

Validation set size 18417

Table 2: Summarized characteristics of the reports. The dataset is split into the train

set (containing the observations used to fit the parameter of the network), the validation

set (used to tune the hyper-parameters), and the test set (used to measure the quality of

the model). The vocabulary size ”with n−grams” is the total of 1−grams, 2−grams and

3−grams.

5.2 Hyperparameters of the networks and type of embedding

Let us recall that our procedure is decomposed into three steps:

• A preliminary treatment to correct censoring (Kaplan-Meier weighting);

• Embedding (determination of some appropriate metric between words);

• Prediction, using the embedded words as inputs of a neural network. Depending

on the embedding strategy, the prediction phase is either disconnected from the

embedding (static method) or done at the same time (after a FastText initialization,

non-static method, or a random initialization, random method).

For the last phase, we use LSTM and CNN described in section 4. For each of these

architectures, we compare the different variations (static, non-static and random). The

static and non-static classes of method are expected to behave better, taking advantage

of a pre-training via FastText. For the LSTM networks, we consider two cases: when the

words are decomposed into n−grams (n = 1, 2, 3), or without considering n−grams. In

each case, the idea is to measure the influence of the different rebalancing strategies.

The weights in each of the networks we consider are optimized using the Adagrad

optimizer, see [13]. Training is done through stochastic gradient descent over shuffled

mini-batches with the Adagrad update rule. The architecture and hyper-parameters of the

LSTM and CNN are shown in Table 4 and Figure 7 and 8 below. The codes are available on

https://github.com/isaaccs/Insurance-reports-through-deep-neural-networks.
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Rank Extreme Normal

1 insurer 90% insurer 87%

2 third party 56% third party 61%

3 injured 38% front 46%

4 to ram 30% way 41%

5 to hit 24% backside 40%

6 motorcycle 18% left 20%

7 driver 17% right 18%

8 pedestrian 16% side 17%

9 inverse 15% to shock 14%

10 deceased 13% control 10%

Table 3: Ranking of the words (translated from French) used in the reports, depending

on the category of claims (Extreme corresponds to I = 1 and Standard to I = 0.)

CNN LSTM

dense size 1 400 500

dense size 2 250 300

penalized 0.001 0.004

NB filter 1024 not for LSTM

filtersize [1,2] not for LSTM

nb units not for CNN [256,128]

Table 4: Hyper-parameters of the recurrent neural network used in the real data analysis.

Figure 7: Representation of the CNN network used in the real data analysis.
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Figure 8: Representation of the LSTM network used in the real data analysis. The output

of the network is followed by a multilayer perceptron.

5.3 Performance indicators

In this section, we describe the criteria that are used to compare the final results of our

models. Due to the small proportion of observations such that I = 1, measuring the

performance only by the well-predicted responses would not be adequate, since a model

which would systematically predict 0 would be ensured to obtain an almost perfect score

according to this criterion. Let us introduce some notations:

• TN is the number of negative examples (I = 0) correctly classified, that is ”True

Negatives”.

• FP is the number of negative examples incorrectly classified as positive (I = 1),

that is ”False Positives”.

• FN is the number of positive examples incorrectly classified as negative (”False

Negatives”).

• TP is the number of positive examples correctly classified (”True Positives”).

We then define Recall and Precision as,

Recall =
TP

TP + FN
,

Precision =
TP

TP + FP
.
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So Recall is the proportion of 1 that have been correctly predicted with respect to the

total number of 1. For Precision, the number of correct predictions of 1 is compared to

the total of 1-predicted observations. F1−score (see for example [2]) is a way to combine

these two measures, introducing

F1 =
2×Recall × Precision
Recall + Precision

.

The F1−score conveys the balance between the precision and recall.

Remark:

F1−score is a particular case of a more general family of measures defined as

Fβ =
(1 + β2)×Recall × Precision
Recall + β2 × Precision

,

where β is a coefficient to adjust the relative importance of precision versus recall, de-

creasing β leads a reduction of precision importance. In order to adapt the measure to

cost-sensitive learning methods [10] proposed to rely on

β =
c(1, 0)

c(0, 1)
, (5.1)

where c(1, 0) (resp. c(0, 1)) is the cost associated to the prediction of a False Negative

(resp. of a False Positive). The rationale behind the introduction of such Fβ measure is

that misclassifying within the minority class is typically more expansive than within the

majority class. Hence, considering the definition (5.1) of β, improving Recall will more

affect Fβ than improving Precision. In our practical situation, it was difficult to define a

legitimate cost for such bad predictions, which explains why we only considered F1−score

among the family of Fβ−measures.

5.4 Results

As we already mention, I = 1 corresponds to a severe event, that is the loss associated

with the claim corresponds to the x% upper part of the loss distribution. We made this

proportion vary from 1.5% to 7% to see the sensitivity to this parameter. Table 5 shows

the benefits of using the different resampling algorithms of section 2.3 in the case where

the proportion of 1 in the sample is 3% (which is an intermediate scenario considering the

range of values for x that we consider). The neural networks methods are benchmarked

with a classical logistic predictor, and two other competing machine learning methodology

(Gradient Boosting and Random Forests, see [15]). To make think comparable, all these
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alternatives methodologies are combined with the FastText embedding (as in the static

methods). Moreover, we apply the same resampling algorithms of section 2.3 to these

methods.

Let us first observe that the network methodologies lead to a relatively good precision

if one does not use rebalancing strategies. This is due to the fact that precision only

measures the proportion of true positive among all the claims that have been predicted to

be 1. Typically, the networks methodologies, in this case, predict correctly the ”obviously”

severe claims, but miss lots of these severe claims. This explains why recall and F1−score

are much lower.

The rebalancing algorithm mostly benefit the machine learning methodologies. One

also observes that the embedding methodologies based on FastText (static and non-static

methods) leads to better performances. The performance of all techniques in terms of

F1−score is not spectacular (in the sense that it is not close to 1), but this has to be related

with the complexity of the problem (predicting a relatively rare class of events). Compared

to the basic logistic method (after embedding), the best network (LSTM without consid-

ering n grams, with the lightly balanced bagging algorithm) leads to an improvement of

20% in terms of F1−score.

Let us also observe that the LSTM network architecture which does not rely on

n−grams behaves better than the LSTM which actually uses these n−grams. This may

be counterintuitive, since the use of n−grams is motivated by the idea that one could

use them to take the context of the use of a word into account. Nevertheless, considering

n−grams increases the number of parameters of the network, while context information

is already present in the embedding methodologies. On the other hand, CNN methods

have lower performance than LSTM ones, but the performances stay in the same range

(with a computation time approximatively 4 times smaller to fit the parameters of the

network).
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Method Model type Embedding precision recall F1-score

Classical

Logistic static 0.26 0.30 0.28

Random Forest static 0.20 0.22 0.21

Gradient Boosting static 0.17 0.31 0.22

CNN

rand 0.61 0.16 0.26

static 0.68 0.08 0.14

non-static 0.78 0.06 0.12

LSTM no n-Grams

rand 0.78 0.06 0.11

static 0.58 0.14 0.22

non-static 0.66 0.11 0.19

LSTM n-Grams

rand 0.72 0.08 0.14

static 0.57 0.13 0.21

non-static 0.57 0.14 0.22

Balanced

Logistic static 0.34 0.34 0.34

Random Forest static 0.25 0.40 0.31

Gradient Boosting static 0.22 0.34 0.27

CNN

rand 0.28 0.36 0.30

static 0.28 0.35 0.31

non-static 0.28 0.48 0.33

LSTM no n-Grams

rand 0.34 0.31 0.32

static 0.37 0.37 0.37

non-static 0.28 0.46 0.35

LSTM n-Grams

rand 0.25 0.27 0.26

static 0.31 0.46 0.37

non-static 0.29 0.41 0.34

Randomly

Logistic static 0.30 0.38 0.34

Random Forest static 0.22 0.43 0.29

Gradient Boosting static 0.25 0.37 0.30

CNN

rand 0.07 0.30 0.12

static 0.32 0.45 0.37

non-static 0.33 0.42 0.37

LSTM no n-Grams

rand 0.33 0.33 0.33

static 0.09 0.63 0.16

non-static 0.34 0.48 0.40

LSTM n-Grams

rand 0.24 0.29 0.27

static 0.23 0.53 0.32

non-static 0.29 0.39 0.33

Lightly

Logistic static 0.34 0.39 0.36

Random Forest static 0.27 0.38 0.31

Gradient Boosting static 0.25 0.33 0.29

CNN

rand 0.43 0.37 0.40

static 0.39 0.44 0.41

non-static 0.41 0.44 0.42

LSTM no n-Grams

rand 0.42 0.33 0.37

static 0.40 0.45 0.42

non-static 0.47 0.40 0.43

LSTM n-Grams

rand 0.33 0.33 0.33

static 0.31 0.46 0.37

non-static 0.34 0.41 0.37

Table 5: Influence of the constrained bagging algorithms of section 2.3. For ”Classical,”

no rebalancing algorithm has been used. ”Balanced” corresponds to algorithm 3 with an

equal proportion of 1 and 0 in each sample. ”Randomly” corresponds to algorithm 4 with

an equal proportion (in average) of 1 and 0 in each sample. ”Lightly” corresponds to

algorithm 4 with 10% of 1 (in average) in each sample.

Table 6 shows the influence of the proportion x on the performance (we only report a

selected number of methods for the sake of brevity. We observe that the performance of

the logistic method decreases with the proportion of 1 contained in the sample. On the

other hand, the network-based methods’ performance stay relatively stable.
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Extreme Values Percent Model type Embedding precision recall f1-score

1.5%

Logistic static 0.19 0.24 0.21

CNN

rand 0.38 0.41 0.39

static 0.49 0.36 0.41

non-static 0.40 0.42 0.41

LSTM

rand 0.42 0.33 0.37

static 0.34 0.47 0.39

non-static 0.47 0.40 0.43

3.5%

Logistic static 0.27 0.35 0.30

CNN

rand 0.39 0.47 0.43

static 0.37 0.48 0.42

non-static 0.35 0.45 0.40

LSTM

rand 0.33 0.37 0.34

static 0.35 0.49 0.40

non-static 0.34 0.49 0.40

5%

Logistic static 0.25 0.42 0.31

CNN

rand 0.41 0.44 0.42

static 0.40 0.46 0.43

non-static 0.42 0.45 0.44

LSTM

rand 0.22 0.31 0.26

static 0.37 0.49 0.42

non-static 0.43 0.37 0.40

7%

Logistic static 0.29 0.45 0.35

CNN

rand 0.40 0.47 0.43

static 0.43 0.46 0.44

non-static 0.38 0.46 0.41

LSTM

rand 0.32 0.34 0.33

static 0.42 0.41 0.42

non-static 0.43 0.40 0.41

Table 6: Performance of the different methodologies (combined with the different embed-

ding technics). The first column indicates the percentage of 1 in the sample.

6 Conclusion

In this paper, we proposed a detailed methodology to perform automatic analysis of text

reports in insurance, in view of predicting a rare event. In our case, the rare event is

a particularly severe claim. This question of clustering such claim is of strategic impor-

tance, since it allows to operate a particular treatment of the claims that are identified as

”extreme”. Four steps of our method are essential:

• correction of censoring via survival analysis techniques;

• compensation of the rarity of the severe events via rebalancing bagging techniques;

• a proper representation of the words contained in the reports via an appropriate

embedding technique;

• the choice of a proper neural network architecture.

Long Short Term Memory networks, associated with a performant embedding method,

appear to be promising tools to perform this task. Nevertheless, learning rare events is

27



still a hard task, especially in such insurance problem where the volume of data is limited.

The integration of additional variables to increase the information on the claims should be

essential to improve the prediction. Moreover, let us mention that, in this work, we only

considered information available at the opening of the claim to predict its outcome. For

long development branches, the incorporation of updated information on the evolution of

the claims could be determinant and should be incorporated in the methodology.
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7 Appendix

7.1 Typical choices of activation functions for neural networks

A list of typical activation functions is provided in Table 7.

Name Function

Sigmoid function
σ : R → [0, 1]

x 7→ 1
1+e−x

Hyperbolic tangent
tanh : R → [−1, 1]

x 7→ 2σ(2x) + 1

ReLU
f : R → R+

x 7→ max(0, x)

Leaky ReLU
f : R → R+

x 7→ αx1x≤0 + x1x>0

where α is a small constant

Swish function[32]
σ : R → [0, 1]

x 7→ x
1+e−x

Table 7: Typical choices of activation functions.

7.2 Additional type of layers in a CNN

Zero-padding. Zero-padding is the simplest way to avoid diminishing too much the

dimension of the input when going deeper into the network. As we can see above in

Figure 3, a convolution step will produce an output C of smaller dimension than A.

Moreover, when dealing with our text data, it is useful to control the size of our inputs.

Let us recall that we want to automatically analyse reports to predict the severity of a

claim. These reports do not all have the same size in terms of words. Zero-padding creates

a larger matrix by adding zeros on the boundaries, as shown in the example of Figure

9. Similar issues are present when dealing with images that may not all have the same

number of pixels.
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Figure 9: Zero-padding

Pooling Step. Pooling steps work similarly as convolution layers, but applying locally

a function that may not be linear. An example is shown in Figure 10.

Figure 10: Example of a Pooling Layer: each function is applied to a moving square of

input coefficients of size 2x2.

Let us note that, in the example of Figure 10, the functions ’Average’ and ’Sum’ may

be seen as linear filters, as in Figure 3 (for example, function ’Sum’ is related to a filter B

whose coefficients are all 1). The only difference is that the parameters of a convolution

layer evolves through the calibration process of the network, while the coefficients of a

pooling layer are fixed.

7.3 Hyperparameters

We list below the hyperparameters used in the different networks. A grid search has

been used to determine which et of hyperparameters lead to the best performance. Table
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8 lists the range of values on which the optimization has been done. The Embedding

dimension denotes the dimension N after reduction of the vocabulary V. Batch size is

a parameter used in the Batch Gradient Descent (used in the algorithm of optimization

of the weights of the networks), see [5]. The number of hidden layers refer to the final

multilayer perceptron block used at the output of LSTM and CNN networks.

Hyperparameter Grid

Embedding dimension 32 to 126

n-grams characters for embedding 1 to 5

Batch size 8 to 256

Number of hidden layers 1 to 5

Number of neurons in each layer 450 to 50

Number of filters for the CNN 32 to 1024

Size of the filters 1 to 5

Table 8: Range of values on which the hyperparameters have been optimized.

All the codes are available at the following url:

https://github.com/isaaccs/Insurance-reports-through-deep-neural-networks.
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