C. Charu, C. Aggarwal, and . Zhai, Mining text data, 2012.

J. Akosa, Predictive accuracy: A misleading performance measure for highly imbalanced data, Proceedings of the SAS Global Forum, 2017.

G. Michael and . Akritas, The central limit theorem under censoring, Bernoulli, vol.6, issue.6, pp.1109-1120, 2000.

N. Aloysius and . Geetha, A review on deep convolutional neural networks, 2017 International Conference on Communication and Signal Processing (ICCSP), pp.588-0592, 2017.

Y. Bengio, Practical recommendations for gradient-based training of deep architectures, Neural networks: Tricks of the trade, pp.437-478, 2012.

W. Michael, M. Berry, and . Castellanos, Survey of text mining, Computing Reviews, vol.45, issue.9, p.548, 2004.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, Enriching word vectors with subword information, 2016.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, Enriching word vectors with subword information, Transactions of the Association for Computational Linguistics, vol.5, pp.135-146, 2017.

L. Breiman, Bagging predictors. Machine learning, vol.24, pp.123-140, 1996.

V. Nitesh, K. W. Chawla, L. O. Bowyer, W. Hall, and . Kegelmeyer,

, Smote: synthetic minority over-sampling technique, Journal of artificial intelligence research, vol.16, pp.321-357, 2002.

J. Cheng, L. Dong, and M. Lapata, Long short-term memory-networks for machine reading, 2016.

F. Turkan-erbay-dalkilic, K. Tank, and . Kula, Neural networks approach for determining total claim amounts in insurance, Insurance: Mathematics and Economics, vol.45, issue.2, pp.236-241, 2009.

J. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization, Journal of machine learning research, vol.12, pp.2121-2159, 2011.

M. Ellingsworth and D. Sullivan, Text mining improves business intelligence and predictive modeling in insurance, Information Management, vol.13, issue.7, p.42, 2003.

J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning, vol.1, 2001.

G. Gerber, Y. L. Faou, O. Lopez, and M. Trupin, The impact of churn on client value in health insurance, evaluation using a random forest under random censoring, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01807623

T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning: data mining, inference, and prediction, 2009.

S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural computation, vol.9, issue.8, pp.1735-1780, 1997.

A. Joulin, E. Grave, and P. Bojanowski, Matthijs Douze, Hérve Jégou, and Tomas Mikolov. Fasttext.zip: Compressing text classification models, 2016.

A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, Bag of tricks for efficient text classification, 2016.

L. Edward, P. Kaplan, and . Meier, Nonparametric estimation from incomplete observations, Journal of the American statistical association, vol.53, issue.282, pp.457-481, 1958.

Y. Kim, Convolutional neural networks for sentence classification, 2014.

M. Douglas, . Kline, L. Victor, and . Berardi, Revisiting squared-error and cross-entropy functions for training neural network classifiers, Neural Computing & Applications, vol.14, issue.4, pp.310-318, 2005.

I. Kolyshkina and M. Van-rooyen, Text mining for insurance claim cost prediction, Data Mining, pp.192-202, 2006.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems, pp.1097-1105, 2012.

T. Lin, P. Goyal, and R. Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object detection, Proceedings of the IEEE international conference on computer vision, pp.2980-2988, 2017.

O. Lopez, A censored copula model for micro-level claim reserving, Insurance: Mathematics and Economics, vol.87, pp.1-14, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01706935

O. Lopez, X. Milhaud, and P. Thérond, Tree-based censored regression with applications in insurance, Electronic journal of statistics, vol.10, issue.2, pp.2685-2716, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01141228

T. Mikolov, M. Karafiát, L. Burget, J. , and S. Khudanpur, Recurrent neural network based language model, Eleventh annual conference of the international, 2010.

M. Sankaran-panchapagesan, A. Sun, S. Khare, A. Matsoukas, B. Mandal et al., Multi-task learning and weighted cross-entropy for dnn-based keyword spotting, Interspeech, vol.9, pp.760-764, 2016.

X. Qiu, L. Zhang, Y. Ren, N. Ponnuthurai, G. Suganthan et al., Ensemble deep learning for regression and time series forecasting, 2014 IEEE symposium on computational intelligence in ensemble learning (CIEL), pp.1-6, 2014.

P. Ramachandran, B. Zoph, and Q. V. Le, Searching for activation functions, 2017.

, Xin Rong. word2vec parameter learning explained, 2014.

O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical image segmentation, International Conference on Medical image computing and computer-assisted intervention, pp.234-241, 2015.

A. Rotnitzky, M. James, and . Robins, Inverse probability weighting in survival analysis, Wiley StatsRef: Statistics Reference Online, 2014.

G. E. David-e-rumelhart, R. Hinton, and . Williams, Learning representations by back-propagating errors, nature, vol.323, issue.6088, pp.533-536, 1986.

A. R. Saputro, H. Murfi, and S. Nurrohmah, Analysis of deep neural networks for automobile insurance claim prediction, International Conference on Data Mining and Big Data, pp.114-123, 2019.

W. Stute, The central limit theorem under random censorship. The Annals of Statistics, pp.422-439, 1995.

W. Stute, Distributional convergence under random censorship when covariables are present, Scandinavian journal of statistics, pp.461-471, 1996.

W. Stute, Nonlinear censored regression, Statistica Sinica, pp.1089-1102, 1999.

V. Mario and . Wüthrich, Neural networks applied to chain-ladder reserving, European Actuarial Journal, vol.8, issue.2, pp.407-436, 2018.

D. Matthew and . Zeiler, Adadelta: an adaptive learning rate method, 2012.