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Abstract

Introduction: Rare diseases affect approximately 350 million people worldwide. Delayed diagnosis is frequent due
to lack of knowledge of most clinicians and a small number of expert centers. Consequently, computerized
diagnosis support systems have been developed to address these issues, with many relying on rare disease
expertise and taking advantage of the increasing volume of generated and accessible health-related data. Our
objective is to perform a review of all initiatives aiming to support the diagnosis of rare diseases.

Methods: A scoping review was conducted based on methods proposed by Arksey and O’Malley. A charting form
for relevant study analysis was developed and used to categorize data.

Results: Sixty-eight studies were retained at the end of the charting process. Diagnosis targets varied from 1 rare
disease to all rare diseases. Material used for diagnosis support consisted mostly of phenotype concepts, images or
fluids. Fifty-seven percent of the studies used expert knowledge. Two-thirds of the studies relied on machine
learning algorithms, and one-third used simple similarities. Manual algorithms were encountered as well. Most of
the studies presented satisfying performance of evaluation by comparison with references or with external
validation. Fourteen studies provided online tools, most of which aimed to support the diagnosis of all rare diseases
by considering queries based on phenotype concepts.

Conclusion: Numerous solutions relying on different materials and use of various methodologies are emerging
with satisfying preliminary results. However, the variability of approaches and evaluation processes complicates the
comparison of results. Efforts should be made to adequately validate these tools and guarantee reproducibility and
explicability.

Keywords: Scoping review, Rare disease, Genetic diseases, Diagnosis, Clinical decision support, Artificial intelligence,
Machine learning, Patient similarity, Phenotype

Introduction
There are more than 7000 rare diseases affecting ap-
proximately 350 million people worldwide. Eighty per-
cent of rare diseases are genetic diseases. According to a
report from Globalgenes [1], most clinicians have limited
knowledge about these diseases, and 40% of general

practitioners and 24% of specialist doctors do not have
time to work on these diagnoses. All these factors lead
to underdiagnosis or delayed diagnosis of rare diseases.
Moreover, even if the patient is suspected of suffering
from a rare disease, there is still a large possibility of
misdiagnosis because of the overlapping spectrum of
symptoms of many rare diseases [2]. In general, final
diagnosis for most rare diseases is performed using a
genetic test that tends to be focused on a small set of
diseases. Given all these constraints, a recent review
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concluded that rare disease diagnosis is still a challen-
ging task [3].
Considering the growing complexity of medical know-

ledge and the increasing availability of data sources such
as electronic health reports (EHRs), many decision sup-
port systems have been developed to assist clinicians in
their decision-making, particularly for diagnosis and pre-
diction tasks [4]. The objectives of these diagnosis sup-
port systems can be different: more widespread, more
accurate, more effective, less expensive or less time con-
suming. Some tools are focused on a specific rare disease
or a specific group of rare diseases, while other tools aim
to provide general diagnosis support for all rare diseases.
According to different objectives, various data sources
and methods were considered, and the evaluation pro-
cesses were even more diverse.
In 2019, Montani and Striani [5] reviewed clinical de-

cision support tools using artificial intelligence (AI).
They considered two categories of AI: knowledge-based
AI, using a “top-down” fashion based on human know-
ledge, and data-driven AI, using a “bottom-up” fashion
to generate knowledge from a large amount of data.
Knowledge-based AI aims to model expert knowledge
with artifacts such as ontologies and rules and
operationalize it in terms of software or algorithms for
reasoning and solving problems, whereas in the case of
data-driven systems, models allowing classification and
prediction are derived from the processing of data pro-
vided to the system. Montani and Striani [5] identified
13 studies proposing decision support dealing with diag-
nosis. Among these, 11 were exclusively knowledge-
based systems, and 2 adopted knowledge-based methods
in combination with data-driven methods. However, this
review was not specified to rare disease diagnoses.
In this review, we aim to (i) present all the initiatives

seeking to support the diagnosis of rare diseases consid-
ering the plurality of objectives (making diagnosis more
accurate, more widespread, less expensive, etc.), the
multiplicity of materials (clinical signs and symptoms,
fluids, medical images, etc.), and all methodological ap-
proaches (e.g., automatic algorithms or methods based
on manually generated scores or decision trees), and (ii)
provide an intensive discussion of the characteristics of
ready-to-use systems.

Methods
This scoping review was performed following the recom-
mendations from Arksey and O’Malley [6].

Identifying the research question
In this scoping review, we considered rare diseases as
diseases described as rare within the studies under re-
view, diseases with prevalence less than 1/2000, or dis-
eases present in the Orphanet list [7]. Both postnatal

and antenatal situations were considered. Our objective
was to identify and analyze articles that report on using
algorithms or computer-aided systems to support the
diagnosis of rare diseases. We included in this review all
publications using fully automated approaches and pub-
lications using more traditional or empirical knowledge
modeling (manually generated scores, decision trees,
etc.), which qualified as “manual” in the rest of this
article.

Identifying relevant studies
Two categories of articles were considered: (i) articles
published in medical and health-related journals and (ii)
articles published in computer science and AI journals/
conferences with applications in the diagnosis of rare
diseases. We limited ourselves to a 10-year period, from
January 1, 2009 to August 31, 2019, considering that
older articles may not be relevant for our analysis. Only
studies written in English and related to humans were
considered. Reviews were excluded.
The search strategy was defined to identify relevant

studies from these two categories. PubMed was used to
search the MEDLINE database, covering biomedicine
and health care, as well as bioinformatics and some AI
journals indexed in MEDLINE, such as Artificial
Intelligence in Medicine. This search was then comple-
mented by the exploration of Web of Science (WoS) to
identify methodological publications that were not
indexed in MEDLINE, such as Journal of Artificial
Intelligence Research (JAIR) and Artificial Intelligence
Journal (AIJ). Three additional major AI conference
websites were further explored independently, as they
were not included in MEDLINE or Web of Science:
Neural Information Processing Systems (NeurIPS), Asso-
ciation for the Advancement of Artificial Intelligence
(AAAI) and International Joint Conferences on Artificial
Intelligence (IJCAI).

Identifying medical and health-related publications
Our search strategy was defined as three co-occurring
concepts: “diagnosis”, “rare diseases” and “support tool”
(see Table 1). A set of synonymous terms was identified
for each notion using an iterative process. For the diag-
nosis concept, we included terms such as “diagnoses” or
“diagnostic”. For the rare diseases concept, we also con-
sidered “orphan” diseases and “genetic” diseases. The
search strategy for the support tool notion was complex
due to the heterogeneity of methods and vocabulary that
were used by authors. The selected terms had to be
broad enough to identify the maximum number of rele-
vant publications and specific enough to reduce the
number of false positives. Selected terms included AI vo-
cabulary such as “artificial intelligence”, “decision sup-
port”, “expert system”, and “information retrieval”. For

Faviez et al. Orphanet Journal of Rare Diseases           (2020) 15:94 Page 2 of 16



PubMed, Medical Subject Heading (MeSH) terms were
included in the query along with keywords from titles
and abstracts.
Additionally, we used a snowball strategy to find other

relevant publications: we completed our search by
screening bibliographies from relevant studies and
looked for “similar articles” suggested by PubMed.

Identifying methodological publications
As Web of Science does not provide MeSH term match-
ing, the full search strategy was adapted using keywords
for identifying methodological publications in the do-
main of computer science and AI (Table 1). For the
three additional major AI conference websites, searches
were conducted on the websites or using Google search
restricted to the considered websites. Selected articles
had to address the notions of “rare disease” and “diagno-
sis”. Similar to PubMed, we completed our search by
screening bibliographies from relevant studies.

Study selection
One reviewer (CF) screened all the titles and abstracts
and scored them from 0 (exclude) to 2 (keep). Publica-
tions that scored 1 (not sure) were then collectively
reviewed by CF, XC and AB until a consensus was
reached, and then all articles were classified as 0 or 2.
Exclusion criteria were discussed among the three re-

viewers and definitively set once 10% of the abstracts
were screened. We excluded publications:

– Aimed at assessing disease severity, survival,
prognosis or risk for recurrence but not diagnosis
(publications identifying primary risk for a disease
were kept)

– Aimed at assessing the risk for a disease using only
environmental factors

– Aimed at identifying the best treatment option
based on individual variability

– Aimed at classifying diseases without performing a
more precise diagnosis/subtyping (e.g., for cystic
fibrosis, assessing the thickness of airways)

– Aimed at improving disease knowledge (e.g., aiming
at identifying gene signatures) instead of generating
a diagnosis tool or algorithm

– Focusing on diseases that are neither rare nor
genetic (e.g., Alzheimer, Parkinson)

All publications that scored 2 at the end of the selec-
tion process were read in their entirety, and information
of interest was extracted and collected using a specific
form.

Charting the relevant studies
A standardized charting form was established to synthe-
tize relevant publications. The information of interest
can be categorized in four main sections: metadata, pub-
lication scope, algorithm and model, implementation of
the diagnosis support tool.
The “Metadata” section consisted of publication title,

date, authors, country and source (PubMed or WoS or
conference website). The “Publication scope” section
aimed to summarize information such as the main ob-
jective and targeted diseases of the article and data type
(e.g., image, phenotype concepts) and volume. In this
section it was also specified if the system was developed
for ante or postnatal diagnosis. If relevant, the data en-
coding was specified. In the “Algorithm and model” sec-
tion, we described the methods, including the kind of
knowledge that was involved in the model (prior know-
ledge or not), and the evaluation process, including met-
rics of performances. The “Implementation” section
focused on the technical characteristics and functional-
ities of the system. An intensive discussion on ready-to-
use tools, advanced algorithms and prototypes of interest
is provided.
One reviewer (CF) charted all the selected publica-

tions. The three reviewers (CF, XC, AB) met to resolve
uncertainties.

Table 1 Database queries

Database Query

PubMed (((“Diagnosis”[MeSH] OR “diagnostic”[TIAB] OR “diagnostics”[TIAB] OR “diagnosis”[TIAB] OR “diagnoses”[TIAB]) AND
(“rare diseases”[MeSH] OR “Genetic Diseases, Inborn/genetics”[MeSH] OR ((“rare”[TIAB] OR “genetic”[TIAB] OR “orphan”[TIAB]) AND
(“diseases”[TIAB] OR “disease”[TIAB])))) OR
(“Rare Diseases/diagnosis”[MeSH] OR “Genetic Diseases, Inborn/diagnosis”[MeSH])) AND
(“Decision Support Systems, Clinical”[MeSH] OR “Decision Support Techniques”[MeSH] OR “decision support”[TIAB] OR “artificial
intelligence”[MeSH] OR “artificial intelligence”[TIAB] OR “Medical Informatics Computing”[MeSH] OR “Big data”[MeSH] OR “Data Mining/
methods”[MeSH] OR “expert system”[TIAB] OR “information retrieval”[TIAB] OR “search engine”[MeSH] OR “Software Design”[MeSH] OR
“Software Validation”[MeSH])

Web of
Science

(ALL = (“rare disease*” OR “genetic disease*” OR “orphan disease*”) OR (TI = (“rare” OR “genetic” OR “orphan”) AND TI = “disease*”))
AND
ALL = (diagnosis OR diagnostic* OR diagnoses) AND
ALL = (“decision support*” OR “expert system*” OR “artificial intelligence” OR “information retrieval” OR “search engine*” OR “medical
informatics computing” OR “software design” OR “software validation” OR “big data” OR “data mining”)
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Collating, summarizing and reporting the results
The results from the data charting were summarized
and analyzed to present an overview of the methods and
results encountered.

Results
We retrieved 829 articles from PubMed, 89 articles from
Web of Science (excluding duplicates retrieved from
PubMed) and 55 articles from AI conference websites,
for a total of 973 articles. Screening of titles and ab-
stracts of these articles was conducted to identify 51
relevant articles from PubMed, 11 additional publica-
tions from Web of Science and one from the IJCAI web-
site. Of note, 19% of the relevant publications (12 out of
63) were not indexed in MEDLINE.
We identified 9 more articles through the snowball

strategy. These 72 articles were fully read and charted.
Four articles were excluded at the end of this process
with an agreement of the three reviewers. More pre-
cisely, we excluded studies aiming to assess severity [8],
to assess longitudinal data of cases and controls [9], de-
scribing big data management software with one ex-
ample on genetic disease [10] and aiming to identify
“noncommon” diseases without performing a diagnosis
[11]. Sixty-eight articles were consequently retained at
the end of the whole process (Fig. 1).

Metadata
Analysis of metadata shows that rare disease diagnosis
support has become an active research topic. Among the
68 articles published between 2009 and 2019, more than

50% were published since 2016. Regarding authors’ affili-
ations, Europe and North America were the major con-
tributors: 37 articles (54%) had at least one coauthor
from Europe, and 21 (31%) had at least one author from
North America. The most represented country was
Germany (16/68 studies). Sixty-one articles were pub-
lished in life science and bioinformatics journals, and 7
were published in methodological journals (e.g., IJCAI,
Electronic Physician journal).

Publication scope
This section aimed to provide insights into the article by
identifying the target (targeted patients and disease) and
the considered material (data nature and volume). These
results are described in the two following subsections.

Publication target
Regarding the targeted patient, two different contexts
were focused on, i.e., postnatal or antenatal diagnosis.
Most of the articles (61/68) focused on diagnosis after
birth, while 7 studies consisted of prenatal screening for
fetal syndromes [12], diseases with chromosomal abnor-
malities [13], aneuploidies [14–16] and trisomy [17, 18]
based on noninvasive markers (demographics, sono-
graphic markers, maternal blood). The two contexts are
referred to in the following sections as “the post-natal
studies” and “the prenatal studies”. We focused on 61
postnatal studies.
Regarding the diseases under study, an important vari-

ability in the number of targeted diseases was identified.

Fig. 1 Flowchart of the screening process
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Articles were categorized into three groups based on the
number of targeted diseases:

– Group 1 - Studies focusing on one disease (e.g.,
Huntington disease): 29 studies out of 61 (48%) [19–47];

– Group 2 - Studies focusing on a class of diseases
or syndromes (e.g., macular diseases, facial genetic
dysmorphologies): 15 studies (25%) [48–62];

– Group 3 - Studies focusing on the whole
spectrum of genetic/rare diseases: 17 studies
(28%) [2, 63–78].

The most individually studied diseases were thalas-
semia [20, 28, 29, 47], Down syndrome [21, 30, 34], cys-
tic fibrosis [46, 48, 52], Marfan syndrome [25, 27] and
Huntington disease [19, 33].

Material
Material nature and data volume were assessed for each
study.

Material nature Diagnosis support was performed on
various types of material (Table 3). Sixteen studies (26%)
used images, 12 studies (20%) used quantitative data
from laboratory test results on fluids (blood, plasma or
urine), and 22 studies (36%) used other types of pheno-
types, namely, concepts extracted automatically from
narrative reports in EHRs or case reports. In the rest of
this article, we use the term “phenotype concepts” to
refer to the last category. Other types of material were
also considered, such as ad hoc questionnaires (3 stud-
ies) [52, 53, 58] and combinations of clinical features
and family history (8 studies).
Some correlations were identified between the nature

of the material and the number of targeted diseases
(Fig. 2). Not surprisingly, publications targeting the
whole spectrum of rare diseases were all based on
phenotype concepts (17 articles).

Data volume Regarding data volume, the number of pa-
tients included in each study was assessed. The data vol-
ume information was present in 80% of the publications
(49/61). The results are summarized in Table 2. All

publications targeted to one specific disease (group 1)
used control datasets in addition to the patient sets. Re-
garding the publications targeted to one class of diseases
(group 2), several datasets could be encountered within
one study. In that case, the data volume was assessed for
each dataset independently. For the publications targeted
to all rare diseases (group 3), simulated patients were
sometimes used for evaluation. We excluded the simula-
tions in the analysis of data volume and considered only
the number of real patients. For studies relying on im-
ages or fluids, if the number of patients was not clearly
specified, we considered the number of images or
samples.
The number of patients could vary from less than 20

patients [20, 21, 24, 35, 40, 43, 55] to more than 1000
patients [37, 47, 51, 62, 72, 75]. As expected, the number
of patients was usually more important for publications
targeting more than one disease (groups 2 and 3) than
for publications targeting one specific rare disease
(group 1) (Table 2). Only two studies from group 1 con-
sidered more than 1000 patients, familial hypercholester-
olemia [37] and beta thalassemia [47].

Algorithm and model
This section aims to describe how diagnosis support was
performed with different algorithms and models. We fo-
cused on (i) preprocessing, (ii) developed methods, and
(iii) evaluation and validation.

Preprocessing
Many studies have considered preprocessing steps to
improve the performance of the algorithms. The most
frequent was feature extraction. Thirty-three out of
61 studies (54%) described in their methodology a
feature extraction process based on dimension reduc-
tion, selection of a subpart of relevant features, or
comparison of the selection of features from different
natures or databases (e.g., phenotype concepts and ge-
notypes [73], addition of demographics [56], clinical
and biochemical phenotype concepts [54], clinical
notes or MEDLINE [75]).

Fig. 2 Correlations between the number of targeted diseases and material nature. All studies directed to all rare/genetic diseases were based on
phenotype concepts. Studies directed to a class or one specific disease could take advantage of disease-related materials such as images or fluids
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Developed models
We distinguished between knowledge-based approaches
(including prior knowledge from experts, literature, on-
tologies) and data-driven approaches [5] to categorize
the diagnosis-supporting models. Knowledge-based ap-
proaches ranged from simple decision trees created by
experts based on their knowledge of a disease to more
sophisticated models using disease and phenotype ontol-
ogies to support diagnosis. Data-driven approaches in-
cluded all models directly derived from data, such as
algorithms using images or fluids trained to classify pa-
tients based on features extracted from raw data. In the
case of the addition of any prior knowledge to the data-
driven approach, the system was qualified as a hybrid.
Based on this categorization, three-fourths of the sys-

tems among the 61 postnatal studies were based on a
single approach: 19 studies (31%) used knowledge-based
models exclusively, and 29 studies (48%) used data-
driven models. Hybrid models were encountered in 13
articles, corresponding to 21% of the publications (Fig. 3
and Table 3).
Among the 19 studies based exclusively on prior

knowledge, 5 systems (26%) were based on manually ac-
quired knowledge and simple representation, such as
manually designed decision trees [26, 38, 50], rather than
automated approaches. The remaining 14 studies (74%)
consisted of modeling the disease by the presence or fre-
quencies of phenotype concepts and then applying a

simple similarity method (Fig. 3 and Fig. 4). The know-
ledge source could be expert knowledge, literature or
existing knowledge bases, such as Orphanet [79] or On-
line Mendelian Inheritance in Man (OMIM) [80]. As ex-
pected, 12 studies re-used the Human Phenotype
Ontology (HPO) [81] as a knowledge source for pheno-
type coding, and 8 also used the tree structure of HPO
to address granularity issues and calculate semantic
similarity metrics. For these 14 studies, decision support
was as follows: each disease is described by a set of
phenotype concepts that correspond to the signs and
symptoms of the disease. Possible diagnoses of a new pa-
tient are then scored by comparing the phenotypic de-
scription of the patient to such knowledge using
similarity metrics such as cosine. The diagnosis support
system then returns a list of diseases ranked by the simi-
larity score for each patient. Three studies [65, 67, 68]
out of 14 included gene-disease knowledge in their
model. One of these systems [67] needed as input the
list of the patient’s phenotype concepts complemented
by the list of variants identified in the patient’s genome.
Among the 29 systems based exclusively on data, 86%

used images (14 studies) or fluids (10 studies) (Fig. 3).
All 29 studies used “machine learning” (ML), which can
be considered the ability to learn without explicitly being
programmed. In this review, we considered a broad ac-
ceptance of ML, from simple statistical methods such as
regression to deep learning, if a training phase is

Table 2 Number of patients and controls per dataset

Number
of studies

Number
of studies
with
datasets

Number of
datasets

Number of patients

Median Mean [Min, Max]

Patients

Group 1 29 studies 27 studies 29 datasets 50 291 [7, 5050]

Group 2 15 studies 14 studies 20 datasets 98 730 [5, 10,593]

Group 3 17 studies 8 studies 10 datasets 161 6929 [40, 39,000]

Controls

Group 1 29 studies 27 studies 29 datasets 70 105,491 [10, 2,966,363]

Studies are grouped according to the number of diseases they address. Group 1: one disease; group 2: a class of diseases; group 3: all rare/genetic diseases. The
number of studies, datasets and patients per dataset for each group is given. For group 1, the number of individuals in the control groups is also given. Datasets
from studies addressing all rare diseases (group 3) contain more patients on average

Fig. 3 Correlations between the knowledge model and material nature. Knowledge-based models were based on phenotype concepts or
combinations of clinical features. Data-driven models were mostly based on images or fluids
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considered. As for deep learning, we also considered a
broad acceptance of this term and we included all sys-
tems mentioned using neural networks. Support vector
machine (SVM) was the most popular method, corre-
sponding to 10 studies. Deep learning was used in 6
studies using images [44, 57, 59, 62] or fluids [20, 31]
and exhibited good performance on such data. Associa-
tions of different algorithms, such as fusion algorithms,
were encountered in 2 studies [52, 53]. Other authors
reported using more traditional statistical modeling,
such as regression [24] or decision trees [42, 60]. The K
Nearest Neighbors algorithm was used in 2 studies [51,
72]. Three studies [43, 58, 72] also used simple similarity
methods before applying machine learning models (Fig.
4). Two publications were based on transfer learning,
with models built and trained on a domain and then
transferred to a new domain [82]. The first study used
MRI images from healthy people to train an algorithm
for autism spectrum detection [57]. The second study
aimed to identify genetic syndromes on photographs
based on training for face recognition [62].
For the 13 studies using hybrid systems, the most fre-

quent combination (8 studies) was initial knowledge-
based feature selection followed by data-driven models.

The latter part could be either machine learning models
[28, 29, 37, 41, 45] or data-driven processes for feature
weighting or dimension reduction to create scores [25,
27, 39]. Two studies [73, 78] used a combination of simi-
larity calculation between the patient’s phenotype con-
cepts and the knowledge-based description of a disease
on the one hand and machine learning on the other
hand. Another type of combination consisted of combin-
ing similarity between patients and text-mined literature
on the one hand and similarity metrics among patients
on the other hand [75]. In these frameworks, deep learn-
ing was used in 4 studies [28, 29, 45, 74] and SVM in
one study [41]. One study [73] used a fusion algorithm.
In the same way as exclusively data-driven studies, other
authors reported using more traditional algorithms such
as regression [27, 39], decision tree [78] or K Nearest
Neighbors [75].

Evaluation and validation
The protocol to evaluate and validate the developed
models was highly study-dependent and is detailed in
the next subsections. The following characteristics were
considered:

Table 3 Publication summary

Material Knowledge Machine learning Articles

Phenotype concepts (22 studies) Knowledge-based (14 studies) No [2, 54, 55, 61, 63–71, 77]

Hybrid (7 studies) Yes [27, 73–76, 78]

No [25]

Data driven (1 study) Yes [72]

Fluids (12 studies) Hybrid (2 studies) Yes [28, 29]

Data driven (10 studies) Yes [20, 23, 24, 31, 36, 42, 47, 48, 56, 60]

Images (16 studies) Hybrid (2 studies) Yes [41, 45]

Data driven (14 studies) Yes [19, 21, 22, 30, 33–35, 43, 44, 49, 51, 57, 59, 62]

Questionnaires (3 studies) Data driven (3 studies) Yes [52, 53, 58]

Family history and combined material (8 studies) Knowledge-based (5 studies) No [26, 32, 38, 46, 50]

Hybrid (2 studies) Yes [37, 39]

Data driven (1 study) Yes [40]

References are listed in column “articles” according to the type of material considered and the model used (presence/absence of prior knowledge and of machine
learning). The number of studies according to material and knowledge is given in parentheses

Fig. 4 Correlations between the knowledge model and the methods. Data-driven systems were all based on machine learning (associated or not
to simple similarity measurement). Knowledge-based systems were either based on simple similarity or manually generated algorithms
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– The performance metrics;
– The comparison of results to other references;
– The use of external validation;
– The inclusion of a process to deal with the

imbalance issues.

All these results are summarized in Table 4.

Metrics In tasks associated with groups 2 and 3 (for dif-
ferential diagnosis or diagnosis of all rare diseases), most
of the authors calculated the proportion of correct diag-
nosis within the top K recommendations. K was chosen
by the authors and varied greatly among the publica-
tions, from 1 (11 studies) to 100 (2 publications), with
most articles using K = 10. Different values for K were
generally assessed within each publication. Other stud-
ies, especially studies focusing on one disease (group 1)
or a class of diseases (group 2), relied on various metrics,
such as accuracy, F-score, positive predictive value (pre-
cision), sensitivity (recall) and specificity, number of cor-
rectly classified, false discovery rate or area under the
receiver operating characteristic curve. These discrepan-
cies in performance metrics make the comparison of re-
sults irrelevant.

Comparison to references In 37 studies out of 61 stud-
ies (61%), the performance of developed diagnostic sup-
port tools was evaluated through a comparison to other
references, which could be other methods (28 studies),
preexisting tools (12 studies) or assessments from ex-
perts (5 studies). The other 24 studies did not report on
a process of performance comparison of their developed
tools.

External validation Regarding validation:

– For data-driven systems, we assessed whether the al-
gorithm was validated on an external dataset. In-
deed, datasets can be subject to certain biases, and
the methods can be overfitted to one dataset and fail
in other datasets. Therefore, a validation step on an
external dataset is required.

– For knowledge-based studies, we assessed whether
models were evaluated on real patients.

– For hybrid models, both validation processes were
considered.

Among 29 data-driven studies, only 8 studies de-
scribed an external validation step. Four of these studies
were published after 2017, whereas only one study was
published before 2014, suggesting the increasing use of
external validation sets. These external sets could consist
of datasets from different centers [24, 33, 44, 53, 56, 57]
or from the literature [43, 62].
Among 19 knowledge-based systems, only 8 studies

validated their model on real cases [2, 46, 54, 55, 61, 67,
71, 77]. Among the 11 remaining studies, 5 studies con-
sidered simulated patients (queries consisted of a list of
phenotype concepts). These studies aimed to diagnose
genetic [63, 64, 68] and rare [66, 70] diseases from quer-
ies with phenotype concepts. Six studies did not provide
any evaluation protocol [26, 32, 38, 50, 65, 69], among
which four studies developed manually designed
algorithms.
Among 13 studies using hybrid models, two used real

datasets to test their models that were based on pheno-
type concepts for the diagnosis of rare diseases [73, 78].
The validation step of the other studies was limited to
the original (internal) training and test sets.

Imbalance issue Imbalance in sample size is a major
issue that is common in the field of rare diseases. Two
studies [47, 56] out of 61 proposed a method to address
this issue. Interestingly, 2 antenatal studies out of 7 also
proposed a method to address this issue. The proposed
methods consisted of oversampling or downsampling.
Some other studies considered adapting performance
metrics to this imbalance issue, e.g., considering bal-
anced accuracy [19, 33] instead of standard accuracy
scores.

Tool implementation
This section provides general information (such as
intended users, tool maintenance) about the developed

Table 4 Number of publications for different evaluation processes

Evaluation Data driven Knowledge-based Hybrid

Comparison to other methods 15 studies 9 studies 4 studies

Comparison to other tools 1 study 8 studies 3 studies

Comparison to experts 3 studies 1 study 1 study

External validation 8 studies 8 studies 2 studies

Method for imbalance issue 2 studies 0 studies 0 studies

Total 29 studies 19 studies 13 studies

The number of studies is specified for each evaluation process according to the type of knowledge included. External validation is only specified in 18 studies,
and a specific method to address imbalance issues is only specified in two studies

Faviez et al. Orphanet Journal of Rare Diseases           (2020) 15:94 Page 8 of 16



tools and algorithms and then a description of systems
of interest considering three categories:

– Online tools
– Advanced tools/algorithms
– Innovative prototypes

General information
When specified, the diagnosis support systems were al-
most exclusively developed for clinicians. Except for
Burange and Chatur [74], no system was intended to be
used by the general public, even if some of them were
freely accessible.
Maintenance/updating is an important issue for deci-

sion support systems. However, this process was clearly
specified in very few cases. Updates were either based on
manual review of new information by experts [54, 61] or
automatically performed based on case reports retrieval
from PubMed [71] or by downloading raw data from
Orphanet [70].
We provide a description of the 14 ready-to-use tools,

18 advanced algorithms and 2 innovative prototypes.

Online tools
Studies led to the development of a tool with an identifi-
able name in 30 cases (29 different tools).
Fourteen systems were accessible (Table 5) using a

provided URL, allowing us to test them or to download
the code and data. All these tools or algorithms used
phenotype concepts (12 tools) or images (2 tools). Ex-
cept for IEMBase [54], which was dedicated to genetic

disorders with inborn errors of metabolism, all tools
based on phenotype concepts were generic tools for the
diagnosis of all genetic or rare diseases. As discussed in
the previous section, most of them considered providing
patient recommendations based on the top K disease
ranking. Despite the different values of K among studies,
insights regarding their performances are given in Table
5 for the top 10 rankings. For each study, the perform-
ance score displayed in the table corresponds to the per-
centage of correct diagnoses encountered within the top
10 diseases suggested by the algorithm. When the exact
value was not indicated by the authors but could be esti-
mated through a figure provided within the study, an ap-
proximate value was given. These results should be
interpreted with prudence as dataset nature and volume
were quite dissimilar (e.g., datasets could consist of real
or simulated patients).
Both systems using images used deep learning. One

tool aimed at identifying congenital cataracts [44] from
ocular images using a convolutional neural network, and
the other study aimed at providing a facial image ana-
lysis framework to distinguish different genetic syn-
dromes [62] from facial photographs.
Most of the tools using phenotype concepts relied on

terminologies dedicated to rare diseases, including
Orphanet vocabulary [79], OMIM terms [80] and HPO
[81]. The Institute for Medical and Human Genetics
from Berlin, which was involved in the development of
the HPO [81], was also co-author of the following tools:
Phenomizer [63], the BOQA (Bayesian Ontology Query
Algorithm) [64], PhenIX [67] and Phenolyzer [69].

Table 5 Characteristics of online tools

Tool name Date Data sources Performances: Top 10 ranking Related articles URL

Phenomizer 2009 Phenotype concepts NA [63] http://compbio.charite.de/phenomizer

BOQA 2012 Phenotype concepts NA [64] http://compbio.charite.de/boqa/

Phenotips 2013 Phenotype concepts NA [65] http://phenotips.org

FindZebra 2013 Phenotype concepts 63% [66] http://www.findzebra.com/

PhenIX 2014 Phenotype concepts/genes ~ 99% [67] http://compbio.charite.de/PhenIX/

Phenolyzer 2015 Phenotype concepts/genes ~ 85% [69] http://phenolyzer.usc.edu

RDD 2016, 2017 Phenotype concepts 38% [2, 70] http://diseasediscovery.udl.cat/

IEMbase 2018 Phenotype concepts 90% [54] http://www.iembase.org/app

PubCaseFinder 2018 Phenotype concepts 57% [71] https://pubcasefinder.dbcls.jp/

RDAD 2018 Phenotype concepts/genes 95% [73] http://www.unimd.org/RDAD/

GDDP 2019 Phenotype concepts ~ 32% [77] https://gddp.research.cchmc.org/

Xrare 2019 Phenotype concepts/genes ~ 95% [78] https://web.stanford.edu/~xm24/Xrare/

CC-Cruiser 2017 Images NA [44] https://www.cc-cruiser.com/

DeepGestalt 2019 Images NA [62] https://www.face2gene.com/

For each online tool, we listed the publication year, the materials used, the performance indicated in each publication, and the URLs provided in the publications.
For the performance, the proportion of accurate diagnoses within the top 10 most relevant disease for each patient is given for all algorithms based on diagnoses
recommendation (i.e., providing for each patient a list of potential diagnoses ranked by relevance). These results were provided by the authors of each tool and
thus do not allow a comparison of tool performance, as the nature and volume of each dataset were different
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Eight models considering only phenotype concepts
and four models considering both phenotype concepts
and genotypes are described in the next sections.

Models including only phenotype concepts The ob-
jective of Phenomizer [63] is to adapt semantic similar-
ity metrics to measure phenotypic similarity between a
patient represented by a set of phenotype concepts
(query) and hereditary diseases described in a database
and to develop a statistical model assigning p values to
the resulting similarity scores. The p value is used to
rank the candidate diseases. The ontology structure of
HPO is used, and the similarity between a set of pheno-
type concepts and a disease is calculated based on the
information content of their most informative common
ancestor (MICA). The association between HPO terms
and diseases from OMIM is considered. This method
outperformed other scores in the simulated patient
cohort.
BOQA [64] combines “ontological analysis with Bayes-

ian networks to deal with noise, imprecision and attri-
bute frequencies”. Queries are modeled through a three-
layered Bayesian network of Boolean variables. HPO fre-
quencies are included in the model. The performance
was also tested on simulated patients.
Phenotips [65] proposes a deep phenotyping tool that

suggests a ranked list of disorders using similarity mea-
sures on phenotype concepts encoded with HPO. It ac-
counts for negative phenotype concepts and disorder
frequency (extracted from Orphanet). The article doesn’t
mention any evaluation.
FindZebra [66] is a search engine dedicated to rare

diseases that uses a query corresponding to a combin-
ation of phenotype concepts to propose a ranked list of
documents from specialized resources. Documents are
ranked using a state-of-the-art query likelihood ranking
model. The document is considered relevant if it pre-
dominantly addresses the correct disease. The system
was compared to generic search systems such as Google
or PubMed and outperformed them on a test set con-
sisting of 56 queries created by clinicians or based on
clinical cases from published articles.
Rare Disease Discovery (RDD) [2, 70] aims to aid in

the initial diagnosis of rare diseases using a user-friendly
web application. The system integrates a mapping be-
tween Orphanet and HPO terms and a scoring function
for disease ranking based on the number of phenotype
concepts in common between the query and the tested
disease. The authors tested different parameters (e.g.,
minimum statistically significant value for the score) and
compared their prototype to other systems in terms of
the top 10 rankings of correct disease [2] and to other
methods (machine learning, Bayesian networks) and
other tools [70].

PubCaseFinder [71] aims to increase the coverage of
DPA (disease-phenotype associations) databases and
consequently improve the performance of differential
diagnosis systems for rare diseases. From a list of quer-
ied phenotype concepts, the system provides a disease
ranking based on DPA extracted from PubMed and
from Orphanet using a similarity measure based on
Information Content (GeneYenta). The system was com-
pared to existing tools.
GDDP (Genetic Disease Diagnosis based on Pheno-

types) [77] aims to improve the accuracy of matching
rare genetic diseases based on patient phenotype con-
cepts. Prioritization is either based on similarity metrics
using MICA and considering a null similarity for terms
not on the same lineage or using ontological overlap.
Performance was evaluated on both simulated patients
and medical records and compared with existing tools.
IEMbase [54] is a prototype mini-expert system for

diagnosis support, combining the inborn errors of the
metabolism community knowledge base. The specificity
of the study is that the model differentiates between
“clinical phenotypes” and “biochemical phenotypes”.
Different structured vocabularies (e.g., HPO, Logical
Observation Identifiers Names and Codes, Systematized
Nomenclature of Medicine–Clinical Terms) for match-
ing with these two categories of phenotype concepts
were tested. An algorithm was developed using weighted
cosine similarity for biochemical phenotypes and seman-
tic similarity for clinical phenotypes. The best results
were obtained with the combination of both types of
phenotype concepts. The tests were performed using
retrospective cases.

Models including phenotype concepts and genes
PhenIX [67] combines queries using phenotype con-
cepts to genetic information for the diagnosis of
Mendelian diseases. For each patient, variants are identi-
fied through the sequencing of the Disease-Associated
Genome (DAG). The system suggests associated dis-
eases/genes by ranking variants based on pathogenicity
and semantic similarity of patients’ phenotype concepts.
Evaluation was carried out on simulated and real
patients.
Phenolyzer [69] integrates information from pheno-

type, disease and gene databases to prioritize human dis-
ease genes based on disease or phenotype information
provided by users as free text. For disease matching,
HPO frequencies and conditional probabilities from
OMIM are considered. The system first identifies the as-
sociated disease and then prioritizes genes using a
disease-gene score including different parameters. Dis-
ease prioritization was compared to Phenomizer for 14
monogenic diseases and led to comparable results.
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RDAD (Rare Disease Auxiliary Diagnosis system) [73]
aimed to build diagnostic models using phenotypic
similarity and machine learning. Models using informa-
tion from different databases (phenotypes-disease,
phenotype-gene, text-mined disease-phenotype associa-
tions) and different similarity methods (including or ex-
cluding machine learning) were compared. Real medical
records were used for evaluation. All the methods are
available and can be tested using the RDAD web
application.
The Xrare tool [78] aims to prioritize causative gene

variants in rare Mendelian disease diagnosis. The model
includes information from variant databases, guidelines
for variant prioritization, and gene-phenotype associa-
tions. The model uses machine learning from 51 features
derived from these data to predict the causative variant
and the associated disease. These features include simi-
larity scores between sets of phenotype concepts. The
system was tested on simulated data and real clinical
data sets. The proposed emission-reception information
content score ranked consistently higher for disease
genes than other phenotypic similarity scores in the
presence of imprecise and noisy phenotype concepts.

Advanced tools and algorithms
Eighteen studies led to the implementation of a model
intended to be ready to use in clinical routine, including
7 manual tools. These manual tools consisted of scores,
decision trees and guidelines for the diagnosis of Marfan
syndrome [25, 27], Fabry disease [26], diseases with re-
current wheals or angioedema [50], HNF1B-related dis-
ease [32], familial chylomicronemia syndrome [38] and
Niemann-Pick disease Type C [39]. The 11 remaining
tools are described in the following subsections.

Routinely usable tools Six tools combining multiple or
new techniques and machine learning methods were
intended to be (according to their authors) less time
consuming, less costly, or more accurate alternatives to
current diagnosis processes. Among them, four com-
bined spectroscopy based on disease-related fluid data
(urine or blood samples) with machine learning. Three
of them were published between 2009 and 2013, taking
advantage of the development of proteomics and aimed
to support the diagnosis of cystic fibrosis [48], thalas-
semia [20] and hereditary hemorrhagic telangiectasia
[31]. Another method was proposed in 2019 [60] for the
differential diagnosis of mucopolysaccharidoses and sub-
type classification. Two other studies [28, 29] proposed
systems for less expensive diagnosis of thalassemia com-
bining real-world data obtained in routine analysis and
artificial neural networks.

Differential diagnosis Distinguishing between complex
rare diseases with overlapping phenotypes can be chal-
lenging. This issue was addressed by three tools for the
identification of 6 rare pulmonary diseases with common
chronic cough [52] using a questionnaire, congenital
upper-limb abnormalities [55] based on hand phenotype
concepts and genetic syndromes [43] based on facial
photographs. Comparison to human experts led to com-
parable performances [41, 43].

Improving preprocessing Data heterogeneity can bring
biases to the analysis and have an impact on tool per-
formance and reproducibility. Thus, some works have
focused on improving preprocessing to improve classifi-
cation performances. Kostro et al. [33] worked on im-
proving the early detection of neurodegenerative brain
diseases based on scanner images by correcting the ef-
fects of subject-specific covariates (such as age, total
intracranial volume, and sex) as well as inter-scanner
variability by using a nonlinear Gaussian process. The
process was tested for the classification of carriers of the
genetic mutation leading to Huntington’s disease. Natar-
ajan et al. [58] worked on the issue of recruiting patients
for a clinical study based on active feature elicitation.
Four real clinical tasks were considered, including the
prediction of rare diseases from a survey.

Innovative prototypes
Twenty-nine studies described prototypes that needed
further validation or improvement to be considered
mature. Some of these prototypes proposed novel ap-
proaches that could lead to interesting tools in the
future. For example, the ADA DX prototype [61] in-
cludes the temporality for symptom discovery to as-
sess the possibility of accelerating the diagnosis. For
each patient, the system proposes a diagnosis per
visit, using only evidence from the associated docu-
ments. The time to accurate diagnosis for the system
is then compared to the time to diagnosis in real life.
Another interesting system was the only fully data-
driven method based on phenotype concepts identi-
fied in our review [72, 75]. This system consists of
two versions that were described in two different
studies. In the first version [72], no expert knowledge
was included, and data were extracted from the EHR,
whereas in the second version [75], EHR data were
combined with knowledge extracted from medical lit-
erature. Machine learning algorithms were applied to
cluster patients based on different similarity measures.
In this case, contrary to most studies, similarities
were measured between patients and not between a
patient and a disease.
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Discussion
Overview
The development of diagnosis support tools for rare dis-
eases has gained more interest in recent years (2 articles
were published in 2009 compared with 12 articles in
2018). One recent review published in 2019 [83] aimed
to analyze AI solutions in rare diseases but did not spe-
cifically focus on diagnosis support systems. Moreover,
they did not include all methods based on similarity
measurements between patients and rare diseases.
In this scoping review, we restricted the time period to

the last ten years, and only publications in English were
considered. Both PubMed and WoS were used for iden-
tifying relevant studies, and three AI conference websites
were explored as well. The search queries were tailored
for each source.
We completed the selection by screening the bibliog-

raphies of relevant publications and “similar articles”
suggested by PubMed. The unpublished tools (developed
by industrial companies only for commercial use) were
not included.
Publications were clustered into three groups accord-

ing to their objective with respect to the number of tar-
geted diseases. Approximately one-third of studies
aimed at providing a diagnosis to all rare or genetic dis-
eases. Most of these generic tools relied on phenotype
concepts and aimed at providing expert knowledge to
nonexpert clinicians to tackle misdiagnosis and delay in
diagnosis. In a few cases, these phenotype concepts were
combined with genetic data. Studies focusing on classes
of diseases or unique diseases could take advantage of
disease-related materials (such as fluids or images).
Regarding the methods, expert knowledge was in-

cluded in half of the studies (hybrid or knowledge-based
approaches). Machine learning was really widespread
and was used in approximately two-thirds of the sys-
tems. Neural networks and SVM were the most com-
mon machine learning methods. Neural networks were
mostly used with fluids or images in studies including at
least several hundred patients. Other considered meth-
odologies consisted of simple similarities, generally ap-
plied to phenotype concepts, and manual algorithms.
Regarding implementation, three categories of algo-

rithms and tools were found according to their maturity
and level of accessibility: online tools, advanced tools or
algorithms and prototypes. Online tools were mostly
diagnosis tools for all rare or genetic diseases working
with phenotype concept queries. In addition to providing
differential diagnosis to important groups of diseases,
the advanced tools also included proposals for more rou-
tinely usable tools (aiming at providing less expensive,
less time consuming, easier to use or insightful solu-
tions) or for better preprocessing processes. Prototypes
were not fully described, but a presentation of two

recent innovative prototypes with nontraditional ap-
proaches was provided.

Technical significance
Numerous tools are freely accessible online and can be
tested and used by researchers and clinicians. However,
accessibility raises the question of update and mainten-
ance, which was sometimes ignored or not described in
the article. Indeed, among the 18 online tools, 4 were
not accessible using the URL provided in the publication
and could not be found via standard search engines, and
one tool URL had been modified. Moreover, as previ-
ously mentioned, how the tools were updated was barely
specified, whereas for example, terminologies such as
HPO evolve considerably over time, e.g., including new
terms.
Regarding tool maturity, 32 studies (52%) led to sys-

tems that were considered ready to use. The remaining
29 initiatives corresponded to tools that generally
needed further validation or improvement to reach bet-
ter performances. Regarding the latter, it is not clear
whether development is still ongoing, as approximately
two-thirds of the studies describing these prototypes
were published before 2018, and no new publication has
been found regarding these tools since then. Moreover,
some tools that were considered by their authors as
ready to use and accessible had only been tested on sim-
ulated patients or calibrated on test sets, which is a limi-
tation in considering these tools as completely mature.
For data-driven systems, the lack of explicability of

models brings even more uncertainty and makes it more
difficult to identify biases due to dataset constitution,
whereas more “explainable artificial intelligence” is
sought by regulators as a guarantee of trust and trans-
parency. Combining expert and data knowledge could
be a good way to enhance the explicability of developed
models.

Clinical significance
Most studies based on phenotype concepts considered
HPO for encoding. The fact that a common ontology
has been adopted by all researchers is a really positive
aspect that facilitates the possibilities for interoperability
and tool comparison. One possible limitation is still the
language adaptation, since in non-English speaking
countries, a system that would be interfaced with a med-
ical database needs detecting and encoding phenotype
concepts in this language. However, the HPO termin-
ology is not as developed in other languages as it is in
English. This terminology would need to be fully ex-
tended to other languages so that these tools can be fully
used by everyone.
The reported performances were generally good. Re-

garding online tools, in 5 studies out of 9, the correct
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diagnosis was found within the top 10 suggestions in
more than 85% of the cases. Similarly, the accuracy of
the two online tools based on images [44, 62] was higher
than 89%. However, more generally, the evaluation met-
rics were far from standardized, making the comparisons
difficult. For example, when the proportion of accurate
diagnosis within the top K recommendations was used,
K was not the same in all publications, ranging from 1
to 100. Such heterogeneity is an obstacle to easy inter-
pretation and comparison of results. Other studies relied
on numerous and various metrics, such as accuracy, F-
score, precision and recall.
Moreover, as previously stated, only a few studies vali-

dated their findings on external datasets. This raises
major concerns, as variability of data quality is important
when considering real-life evidence. A mismatch be-
tween the datasets used for developing the algorithm
and the characteristics of the population targeted by the
system can inadvertently introduce biases, most com-
monly by deficiencies in the training data but also by ap-
plication of the system to an unanticipated patient
context [84]. In addition, training sets used for machine
learning models were generally not publicly available.
Regarding knowledge-based models, the majority of de-
veloped models and algorithms (generally manual
models) were not evaluated on real patients. Moreover,
some studies [67, 77] obtained performances that were
far less good on real patients than on simulated ones.
For example, when tested on simulated patients with dif-
ferent levels of noisy phenotype concepts, Phenomizer
classified at least 75% of correct diseases as top 1,
whereas when tested by another team [77], the method
used in Phenomizer (best match average method) on a
dataset consisting of 462 EHRs reached less than 10% of
the top 10 correct disease rankings. The impact of chan-
ging the dataset for evaluation was confirmed when Phe-
nomizer was tested for comparison with developed tools
in numerous studies and obtained results that highly
depended on the dataset under study [2, 55, 68–71, 77].
One positive aspect is that the availability of these

tools enables comparison on new datasets by potential
future users. Before choosing one of these tools, we rec-
ommend comparing and validating them on external
datasets.
Of note, the only system that integrates data from the

EHR in an automated manner is the future MIRACUM
project [76].

Perspectives
Numerous initiatives benefiting from AI are enabled by
the progressive coverage of EHR systems and are devel-
oping with interesting results. Comparison with human
experts sometimes led to comparable results, which un-
derlines the perspectives of such initiatives. However, an

important limit to the development of AI solutions in
the field of rare disease diagnosis is the data volume. In-
deed, 9 studies out of 10 using neural networks bene-
fited from several hundred rare disease records, which
may be seen as an important volume in this field. More
generally, validation on small datasets, especially with
imbalance issues, raises the question of performance sig-
nificance. The methods need to be adapted to take into
account these limitations, e.g., taking advantage of new
methods such as transfer learning, which is particularly
adapted when the volume of the training set is limited.
In the coming years, AI has the potential to facilitate

early detection of rare diseases, especially for patients
who could not have easy access to experts. Most tools
were intended for clinicians, meaning that the objective
of these tools is to be used in clinical routine. To reach
this goal, these tools need to be adequately evaluated.
Moreover, tools intended to be plugged into EHR sys-
tems need to be interoperable and adapted to EHR ana-
lysis. For example, some variables used in the diagnosis
support system may be present in the EHR in unstruc-
tured format, e.g., in narrative reports.
Suggestions to allow more widespread use of proposed

methodologies and accurate models include:

– To use standardized metrics to facilitate evaluation
and comparison. For studies using the top K ranking
of possible diagnoses, we recommend providing at
least the top 10 disease rankings and the mean
ranking of correct disease over all patients.

– To use standardized terminologies to enhance
interoperability and spread of the tools. For systems
based on phenotype concepts, we recommend using
the HPO, provided that this terminology keeps
being enriched and is available in several languages.

– To combine expert and data knowledge to enhance
explicability

– To provide robust methods dealing with the
imbalance and data volume issues

– To make training sets accessible
– To validate the findings on external datasets and real

patient cases
– To measure the impact on patient diagnosis and

outcomes.

Conclusions
Clinical diagnosis excellence in the field of rare diseases
demonstrates the societal need and opportunity to de-
velop AI technologies. This scoping review was con-
ducted to identify algorithms and tools to support the
diagnosis of rare diseases. This overview enabled the
identification of various approaches relying on various
materials and methods. Numerous solutions are emer-
ging with satisfying preliminary results. However, the
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variability of approaches and evaluation processes com-
plicates the comparison of results. Efforts should be
made to adequately validate these tools and guarantee
reliability, reproducibility, explicability and interoperabil-
ity so that these tools can be safely used in clinical
settings.
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