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A topological index is a quantity that is somehow calculated from a graph (molecular structure), which reflects relevant structural
features of the underlying molecule. It is, in fact, a numerical value associated with the chemical constitution for the correlation of
chemical structures with various physical properties, chemical reactivity, or biological activity. A large number of properties like
physicochemical properties, thermodynamic properties, chemical activity, and biological activity can be determined with the help
of various topological indices such as atom-bond connectivity indices, Randi¢ index, and geometric arithmetic indices. In this
paper, we investigate topological properties of two graphs (commuting and noncommuting) associated with an algebraic structure
by determining their Randi¢ index, geometric arithmetic indices, atomic bond connectivity indices, harmonic index, Wiener

index, reciprocal complementary Wiener index, Schultz molecular topological index, and Harary index.

1. Introduction

In quantitative structure-activity relationship (QSAR)/
quantitative structure-property relationship (QSPR) study,
physicochemical properties and topological indices such as
Randi¢ index, atom-bond connectivity (ABC) index, and
geometric-arithmetic (GA) index are used to predict the
bioactivity of chemical compounds. A topological index is
actually designed by transforming a chemical structure into
a numerical number. It correlates certain physicochemical
properties such as boiling point, stability, and strain energy
of chemical compounds of a molecular structure (graph). It
is a numeric quantity associated with a chemical structure
(graph), which characterizes the topology of the structure

and is invariant under a structure-preserving mapping [1].
In 1947, Wiener [2] introduced the concept of (distance-
based) topological index while working on the boiling point
of paraffin. He named this index as the path number. Later
on, the path number was renamed as the Wiener index [2],
and then, the theory of topological indices started. Now-
adays, a number of distance-based and degree-based to-
pological indices have been introduced and computed (see
for example [3-15], and the references therein).

We consider simple and connected graph (chemical
structure) G with vertex set V (G) and edge set E(G). We
denote the two adjacent vertices u and v in G as u ~ v and
nonadjacent vertices as u +v. The number d, denotes the
degree of a vertex v € V(G) and S, =} ,n(,d, is the
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TaBLE 1: List of under consideration topological indices.

Name of the index Notation Formula

Wiener index [2] W(G) Yiunev (e W v)
Reciprocal complementary Wiener index [21] RCW (G) > wiev@ 1/ (D(G) +1-d(u,v))
Schultz molecular topological index [22] MTI(G) Yunevc [y +d)d ) + Y ey ) d"
Harary index [23, 24] H(G) Dnev @1/ (d(w, v))
Randi¢ index [10] R_,,(G) Y1/ (\d, xd,)
General Randi¢ index [11, 12] R, (G) Yy (d, xd )
Geometric arithmetic (GA) index [13] GA(G) s

Fifth version of GA index [4] GA;(G) Y (24/8,XS,)/ (S, +S,)
Atomic bond connectivity (ABC) index [14] ABC(G) YN d, +d,-2)/(d, xd,)
Fourth version of ABC index [5] ABC,(G) Yun V(S +S,=2)/(S, xS,)
Harmonic index [15] H, (G) Yu2ld,+d,)

All the notations used in formulas are defined in Section 1.

degrees sum of v, where N (v) = {u € V(G) |u ~ vinG} is
the neighborhood of v. The number d(u,v) denotes the
length of a geodesic between u and v in G and is called the
distance between u and v. The eccentricity of a vertex v in G,
denoted by ecc(v), is the maximum distance between v and
any other vertex of G. The minimum eccentricity amongst
the vertices of G is called the radius of G, denoted by rad (G).
The diameter of a graph G is the maximum eccentricity in G,
denoted by D (G). A vertex vin G is said to be a central vertex
ifecc(v) = rad (G), and the subgraph of G induced by central
vertices of G is called the center of G. A vertex vin a graph G
is called a peripheral vertex if ecc(v) = D(G), and the
subgraph of G induced by peripheral vertices is called the
periphery of G. The sum of two graphs G, and G,, denoted
by G, + G,, is a graph with vertex set V (G,) UV (G,) and an
edge set E(G,)UE(G,)U{u ~v: u e V(G))AveV(G,)}

Let r be a group. The set
((T) = {x: x e T Axy = yxVy € I'} is called the center of the
group I'. Then, commuting and noncommuting graphs of T
are defined as follows:

(i) The commuting graph of a nonabelian group T is
denoted by I'; = C (T, Q) with vertex set QCT. For
two distinct elements x, y € Q, x ~ y in I (x and y
form an edge in T';) if and only if xy = yx in I'. The
concept of commuting graphs on noncentral ele-
ments of a group has been studied by various re-
searchers (see [16, 17]).

(ii) The noncommuting graph of a nonabelian group Gy
is a graph with vertex set V(G,) UV (G,), and two
distinct vertices u and v in G form an edge if uv + vu
in T. The study of noncommuting graphs of groups
was initiated in 1975 by Neumann [18] who posed
the problem regarding the clique number of a
noncommuting graph. Noncommuting graphs on
noncentral elements of a group have also been
studied by various other researchers [19, 20].

The following useful property for a noncommuting
graph was proposed in [19].

Proposition 1 (see [19]). For any nonabelian group T,
D(G,) = 2.

A graph G is said to be self-centered if rad (G) = D (G).
Since ecc(v) <2 for every v € G, so we have the following
straightforward proposition:

Proposition 2. A noncommuting graph G of any non-
abelian finite group I' is self-centered if for each v € Gr,
ecc(v) = 2. Otherwise, it is the sum of the center and the

periphery of Gr.

This paper aimed at investigating all the topological
properties (listed in Table 1) of commuting and non-
commuting graphs associated with the group of symmetries.
The rest of the paper consists of five sections. In the next
section, we illustrate the group of symmetries and associate
commuting and noncommuting graphs to this group. In
Section 3, some useful constructions to investigate our main
results of Sections 4 and 5 are provided.

2. Group of Symmetries and Associated Graphs

Group of symmetries finds its remarkable use in the theory
of electron structures and molecular vibrations. Due to
their significant employment in chemical structures, in the
context of topological indices, we consider the group of
symmetries of a regular polygon (also called a regular n-gon
for n>2) in this paper. A regular n-gon is a geometrical
figure all of whose sides have the same length and all the
angles are of equal measurement. Each internal angle of a
n-gonis of m — (2m)/ (n) radian. The group of symmetries of
a n-gon consists of 2n elements, which are n rotations
(ro=er,1y,...,1r,, about its center through an angle of
(2km)/n radian, where k =0,1,...,n— 1, either all clock-
wise or all anticlockwise) and # reflections (for even n, the
reflections through a line joining the midpoints of the
opposite sides or through a line joining two opposite
vertices, and for odd #, the reflections through those lines
which join a vertex with the midpoint of the opposite side).
The group of symmetries is denoted by D,, and is called the
dihedral group of order 2n. If we denote a rotation by “a”
and a reflection by “b,” then 2n elements of D, are
a,a’,...,a"",a" =e and b,ab,a’h,...,a"'b, where e is
the identical rotation. The general representation of D,, is
given by
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TaBLE 2: Vertex partition of T'; for each vertex v € V(I'g).

n is d, D(v|Ig) D, (v|Tg) D, (v|Tg) Number of vertices
Odd n-1 3n—-1 (1/2)(3n-1) (1/2)(3n-2) n-1
Odd 2n—1 2n—1 (172)(2n—-1) 2n—1 1
Odd 1 n-3 (1/2) (4n - 3) n n
Even n-1 3n-1 (1/2)(3n-1) (1/2) (3n - 2) n-2
Even 2n—1 2n-1 (172)(2n—-1) 2n—1 2
Even 3 4n->5 (1/2) (4n-5) n+1 n
D, =<a b|a”=b2=eab:ba_1> (1) (1) For u,v € V(Gy),u ~ v whenever u,v € Q,.
n > > 5
) (2) For u,v € V(Gyp),u ~ v whenever u,v € Q,.
with the center ' (3) Foru,v € V(Gy),u ~ vwheneveru € ), and v € Q5.
{(D,) = e}, whennisodd, (2) (4) In Gy, it can be seen that ecc(v) =1 for all v € Q,,
" {e,a™?}, whenniseven. and ecc(v) =2 for all v € Q,. It follows that Q,

LetQ, = {e,a,a*,...,a" '}, Q, = {b,ab,a’b, ...
and Q; = Q, — {(D,). Then |Q,| =n =|Q,| and

, anf lb},

n—1, whennisodd,
[oN ={ (3)

n—2, whenniseven.

In the case of even value of n > 4, we partitioned €, into
n/2  two  element subsets Q) = {a'b,a"I*p},
0<i< (n/2) - 1, so that Q, = n"27 10l

Remark 1. In the dihedral group D,,, we have
(i) xy = yx for all x, y € D,
(i) adb=ba"  fori=1,2,...

(iii) For odd values of n>3, xy# yx for distinct
x,y €8,

,n—1

(iv) For even values of n>4, and for any distinct
xyeQ,, xy=yx if and only if x,yeQ),
0<i< (n/2) -1

(v) For any distinct x, y € Q;, xy = yx

(vi) For each pair (x,y) € Q, x Qs, xy # yx

According to Remark 1, the commuting graph on D,, is
defined in the following result.

Proposition 3 (see [16]). For all n>3, let I'; = ¢ (D,,D,)
be a commuting graph on D,, then

K, +<K|Q3|UN|QI|), when nis odd,
I‘(; = (4)
K, +<K|Q3| UgK2>, when nis even.

Here, K is the trivial graph, K, is a complete graph on p
vertices, N, is a null (empty) graph on ¢ vertices, and (1n/2)K,
is the union of (n/2) copies of K,.

Let I'=D,,n>3, and Gy be the corresponding non-
commuting graph. Then, according to Remark 1, we have the
following points:

When n>3 is odd, then

induces the center of G, which is a complete graph

K, on [Q,] vertices, and Q; induces the periphery
2

of G, which is a null graph N\ | on [Q;] vertices.

When n>4 is even, then

(1) For u,v € V(Gyp),u+v whenever u,v € Q’2 for any
0<i< (n/2)-1.

(2) For u,v € V(Gy),u +v whenever u,v € Q.

(3) Foru,v € V(Gp),u ~ vwheneveru € O, and v € Q5.

(4) Foru,v € V(Gy),u ~ v whenever u € Q’z andv € Q;
with 0<i4, j< (n/2) -1 and i # ;.

(5) In Gy, it can be seen that ecc(v) =2 for all
v € Q, U Q,. Itfollows that Gy is a self-centered graph,

which is a complete multipartite graph
Kz’ 2.2 0 with n/2 partite sets

(n/2)~times

Q5,0<i< (n/2) - 1, and one partite set Q.

Hence, by Proposition 2, we deduce the following result.

Proposition 4. For n>3, let I' =D,. Then, the non-
commuting graph G of D,, is given by

Ky + Ng., whennisodd,
2 3
Gr = K2,2,~~,2,|03|’ when nis even. (5

(n/2)~times

3. Construction of Vertex and Edge Partitions

First we define some useful parameters, which support in the
investigation of some predefined (in Table 1) topological
indices. For any vertex v of G, these parameters are defined
as follows:

(i) The distance number of v in G is
D(vI|G) =Y, cvd(u,v)

(ii) The sum distance number of v in G is
D,(v|G) = Y ev(c)-m 1/ (D(G) + 1 = d (u,v))

(iii) The reciprocal distance number of v in G is
D,(v|G) = Y ev )1/ (d (1, v))

According to these parameters, the distance-based to-
pological indices, listed in Table 1, become
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TaBLE 3: Edge partition of T'; for each edge u ~ v € E(T).

n is (d,,d,) type edges (S,,S,) type edges Number of edges
Odd (n-1,n-1) W -n+1,m*—n+1) (n-1)(n-2))/2
0dd n-1,2n-1) W -n+1,m*—n+1) n-1

0Odd (1,2n-1) Cn-nn*-n+1) n

Even (n-1,n-1) "+ 1,n*+1) ((n-2)(n-13))/2
Even n-1,2n-1) (2 +1, (n+1)%) 2(n-2)
Even (2n-1,2n-1) ((n+1)2 (n+1)% 1

Even (2n-1,3) ((n+1)>%4n+1) 2n

Even (3,3) (4n+1,4n+1) n/2

Note: (d,,d,) denotes the type of edge u ~ v according to degrees of the end vertices, and (S, S,) denotes the type of edge u ~ v according to degrees sum of
the end vertices.

TABLE 4: Vertex partition of G for each vertex v € V(Gp).

nis d, ecc(v) D(v|Gy) D, (v|Gy) D, (v|Gy) Number of vertices
Odd 2n—2 1 2n-2 n-1 2n—2 n
0Odd n 2 3n—4 (1/2)(3n—4) (1/2)(3n—-1) n-1
Even 2n—2 2 2n-2 n-1 (1/2)(4n-7) n
Even n 2 3n-6 (3/2)(n-2) (3/2)(n-1) n-—2

TaBLE 5: Edge partition of Gy for each edge u ~ v € E(Gp).
n is (d,,d,) type edges (S,,S,) type edges Number of edges
0Odd (n,2n-2) 2n(n-1),(n-1)(3n-2)) nn-1)
Odd (2n-2,2n-2) (n-1)(3n-2),(n—-1)(3n-2)) (n(n-1))/2
Even (n,2n—4) 2n(n-2), (n-2)(3n-4)) n(n-2)
Even (2n—4,2n-4) ((n-2)(3n-4), (n-2)(3n—-4)) (n(n-2))/2

Note: (d,,d,) denotes the type of edge u ~ v according to degrees of the end vertices, and (S, S,) denotes the type of edge u ~ v according to degrees sum of
the end vertices.

1 (1) There are 2n—1 vertices and (3/2)n(n—1) edges
WG = 2 VZ(:G)D(V|G)’ (6) when 7 is odd
ve
(2) There are 2n—2 vertices and (3/2)n(n—2) edges
RCW(G) G 1 D.(vG) when 7 is even
=+ v|G),
D(G)+1 2 VGVZ(G) $ @) Based on the degree, eccentricity, distance number,
sum distance number, and reciprocal distance number of
MTL(G) = d()? dWD(v|G), each vertex of Gy, the useful vertex partition is given in
© VE;G)( @) +V6VZ(G) MD(|6) (8)  Table 4. Based on degrees and degrees sum of the end
vertices of each edge of G, the useful edge partition is given
1 in Table 5.
H(G) = Y D,(v|G. (9)
vevi@) 4. Topological Properties of Commuting
Let T; be a commuting graph of the dihedral group Graph I';

D,.InTg, there are 2nvertices. The number of edges in T';
is (n(n+1))/2 when n is odd and is (n(n+ 4))/2 when n
is even. Based on the degree, distance number, sum
distance number, and reciprocal distance number of
each vertex of I, the useful vertex partition is given in
Table 2. Based on degrees and degrees sum of the end
vertices of each edge of I';, the useful edge partition is
given in Table 3.

Let Gy be a non-commuting graph of the dihedral group ~ Theorem 1. For n>3, let I'; be a commuting graph on D,,
D,. In Gy, then

In this section, we compute the Wiener, reciprocal com-
plementary Wiener, MTI, Harary general Randi¢, ABC,
ABC,, GA, GA,, and harmonic indices of T;. Throughout
this section, in each of the two-row equation arrays, the first
row corresponds to odd values of n, while the second
corresponds to even values of n.
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g (7n-5), whennisodd,
W(Tg) = (10)

n
5 (7n—8), whenmniseven.

n-1)Bn-1)+2n-1)+n(4n-3)

Proof. Using the vertex partition, given in Table 2, in for-
mula (6) of the Wiener index, we have

2
W(FG) =

n-2)3n-1)+202n-1)+n(4n->5)

,  whennisodd,
(11)

,  whenniseven.

2

Now, the required Wiener index can be obtained after
some simplifications. O

Theorem 2. For n>3, let I'; be a commuting graph on D,,
then

% (Bn-1), when nis odd,
RCW (Tg) = (12)

n
O (21n—16), whenmniseven.

2n

3
RCW(FG):

2n 1

_+_

3 2

Now, the required index can be easily found by per-
forming some simplifications. O

Theorem 3. For n>3, let I'; be a commuting graph on D,,
then
2n(2n-1)(n+1), whennisodd,

MTI(T:) = 14
() {2n(2n— 1)(n+4), whenniseven. (14)

Proof. By applying formula (8) of the Schultz molecular
topological index using the vertex partition, given in Table 2,
we have when n is odd

MTI(Tg) =(n -1 +(2n-1 +n+(n-1>(Bn-1)
+(2n-1*+n(4n-3)
=2n(2n-1)(n+1),
(15)

Proof. Since the diameter of Gy is 2, so by using the vertex
partition, given in Table 4, in formula (7) of the reciprocal
complimentary Wiener index, we have

1/n 1 1 .
—+5<5 (4n—3)+5 (2n-1) +§ (n-1)3n- 1)), when nis odd,

(13)

<g (4n—5)+(2n—1)+%(n—2)(3n— 1)), when nis even.

and when 7 is even
MTI(Tg) =(n-2)(n—-1)* +2(2n-1)* +n(3)’
+(n-2)(n-1)Bn-1)+22n-1)> (16)
+3n(4n—->5) =2n(2n-1)(n+4).

Theorem 4. For n>3, let I' be a commuting graph on D,,
then

Z (5n—1), whennisodd,
H(Tg) = (17)

n
1 (5n+2), whenniseven.

Proof. Using the vertex partitions, given in Table 2, in
formula (9) of the Harary index, we have
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%(WJFZVL_ 1 +n2), when nis odd,
H(rG) = (18)
%(W+2(2n—1)+n(m+l)), when nis even.

Some easy simplifications yield the required Harary = Theorem 5. For n>3, let I'; be a commuting graph of

index. O I =D,. Then, for odd values of n,
(N, 3 2 _
E(n -n +3n—1), fora =1,
n(4n—>5)
- fora = -1,
(2n-2)(2n-1) ore
Roc (FG) = (19)
(n-1D*(n-2)+2(m-D)y(r-DCn-1 +2nV2n-1 . 1
2 ’ 2
n—-2V2n—-1+2vn-1+2n foroc——l
2v2n -1 ’ 2
and for even values of n,
(1
E((n - 1)*(n* - 5n+6) +2(2n—1)(2n" + 21+ 3) + 9n), fora =1,
9(2n—1)(2n3 = 7r + 51+ 2)* (4n3 + 20n2 — 11n + 18)
3 3 X fora = -1,
18(n—1)"(2n- 1)
R, (Ig) = (20)
(n-1)(n-2)(n-3)+7n-2+4V2n—1((n-2)Vn-1 +nV3) fora =t
2 ’ 2
mn-1)2n-7)+305Bn-4) 2(n-2)vV3 +2nvn-1 1
+ fora = —.
3(n-1)2n-1) V3@2n-1)(n-1) 2

Proof. Using the edge partition, given in Table 3, in the
formula  of general Randi¢ index R for
a=1,-1, (1/2),-(1/2), we have

o
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R, (FG) =
R, (rG) =1
Ry (Tg) = 1

Ry (Tg) = 1

[((n=1)(n-2)\[(n - 1)

7
( 3
W+(ﬂ—l)z(2n—l)+n(2n—l),
2
(”_2)(”_23)(”_1) +2(n—2)(n—1)(2n—1)+(2n—1)2+6n(2n—1)+9§,
[ (n-2) 1 n
+ + ,
2(n-1) 2n-1 2n-1
(n—2)(n—3)+ 2(n-2) N 1 N 2n +£
2n-1>  (m-1)(@2n-1) (2n-17 3@2n-1) 18
(21)

+(n-D\J(n-1)2n-1) +nV2n-1

2

(=2 =31 oD@ D 4211+ 20y3@- D) +37n,

2

(n-1)(n-2) . (n-1) . n
2J/(n-1D)(n-1) Jn-1)2n-1) V2n-1"

(n-2)(n-23) 2(n-2) 1 2n

n
2i-1) Jo-Dn-D 2m-1 Ban-1 6

After a minor simplification, we get our required  Theorem 6. For n>3, let I'; be a commuting graph of

result.

O I'=D,, then

n-1)n-2) 2n-1 n-1)2n-1)
( )( ) ( )Vs(n 2)( + Vo,
GA(Tg) = 1
W —4n+8 4(n -n=2)V2m2 -3n+1 +2n(3n - 2)\/3(2717—1
2 (n+1)(3n-2)
, (22)
n(n? —1)+4\n®+n-1)>°
2(n+1) ’
GA; (T'g) = 1
n—4n+8 2(n 2)(n+1)Vrn2 +1 4n(n+l)m
2 m4n+l m+én+2

Proof. Applying formulas of the geometric arithmetic index
and its fifth version, using the edge partition given in Table 3,
we have
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'2(n—1)2(n—2)+2(n—1)\/m+2n\/§m
2(2n-2) 3n-2 m
GA(FG):'
(n—2)(n—3)+4(n—2)\/(n—1)(2n—1)+1+2n\/3(2n—1)+§
2 3n-2 n+1 2
) (23)
2n(n— 1)\ (72 —n+1) 2n\/ ("2 -n+1)(2n—1)
4(n2-n+1) nn+1) ’
GA; (T') = 1
(n-2)(n-3) 4(n-2)\/(m2+1)(n+1) 4m/(n+1) (4n+1
2 " 2n* +2n+2 n%+6n+2

The required values of the geometric arithmetic index and
its fifth version can be obtained after some simplifications. O

Theorem 7. For n>3, let I'; be a commuting graph of
I'=D,, then

[ (n-2)V(n-2)2n-1) +2(n—1)(3n—-4) +2nVn—-1
202n-1) ’
ABC(Tg) = 1
(n-2)(n-3)\2(n-2) 2vn-1 +n 2n\2n(n—1) +2(n—-2)\/3(3n—-4)
2(n-1) (2n-1) V3n-1)(2n-1) ’
(24)
n(n—l)\/m ’ mw+n—2
2(m* —-n+1) n\l(Zn—l)(nz—n+l)’
ABC,(Tg) =
nn-2)(n-3)2 2(n 2) RPn(n+1) \/m n(n+6) +n\/ﬁ
2(n2 +1) n+l n?+1 (n+1)? Tari\ane1 Tame
Proof. By using the edge partition, given in Table 3, in
formulas of ABC and ABC, indices, we have
[ (n- 2)\/2(71—2 1 3n-4 Iz(n— 1)
\e-nen-1n " "N an-1"
ABC(T) = (25)

(n-2)(n-3)y2(n-2) N

2(n—-1)

Also, for odd values of n, we have

n(n-1) I(nz—n+1)+(n2—n+1)—2

ABC, (Ig) = 2 n-n+1)(n2-n+1)

(@ -n+1)+@n-1)-2
n-n+1)2n-1)

+n

>

(26)

and for even values of n, we have

2(n-2)

) 3n—-4 2\/71— n 5 2n

- D2n-1)

+—+2n\|—.
2n—-1 3 32n-1)

(n—2)(n—3)x/ﬁ+2(n—2) 212 + 2n

2(n?+1) n+1 n+1

ABC,(Tg) =

2n+4n  2n WP +6n  n\/8n
+ 5 + s
(n+1) n+1l \dn+1 2(4n+1)
(27)

The required formulas for both the indices one can get by
performing an easy simplification. O
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Theorem 8. For n>3, let I'; be a commuting graph of
I'=D,, then

3 +2n—4
203n-2)°
H,(Tg) = (28)
(n—2)(3n2—3n—2)+6(n+1)+n(2n—1)(n+ 13)
2(n—1)(3n-2) 6(n+1)(2n-1)

Proof. By applying the formula of the harmonic index, using ~ Theorem 9. For n>3, let G be a noncommuting graph of

the edge partition given in Table 3, we have I'=D,, then
— - — 1
(n-Dn-2) 2n-1) , —(15712 - 19n+ 4), whennisodd,
2(n-1) 3n-2 12
Hr (FG) = RCW(GF) -
1
(7’!—2)(”—3)+4(”—2)+ 1 N 2n W —(15n2—34n+28), when nis even.
. 12
2(n—-1) 3n-2 2n-1 n+l1 6
(29) (30)
Some simplifications yield the required values of the
harmonic index. O Proof. Since the diameter of Gy is 2, so by sing the vertex
partition, given in Table 4, in formula (7) of the reciprocal
5. Topological Properties of Noncommuting complimentary Wiener index, we have
Graph G,

In this section, we compute the reciprocal complementary
Wiener, Harary, general Randi¢, ABC, ABC,, GA, GA;, and
harmonic indices of Gy.

2n-1 nn-1) (mn-1)3n-4)
+ +

,  whennisodd,
3 2 4
RCW (Gy) = (31)
2n-2 nn-1) 3(n-2)(n-2) .
+ + ,  whenniseven.
3 2 4
n2n-2) (n-1)GBn-1) .
Exact values for this index are due to some easy 5 1 » whennisodd,
calculations. O H(G,) =
n(4n—7)+3(n—2)(n—1) h .
Theorem 10. For n>3, let Gy be a noncommuting graph of 4 4 ) whenniseven.
I'=D,, then (33)
—(7n2 - 8n+ 1), whennis odd, By performing some algebraic computations, one can
4 obtain the required Harary index. O
H(Gp) = (32)

1, 5 .
1 (7” —len+ 6)’ when nis even. Theorem 11. For n>3, let G be a noncommuting graph of

I' = D,,. Then, for odd values of n,

Proof. By sing the vertex partition, given in Table 4, in
formula (9) of the Harary index, we have



10
2n(n-1>2n-1),
5n—4
8(n—1)
Ra (GF) =

nn-1)+2nn-1) +n-1,

nn-1) n

2 4

>

and for even values of n,

(4n(n—-2)*(n-1),

10n - 16
16n—32

Rot (Gr) =

dn(n—-2) +n\2nn-2)
L 4+2n(n-2) ’

R (Gr) =9

nn-2)\n2n-14) +n(n-2)>*

>

[ n(n—1)
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Proof. Using the edge partition, given in Table 5, in the
formula  of  general  Randi¢
a=1,-1,1/2,—(1/2), we have

fora =1,
fora = -1,
1
fora =,
2
1
foraa = —,
2
(34)
fora =1,
fora = -1,
1
fora = -,
2
1
fora = —.
2
(35)

w2 (n—1)(2n—2) + =

n(n-2)2n-4)+

nn-1)

R, (Gr) =

nn-2) n

n(2n-2) 202n-2)%

(n-2)

Ry, (Gr) =9

nn-2)\n2n-4) +

nn-1)

| n(2n-4) 202n- 4)*

nn—1)yn(2n-2) +n(

nn-1)

(n

R_1p (Gr) =9

n(n-2)

\n(2n-2) " 2(2n-2)

n(n-2)

| Vn(2n—4) "2 (2n-4)

Theorem 12. Let G be a noncommuting graph of I = D,,,

By performing some simplifications, we get the required
O  forn>3, then

results.

>

2

when nis odd,

when nis even.

-1)(2n-2)*
#, when nis odd,
n(n-2)2n - 4)>* .
S S— when nis even,
when nis odd,
when nis even,
-1)2n-2
M, whennis odd,
nn-2)2n-4) .
——~—°  whenniseven,

index

R

o

for

(36)
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(202n(n-1)"?+n(n-1)Bn-2)

,  whennisodd,
2(3n-2)
GA(Gr) =
22n(n—2))"? +n(n-2)(3n-4) ,
,  whenniseven,
2(3n-4)
(37)
4n\2n(n-1)>(Bn-2) +n(n—-1)(5n-2)
\/ ,  whennisodd,
10n -4
GAs (Gr) =
nn-2)(5n—4++/32n(3n—4) ) when 71is even.
10n -8
Proof. Applying formulas of the geometric arithmetic index
and its fifth version, using the edge partition given in Table 5,
we have
[ 2n(n-1)\n(2n-2 -1
n(n=1Dyn(2n-2) + nin ), whennisodd,
3n—-2 2
GA(Gr) = 1
2n(n—-2)yn(2n— -
n(n=2)Vn(2n-4) + nin 2), whenniseven,
3n—4 2
(38)

[ 2n(n-1\2n(n-17Gn-2) n(n-1)

bl h i )
mn—1)+(n-1)Gn-2) 2 whennisodd

GA; (Gr) = 1

2n(n—2)\/2n(n—2)2(3n—4) n(n-2)
2n(n-2)+(n-2)(3n-4) 2

,  whenniseven.

The required values of the geometric arithmetic index and ~ Theorem 13. For n>3, let G, be a noncommuting graph of
its fifth version can be obtained after some simplifications. O  I' =D,, then

' - — 2 (9, _
n(n 1)2(3” 4)+\J@, when nis odd,

\/n(n -2)(3n-6) nV4n-10
2 " 4

ABC (GF) =1

, when nis even,

(39)

I W (n-1)*(5n% = 7n)  \/n?(6n2 —10n +2)

+
6n* — 16m3 + 14n*> — 4n 2(3n-2)

I5n - 14n* + 6n \/2n2(n—1)(3n 7) _
v when nis even.

2(3n—4) ’

,  whennisodd,

ABC4 (GI‘) =

Proof. By using the edge partition, given in Table 5, in
formulas of ABC and ABC, indices, we have
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] 3n—4 nn-1)v4n-6 .
n(n_l)\IZn(n—l) + ( 2(231_2) ,  whennisodd,
ABC(Gy) = (40)
3n—-6 -2)V4n-10
n(n—Z)\ln(znn_4) +n(n2(2)n_z) ,  whenmniseven.

Also, for odd values of n, we have

2 -1 -1)(3n-2)-2
ABC,(Gr) =n(n- 1)\} nn 2n2n+_(n1)2()3;ilz) )

n(n-1) 2(n-1)(Gn-2)-2
+ 7
2 \((n-1)Gn-2)
(41)

and for even values of n, we have

2n(n-2)+(n-2)(3n-4) -2
ABC,(Gy) = n(n—Z)\jI i 2n2n+_(”2)2()351’_14) )

nn-2)\2(n-2)(3n—-4) -2
2(n—2)(3n-4)

(42)

The required formulas for both the indices one can get by
performing an easy simplification. O

Theorem 14. For n> 3, let G be a noncommuting graph of
I'=D,, then

n(lln—10)

,  whennisodd,
4(3n-2)
H,(Gr) = (43)
11n - 20
M, when nis even.
4(3n-4)

Proof. By applying the formula of the harmonic index, using
the edge partition given in Table 5, we have

2n(n=1) =1 ) nisodd,
3n-2  2(2n-2)
Hr(GT):
2n(n-2) n(n-2) i
., whenmniseven.
3n-4 2(2n-4)
(44)

Some simplifications yield the required values of the
harmonic index. U

6. Concluding Remarks

An algebraic structure plays a vital role in chemistry to form
chemical compound structures and in investigating various
chemical properties of chemical compounds in these

structures. Here, we considered a very well-known algebraic
structure, called the group of symmetries of regular gons (the
dihedral group), which has remarkable contribution in the
theory of electron structures and molecular vibrations. We
considered one algebraic property, namely, commutation
property, on the dihedral group and associated two graphs
(chemical structure) with the group of symmetries. We
computed some distance-based and degree-based topolog-
ical properties of these associated graphs by computing the
exact formulae of the Wiener index, reciprocal comple-
mentary Wiener index, Schultz molecular topological index,
Harary index, Randi¢ index, geometric arithmetic indices,
atomic bond connectivity indices, and harmonic index. All
the indices are numeric quantities and, in fact, this work is a
theoretical contribution in the theory of topological indices
with the unique algebraic structure, and it can be very
helpful to predict the bioactivity of chemical compounds
using physicochemical properties in QSAR/QSPR studied.
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